Displaying publications 1 - 20 of 50 in total

Abstract:
Sort:
  1. Yusof WZ, Ghazali MN
    J Am Dent Assoc, 1989 Apr;118(4):453-5.
    PMID: 2708724
    Presented is an unusual case of multiple external root resorption. Although the cause of this resorption was not determined, several possibilities are presented. Trauma from occlusion, periodontal and pulpal inflammation, and resorption of idiopathic origin are all discussed as possible causes.
    Matched MeSH terms: Bone Resorption/complications
  2. Yeap SS
    JUMMEC, 1998;3(1&2):13-17.
    Bisphosphonates are synthetic analogues of pyrophosphate. Their main pharmacological effect is to iuhibit bone resorption by a variety of mechanisms, not all of which are clearly understood. The activity of the bisphosphonates varies depending on the compound. In clinical trials, they have been shown to stop postmenopausal bone loss and increase bone density, with a concomitant reduction in fracture rate with some agents. This article reviews the currently known mechanisms of action of the bisphosphonates and the evidence that they are useful in the treatment of osteoporosis.
    Matched MeSH terms: Bone Resorption
  3. Wong SK, Chin KY, Ima-Nirwana S
    Int J Mol Sci, 2020 Sep 03;21(17).
    PMID: 32899435 DOI: 10.3390/ijms21176448
    Quercetin is a flavonoid abundantly found in fruits and vegetables. It possesses a wide spectrum of biological activities, thus suggesting a role in disease prevention and health promotion. The present review aimed to uncover the bone-sparing effects of quercetin and its mechanism of action. Animal studies have found that the action of quercetin on bone is largely protective, with a small number of studies reporting negative outcomes. Quercetin was shown to inhibit RANKL-mediated osteoclastogenesis, osteoblast apoptosis, oxidative stress and inflammatory response while promoting osteogenesis, angiogenesis, antioxidant expression, adipocyte apoptosis and osteoclast apoptosis. The possible underlying mechanisms involved are regulation of Wnt, NF-κB, Nrf2, SMAD-dependent, and intrinsic and extrinsic apoptotic pathways. On the other hand, quercetin was shown to exert complex and competing actions on the MAPK signalling pathway to orchestrate bone metabolism, resulting in both stimulatory and inhibitory effects on bone in parallel. The overall interaction is believed to result in a positive effect on bone. Considering the important contributions of quercetin in regulating bone homeostasis, it may be considered an economical and promising agent for improving bone health. The documented preclinical findings await further validation from human clinical trials.
    Matched MeSH terms: Bone Resorption/prevention & control*
  4. Wong SK, Chin KY, Suhaimi FH, Ahmad F, Ima-Nirwana S
    Bone, 2018 11;116:8-21.
    PMID: 29990585 DOI: 10.1016/j.bone.2018.07.003
    Metabolic syndrome (MetS) is associated with osteoporosis due to the underlying inflammatory and hormonal changes. Annatto tocotrienol has been shown to improve medical complications associated with MetS or bone loss in animal studies. This study aimed to investigate the effects of annatto tocotrienol as a single treatment for MetS and osteoporosis in high-carbohydrate high-fat (HCHF) diet-induced MetS animals. Three-month-old male Wistar rats were randomly divided into five groups. The baseline group was euthanized at the onset of the study. The normal group received standard rat chow and tap water. The remaining groups received HCHF diet and treated with three different regimens orally daily: (a) tocopherol-stripped corn oil (the vehicle of tocotrienol), (b) 60 mg/kg annatto tocotrienol, and (c) 100 mg/kg annatto tocotrienol. At the end of the study, measurements of MetS parameters, body compositions, and bone mineral density were performed in animals before sacrifice. Upon euthanasia, blood and femur of the rats were harvested for the evaluations of bone microstructure, biomechanical strength, remodelling activities, hormonal changes, and inflammatory response. Treatment with annatto tocotrienol improved all MetS parameters (except abdominal obesity), trabecular bone microstructure, bone strength, increased osteoclast number, normalized hormonal changes and inflammatory response in the HCHF animals. In conclusion, annatto tocotrienol is a potential agent for managing MetS and osteoporosis concurrently. The beneficial effects of annatto tocotrienol may be attributed to its ability to prevent the hormonal changes and pro-inflammatory state in animals with MetS.
    Matched MeSH terms: Bone Resorption/complications; Bone Resorption/drug therapy*
  5. Wastie ML
    Br J Radiol, 1972 Aug;45(536):570-4.
    PMID: 5045966
    Matched MeSH terms: Bone Resorption/radiography
  6. Takebe Y, Tsujigiwa H, Katase N, Siar CH, Takabatake K, Fujii M, et al.
    J Oral Pathol Med, 2017 Jan;46(1):67-75.
    PMID: 27327904 DOI: 10.1111/jop.12467
    BACKGROUND: Tumor parenchyma-stromal interactions affect the properties of tumors and their dynamics. Our group previously showed that secreted frizzled related protein (sFRP)-2 impairs bone formation and promotes bone invasion in ameloblastoma. However, the effects of the secreted growth factors CCN2, TGF-β, and BMP4 on stromal tissues in ameloblastoma remain unclear.

    MATERIALS AND RESULTS: Thirty-five paraffin-embedded ameloblastoma cases, ameloblastoma-derived cell lines (AM-1), and primary cultures of ameloblastoma stromal fibroblasts (ASF) were used. Immunohistochemistry, MTT assay, Western blotting, and RT-PCR were performed on these samples. Parenchyma-stromal CCN2 overexpression correlated significantly with fibrous-type stroma, but not with myxoid-type stroma, suggesting a role of CCN2 in fibrosis (P < 0.05). Recombinant CCN2 induction of enhanced ASF proliferation in AM-1 medium supports this view. Conversely, BMP4 and TGF-β were expressed in myxoid-type fibroblasts, but little expression was found in parenchyma. RANKL-positive and CD68-positive stromal cell populations were significantly greater in myxoid-type tumor areas than in fibrous-type tumor areas, while a higher Ki-67 labeling index was recorded in ameloblastoma with fibrous-type stroma. These data suggest that stromal properties influence bone resorption-related activities and growth rates, respectively.

    CONCLUSIONS: These results suggest that the effects of secreted growth factors are governed by ameloblastoma parenchyma-stromal interactions. CCN2 promotes fibrogenesis independent of TGF-β signaling. Absence of CCN2 expression is associated with a phenotypic switch to a myxoid-type microenvironment that is conducive for TGF-β/BMP4 signaling to promote osteoclastogenesis.

    Matched MeSH terms: Bone Resorption/metabolism
  7. Sultan T, Cheah CW, Ibrahim NB, Asif MK, Vaithilingam RD
    J Dent, 2020 Oct;101:103455.
    PMID: 32828845 DOI: 10.1016/j.jdent.2020.103455
    OBJECTIVES: This clinical study assessed and compared the linear and volumetric changes of extraction sockets grafted with a combination of Platelet-Rich Fibrin (PRF) and Calcium Sulfate (CS) (PRF-CS), and extraction sockets grafted with a combination of PRF and xenograft (X) (PRF-X).

    METHODS: Five single maxillary premolar extraction sockets received PRF-CS grafts and five single maxillary premolar sockets received PRF-X grafts. Linear (horizontal and vertical) measurements were accomplished using Cone Beam Computed Tomography (CBCT) images and volumetric changes were assessed using MIMICS software. Soft tissue level changes were measured using Stonecast models. All measurements were recorded at baseline (before extraction) and at 5-months post-extraction.

    RESULTS: Significant reduction in vertical and horizontal dimensions were observed in both groups except for distal bone height (DBH = 0.44 ± 0.45 mm, p = 0.09) and palatal bone height (PBH = 0.39 ± 0.34 mm, p = 0.06) in PRF-X group. PRF-CS group demonstrated mean horizontal shrinkage of 1.27 ± 0.82 mm (p = 0.02), when compared with PRF-X group (1.40 ± 0.85 mm, p = 0.02). Vertical resorption for mesial bone height (MBH = 0.56 ± 0.25 mm, p = 0.008), buccal bone height (BBH = 1.62 ± 0.91 mm, p = 0.01) and palatal bone height (PBH = 1.39 ± 0.87 mm, p = 0.02) in PRF-CS group was more than resorption in PRF-X group (MBH = 0.28 ± 0.14 mm, p = 0.01, BBH = 0.63 ± 0.39 mm, p = 0.02 and PBH = 0.39 ± 0.34 mm, p = 0.06). Volumetric bone resorption was significant within both groups (PRF-CS = 168.33 ± 63.68 mm3, p = 0.004; PRF-X = 102.88 ± 32.93 mm3, p = 0.002), though not significant (p = 0.08) when compared between groups. In PRF-X group, the distal soft tissue level (DSH = 1.00 ± 0.50 mm, p = 0.03) demonstrated almost 2 times more reduction when compared with PRF-CS group (DSH = 1.00 ± 1.00 mm, 0.08). The reduction of the buccal soft tissue level was pronounced in PRF-CS group (BSH = 2.00 ± 2.00 mm, p = 0.06) when compared with PRF-X group (BSH = 1.00 ± 1.50 mm, p = 0.05).

    CONCLUSIONS: PRF-CS grafted sites showed no significant difference with PRF-X grafted sites in linear and volumetric dimensional changes and might show clinical benefits for socket augmentation. The study is officially registered with ClinicalTrials.gov Registration (NCT03851289).

    Matched MeSH terms: Bone Resorption
  8. Suhana MR, Farihah HS, Faizah O, Nazrun SA, Norazlina M, Norliza M, et al.
    Clin Ter, 2011;162(4):313-8.
    PMID: 21912818
    Osteoporosis is a proven complication of long-term glucocorticoid therapy. Concern on glucocorticoid induced osteoporosis has increased dramatically in recent years with the widespread use of synthetic glucocorticoids. Glucocorticoid action in bone depends upon the activity of 11βhydroxysteroid dehydrogenase type 1 enzyme (11βHSD1). This enzyme plays an important role in regulating corticosteroids by locally interconverting cortisone into active cortisol. This has been demonstrated in primary cultures of human, mouse or rat osteoblasts. Therefore, inhibition of this enzyme may reduce bone resorption markers. Piper sarmentosum (Ps) is a potent inhibitor of 11βHSD1 in liver and adipose tissue. In this study we determined the effect of Ps on 11βHSD1 activity in bones of glucocorticoid-induced osteoporotic rats.
    Matched MeSH terms: Bone Resorption/chemically induced; Bone Resorption/enzymology; Bone Resorption/prevention & control*
  9. Subramaniam K, Marks SC, Seang Hoo Nah
    Lepr Rev, 1983 Jun;54(2):119-27.
    PMID: 6888141
    Matched MeSH terms: Bone Resorption/etiology*
  10. Solehuddin Shuib, Sahari, B.B., Wong, Shaw Voon, Arumugam, Manohar, Halim Kadarman, A.
    MyJurnal
    Bone is a living tissue. It continuously reproduces its structure and its growth depends partly upon the applied mechanical load. After an implant is inserted, the load equilibrium is disturbed, leading to bone resorption and the stress shielding phenomena. Aseptic loosening is the main contributor for hip prosthesis failure. The purpose of the study is to determine the effect of bone resorption on the stress values and hence obtain a better understanding of the behavior of the stress adaptive bone-remodeling. The bone material used for the analysis was assumed to be isotropic and linearly elastic, and the external loads applied comprised of a femoral head load and an abductor load. A Finite element computer program for evaluating the changes in bone's density and modulus was developed. The values of stress for bone, cement mantle in medial, and lateral positions of Total Hip Replacement (THR) are presented. The failure mechanisms of THR with bone resorption observed the implant loosening since stress is reduced.
    Matched MeSH terms: Bone Resorption
  11. Shalan NA, Mustapha NM, Mohamed S
    Nutrition, 2017 Jan;33:42-51.
    PMID: 27908549 DOI: 10.1016/j.nut.2016.08.006
    OBJECTIVE: Black tea and Nonileaf are among the dietary compounds that can benefit patients with bone resorption disorders. Their bone regeneration effects and their mechanisms were studied in estrogen-deficient rats.

    METHODS: Noni leaves (three doses) and black tea water extracts were fed to ovariectomized rats for 4 mo, and their effects (analyzed via mechanical measurements, micro-computed tomography scan, and reverse transcriptase polymerase chain reaction mRNA) were compared with Remifemin (a commercial phytoestrogen product from black cohosh).

    RESULTS: The water extracts (dose-dependently for noni leaves) increased bone regeneration biomarker (runt-related transcription factor 2, bone morphogenetic protein 2, osteoprotegerin, estrogen receptor 1 [ESR1], collagen type I alpha 1A) expressions and reduced the inflammatory biomarkers (interleukin-6, tumor necrosis factor-α, nuclear factor [NF]-κB, and receptor activator of NF-κB ligand) mRNA expressions/levels in the rats. The extracts also improved bone physical and mechanical properties. The extracts demonstrated bone regeneration through improving bone size and structure, bone mechanical properties (strength and flexibility), and bone mineralization and density.

    CONCLUSIONS: The catechin-rich extract favored bone regeneration and suppressed bone resorption. The mechanisms involved enhancing osteoblast generation and survival, inhibiting osteoclast growth and activities, suppressing inflammation, improving bone collagen synthesis and upregulating ESR1 expression to augment phytoestrogenic effects. Estrogen deficiency bone loss and all extracts studied (best effect from Morinda leaf at 300 mg/kg body weight) mitigated the loss, indicating benefits for the aged and menopausal women.

    Matched MeSH terms: Bone Resorption/drug therapy
  12. Sakthiswary R, Das S
    Curr Drug Targets, 2013 Dec;14(13):1552-7.
    PMID: 23848441
    Osteoporosis is a common complication observed in rheumatoid arthritis (RA). Accelerated bone loss is always a matter of concern. The pathogenesis of RA may be important for better understanding of the bone loss. The mechanism involved in the bone loss in RA is not well understood although cytokines such as interleukin 1 and tumour necrosis factor α (TNF α) have been strongly implicated. TNF α antagonists have revolutionised the treatment of RA in the recent years. Beyond the control of disease activity in RA, accumulating evidence suggests that this form of therapy may provide beneficial effects to the bone metabolism and remodeling. An extensive search of the literature was performed in the Medline, Scopus and EBSCO databases to evaluate the documented research on the effects of TNF α antagonists in RA on bone mineral density and bone turnover markers. The available data based on our systematic review, depict a significant association between TNF α antagonists treatment and suppression of bone resorption.
    Matched MeSH terms: Bone Resorption/drug therapy*; Bone Resorption/metabolism
  13. Rufus P, Mohamed N, Shuid AN
    Curr Drug Targets, 2013 Dec;14(14):1689-93.
    PMID: 24354584
    Osteoporosis is a metabolic bone disorder that affects both men and women worldwide. It causes low bone mass and therefore increases bone susceptibility to fracture when bone undergoes a minor trauma. Lack of estrogen is the principal cause of osteoporosis. Estrogen, calcium, calcitonin, vitamin D and several antioxidants help in the prevention of osteoporosis. In order to effectively treat osteoporosis, there has been an extended research on the biological activities of traditional medicines since synthetic medicines possess several side effects that reduce their efficacy. Therefore, there is a need to develop new treatment alternatives for osteoporosis. This review centres on the scientific researches carried out on the evaluation of Chinese traditional medicines in the treatment of osteoporosis. Various plants like Achyranthes bidentata, Davallia formosana, polygonatum sibiricum, Cibotium barometz, Er-Zhi-Wan, Curculigo orchioides and a combined treatment of Hachimi-jio-gan (Ba-Wei-Di-Huang-Wan) with alendronate proved active in preventing post-menopausal osteoporosis.
    Matched MeSH terms: Bone Resorption/metabolism; Bone Resorption/prevention & control
  14. Radzi NFM, Ismail NAS, Alias E
    Curr Drug Targets, 2018;19(9):1095-1107.
    PMID: 29412105 DOI: 10.2174/1389450119666180207092539
    BACKGROUND: There are accumulating studies reporting that vitamin E in general exhibits bone protective effects. This systematic review, however discusses the effects of a group of vitamin E isomers, tocotrienols in preventing bone loss through osteoclast differentiation and activity suppression.

    OBJECTIVE: This review is aimed to discuss the literature reporting the effects of tocotrienols on osteoclasts, the cells specialized for resorbing bone.

    RESULTS: Out of the total 22 studies from the literature search, only 11 of them were identified as relevant, which comprised of eight animal studies, two in vitro studies and only one combination of both. The in vivo studies indicated that tocotrienols improve the bone health and reduce bone loss via inhibition of osteoclast formation and resorption activity, which could be through regulation of RANKL and OPG expression as seen from their levels in the sera. This is well supported by data from the in vitro studies demonstrating the suppression of osteoclast formation and resorption activity following treatment with tocotrienol isomers.

    CONCLUSION: Thus, tocotrienols are suggested to be potential antioxidants for prevention and treatment of bone-related diseases characterized by increased bone loss.

    Matched MeSH terms: Bone Resorption/prevention & control
  15. Potu BK, Nampurath GK, Rao MS, Bhat KM
    Clin Ter, 2011;162(4):307-12.
    PMID: 21912817
    The aim of our study was to see the efficacy of petroleum ether extract of Cissus quadrangularis (CQ) on development of osteopenia in ovariectomy induced Wistar rats.
    Matched MeSH terms: Bone Resorption/etiology; Bone Resorption/prevention & control
  16. Parvaneh M, Karimi G, Jamaluddin R, Ng MH, Zuriati I, Muhammad SI
    Clin Interv Aging, 2018;13:1555-1564.
    PMID: 30214175 DOI: 10.2147/CIA.S169223
    Purpose: Osteoporosis is one of the major health concerns among the elderly population, especially in postmenopausal women. Many menopausal women over 50 years of age lose their bone density and suffer bone fractures. In addition, many mortality and morbidity cases among the elderly are related to hip fracture. This study aims to investigate the effect of Lactobacillus helveticus (L. helveticus) on bone health status among ovariectomized (OVX) bone loss-induced rats.

    Methods: The rats were either OVX or sham OVX (sham), then were randomly assigned into three groups, G1: sham, G2: OVX and G3: OVX+L. helveticus (1 mL of 108-109 colony forming units). The supplementation was force-fed to the rats once a day for 16 weeks while control groups were force-fed with demineralized water.

    Results: L. helveticus upregulated the expression of Runx2 and Bmp2, increased serum osteocalcin, bone volume/total volume and trabecular thickness, and decreased serum C-terminal telopeptide and total porosity percentage. It also altered bone microstructure, as a result increasing bone mineral density and bone strength.

    Conclusion: Our results indicate that L. helveticus attenuates bone remodeling and consequently improves bone health in OVX rats by increasing bone formation along with bone resorption reduction. This study suggests a potential therapeutic effect of L. helveticus (ATCC 27558) on postmenopausal osteoporosis.

    Matched MeSH terms: Bone Resorption
  17. Parvaneh K, Ebrahimi M, Sabran MR, Karimi G, Hwei AN, Abdul-Majeed S, et al.
    Biomed Res Int, 2015;2015:897639.
    PMID: 26366421 DOI: 10.1155/2015/897639
    Probiotics are live microorganisms that exert beneficial effects on the host, when administered in adequate amounts. Mostly, probiotics affect the gastrointestinal (GI) tract of the host and alter the composition of gut microbiota. Nowadays, the incidence of hip fractures due to osteoporosis is increasing worldwide. Ovariectomized (OVX) rats have fragile bone due to estrogen deficiency and mimic the menopausal conditions in women. Therefore, this study aimed to examine the effects of Bifidobacterium longum (B. longum) on bone mass density (BMD), bone mineral content (BMC), bone remodeling, bone structure, and gene expression in OVX rats. The rats were randomly assigned into 3 groups (sham, OVX, and the OVX group supplemented with 1 mL of B. longum 10(8)-10(9) colony forming units (CFU)/mL). B. longum was given once daily for 16 weeks, starting from 2 weeks after the surgery. The B. longum supplementation increased (p < 0.05) serum osteocalcin (OC) and osteoblasts, bone formation parameters, and decreased serum C-terminal telopeptide (CTX) and osteoclasts, bone resorption parameters. It also altered the microstructure of the femur. Consequently, it increased BMD by increasing (p < 0.05) the expression of Sparc and Bmp-2 genes. B. longum alleviated bone loss in OVX rats and enhanced BMD by decreasing bone resorption and increasing bone formation.
    Matched MeSH terms: Bone Resorption/drug therapy; Bone Resorption/genetics; Bone Resorption/metabolism
  18. Ooi, Foong Kiew, Azlina Aziz
    MyJurnal
    This study investigated the effects of 6 weeks combined circuit training programme and honey
    supplementation on bone metabolism markers in young males. Forty male participants were divided into four
    groups (n=10 per group): sedentary without honey supplementation control (C), sedentary with honey
    supplementation (H), circuit training without honey supplementation (Ex), circuit training with honey
    supplementation (HEx) groups. Circuit training was carried out one hour/session, 3 times/week. Participants in
    H and HEx consumed 300 mLof honey drink containing 20g of Tualang honey for 7 days/week. Immediately
    before and after six weeks of experimental period, blood samples were taken for measuring concentrations of
    serum total calcium, serum alkaline phosphatase as bone formation marker and serum C-terminal telopeptide
    of type 1 collagen (1CTP) as bone resorption marker. There was significantly (p
    Matched MeSH terms: Bone Resorption
  19. Nurul Ain Mohamed Yusof, Mohd Salman Masri, Erni Noor
    Compendium of Oral Science, 2018;5(1):46-53.
    MyJurnal
    Introduction: High survival rates of dental implants were commonly reported even after 10 years of follow up. Nevertheless, complications and failure may occur and the implant would need to be removed. In recent years, the use of autogenous blood products in dental surgery has increased due to its ability to aid the healing of the soft and hard tissues. Clinical case: The case demonstrated the utilisation of concentrated growth factor (CGF) from the patient’s blood for healing following conservative removal of a failed dental implant. Subsequently, the patient showed satisfactory recovery without any infections and clinical complaints. Conclusion: This explantation procedure, together with the use of CGF, may prevent the normal bone resorption and accelerate soft tissue healing. As it is biological in nature having originated from the patient’s blood, it is more readily accepted by the tissues and the risk of infection is low.
    Matched MeSH terms: Bone Resorption
  20. Nor Muhamad ML, Ekeuku SO, Wong SK, Chin KY
    Nutrients, 2022 Nov 16;14(22).
    PMID: 36432535 DOI: 10.3390/nu14224851
    BACKGROUND: Osteoporosis is caused by the deterioration of bone density and microstructure, resulting in increased fracture risk. It transpires due to an imbalanced skeletal remodelling process favouring bone resorption. Various natural compounds can positively influence the skeletal remodelling process, of which naringenin is a candidate. Naringenin is an anti-inflammatory and antioxidant compound found in citrus fruits and grapefruit. This systematic review aims to present an overview of the available evidence on the skeletal protective effects of naringenin.

    METHOD: A systematic literature search was conducted using the PubMed and Scopus databases in August 2022. Original research articles using cells, animals, or humans to investigate the bone protective effects of naringenin were included.

    RESULTS: Sixteen eligible articles were included in this review. The existing evidence suggested that naringenin enhanced osteoblastogenesis and bone formation through BMP-2/p38MAPK/Runx2/Osx, SDF-1/CXCR4, and PI3K/Akt/c-Fos/c-Jun/AP-1 signalling pathways. Naringenin also inhibited osteoclastogenesis and bone resorption by inhibiting inflammation and the RANKL pathway.

    CONCLUSIONS: Naringenin enhances bone formation while suppressing bone resorption, thus achieving its skeletal protective effects. It could be incorporated into the diet through fruit intake or supplements to prevent bone loss.

    Matched MeSH terms: Bone Resorption*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links