Displaying publications 1 - 20 of 43 in total

Abstract:
Sort:
  1. Razak M, Ismail MM, Omar A
    Med J Malaysia, 1998 Sep;53 Suppl A:83-5.
    PMID: 10968187
    We review 81 cases of acute haematogenous osteomyelitis from 1983 to 1990 to establish current pattern of clinical presentation, modes of treatment and success of therapy. Majority of the patient (70%) presented within a week of symptom and significant number of them came with fever and swelling of the affected limb. Sedimentation rate was found to be raised in all of them. Fifty-four (55%) of them were treated surgically. The average antibiotic time was one week by intravenous administration followed by additional oral therapy for period up to four weeks. Average follow-up was 9 months. Six of them (7.5%) end up with various complication which was believed to be due to delay in getting medical treatment.
    Matched MeSH terms: Bone and Bones/metabolism*
  2. Mieczkowska A, Mansur SA, Irwin N, Flatt PR, Chappard D, Mabilleau G
    Bone, 2015 Jul;76:31-9.
    PMID: 25813583 DOI: 10.1016/j.bone.2015.03.010
    Type 1 diabetes mellitus (T1DM) is a severe disorder characterized by hyperglycemia and hypoinsulinemia. A higher occurrence of bone fractures has been reported in T1DM, and although bone mineral density is reduced in this disorder, it is also thought that bone quality may be altered in this chronic pathology. Vibrational microscopies such as Fourier transform infrared microspectroscopy (FTIRM) represent an interesting approach to study bone quality as they allow investigation of the collagen and mineral compartment of the extracellular matrix in a specific bone location. However, as spectral feature arising from the mineral may overlap with those of the organic component, the demineralization of bone sections should be performed for a full investigation of the organic matrix. The aims of the present study were to (i) develop a new approach, based on the demineralization of thin bone tissue section to allow a better characterization of the bone organic component by FTIRM, (ii) to validate collagen glycation and collagen integrity in bone tissue and (iii) to better understand what alterations of tissue material properties in newly forming bone occur in T1DM. The streptozotocin-injected mouse (150 mg/kg body weight, injected at 8 weeks old) was used as T1DM model. Animals were randomly allocated to control (n = 8) or diabetic (n = 10) groups and were sacrificed 4 weeks post-STZ injection. Bones were collected at necropsy, embedded in polymethylmethacrylate and sectioned prior to examination by FTIRM. FTIRM collagen parameters were collagen maturity (area ratio between 1660 and 1690 cm(-1) subbands), collagen glycation (area ratio between the 1032 cm(-1) subband and amide I) and collagen integrity (area ratio between the 1338 cm(-1) subband and amide II). No significant differences in the mineral compartment of the bone matrix could be observed between controls and STZ-injected animals. On the other hand, as compared with controls, STZ-injected animals presented with significant higher value for collagen maturity (17%, p = 0.0048) and collagen glycation (99%, p = 0.0121), while collagen integrity was significantly lower by 170% (p = 0.0121). This study demonstrated the profound effect of early T1DM on the organic compartment of the bone matrix in newly forming bone. Further studies in humans are required to ascertain whether T1DM also lead to similar effect on the quality of the bone matrix.
    Matched MeSH terms: Bone and Bones/metabolism
  3. Chin KY, Abdul-Majeed S, Fozi NF, Ima-Nirwana S
    Nutrients, 2014 Nov;6(11):4974-83.
    PMID: 25389899 DOI: 10.3390/nu6114974
    This study aimed to evaluate the effects of annatto tocotrienol on indices of bone static histomorphometry in orchidectomized rats. Forty male rats were randomized into baseline (BL), sham (SH), orchidectomized (ORX), annatto tocotrienol-treated (AnTT) and testosterone enanthate-treated (TE) groups. The BL group was sacrificed upon receipt. All rats except the SH group underwent bilateral orchidectomy. Annatto tocotrienol at 60 mg/kg body weight was administered orally daily to the AnTT group for eight weeks. Testosterone enanthate at 7 mg/kg body weight was administered intramuscularly once weekly for eight weeks to the TE group. The rat femurs were collected for static histomorphometric analysis upon necropsy. The results indicated that the ORX group had significantly higher osteoclast surface and eroded surface, and significantly lower osteoblast surface, osteoid surface and osteoid volume compared to the SH group (p < 0.05). Annatto tocotrienol and testosterone enanthate intervention prevented all these changes (p < 0.05). The efficacy of annatto tocotrienol was on par with testosterone enanthate. In conclusion, annatto tocotrienol at 60 mg/kg can prevent the imbalance in bone remodeling caused by increased osteoclast and bone resorption, and decreased osteoblast and bone formation. This serves as a basis for the application of annatto tocotrienol in hypogonadal men as an antiosteoporotic agent.
    Matched MeSH terms: Bone and Bones/metabolism
  4. Thent ZC, Froemming GRA, Muid S
    Life Sci, 2018 Apr 01;198:1-7.
    PMID: 29432759 DOI: 10.1016/j.lfs.2018.02.013
    Bisphenol A (BPA) (2,2,-bis (hydroxyphenyl) propane), a well-known endocrine disruptor (ED), is the exogenous chemical that mimic the natural endogenous hormone like oestrogen. Due to its extensive exposure to humans, BPA is considered to be a major toxicological agent for general population. Environmental exposure of BPA results in adverse health outcomes including bone loss. BPA disturbs the bone health by decreasing the plasma calcium level and inhibiting the calcitonin secretion. BPA also stimulated differentiation and induced apoptosis in human osteoblasts and osteoclasts. However, little is known about the underlying mechanisms of the untoward effect of BPA against bone metabolism. The present review gives an overview on the possible mechanisms of BPA towards bone loss. The previous literature shows that BPA exerts its toxic effect on bone cells by binding to the oestrogen related receptor-gamma (ERγ), reducing the bone morphogenic protein-2 (BMP-2) and alkaline phosphatase (ALP) activities. BPA interrupts the bone metabolism via RANKL, apoptosis and Wnt/β-catenin signaling pathways. It is, however, still debated on the exact underlying mechanism of BPA against bone health. We summarised the molecular evidences with possible mechanisms of BPA, an old environmental culprit, in bone loss and enlightened the underlying understanding of adverse action of BPA in the society.
    Matched MeSH terms: Bone and Bones/metabolism
  5. Bakhsh A, Mustapha NM, Mohamed S
    Nutrition, 2013 Apr;29(4):667-72.
    PMID: 23290096 DOI: 10.1016/j.nut.2012.09.005
    Postmenopausal estrogen deficiency often causes bone density loss and osteoporosis. This study evaluated the effects of an oral administration of oil palm leaf extract (OPL) on bone calcium content and structure, bone density, ash weights, and serum total alkaline phosphatase (T-ALP) of estrogen-deficient ovariectomized (OVX) rats.
    Matched MeSH terms: Bone and Bones/metabolism
  6. Murni NS, Dambatta MS, Yeap SK, Froemming GRA, Hermawan H
    Mater Sci Eng C Mater Biol Appl, 2015 Apr;49:560-566.
    PMID: 25686984 DOI: 10.1016/j.msec.2015.01.056
    The recent proposal of using Zn-based alloys for biodegradable implants was not supported with sufficient toxicity data. This work, for the first time, presents a thorough cytotoxicity evaluation of Zn-3Mg alloy for biodegradable bone implants. Normal human osteoblast cells were exposed to the alloy's extract and three main cell-material interaction parameters: cell health, functionality and inflammatory response, were evaluated. Results showed that at the concentration of 0.75mg/ml alloy extract, cell viability was reduced by ~50% through an induction of apoptosis at day 1; however, cells were able to recover at days 3 and 7. Cytoskeletal changes were observed but without any significant DNA damage. The downregulation of alkaline phosphatase protein levels did not significantly affect the mineralization process of the cells. Significant differences of cyclooxygenase-2 and prostaglandin E2 inflammatory biomarkers were noticed, but not interleukin 1-beta, indicating that the cells underwent a healing process after exposure to the alloy. Detailed analysis on the cell-material interaction is further discussed in this paper.
    Matched MeSH terms: Bone and Bones/metabolism
  7. Kruger MC, Chan YM, Kuhn-Sherlock B, Lau LT, Lau C, Chin YS, et al.
    Eur J Nutr, 2016 Aug;55(5):1911-21.
    PMID: 26264387 DOI: 10.1007/s00394-015-1007-x
    PURPOSE: To compare the effects of a high-calcium vitamin D-fortified milk with added FOS-inulin versus regular milk on serum parathyroid hormone, and bone turnover markers in premenopausal (Pre-M) and postmenopausal (PM) women over 12 weeks.

    METHODS: Premenopausal women (n = 136, mean age 41 (±5) years) and postmenopausal women [n = 121, mean age 59 (±4) years] were recruited, and each age group randomised into two groups to take two glasses per day of control = regular milk (500 mg calcium per day) or intervention (Int) = fortified milk (1000 mg calcium for pre-M women and 1200 mg calcium for PM women, 96 mg magnesium, 2.4 mg zinc, 15 µg vitamin D, 4 g FOS-inulin per day). At baseline, week 4 and week 12 serum minerals and bone biochemical markers were measured and bone density was measured at baseline.

    RESULTS: Mean 25-hydroxyvitamin D [25(OH) vitamin D3] levels among groups were between 49 and 65 nmol/L at baseline, and over the 12 weeks of supplementation, the fortified milk improved vitamin D status in both Int groups. CTx-1 and PINP reduced significantly in both Pre-M and PM groups over the 12 weeks, with the changes in CTx-1 being significantly different (P bone resorption in young and older women, fortified milk is measurably more effective.

    Matched MeSH terms: Bone and Bones/metabolism
  8. Elvy Suhana MR, Farihah HS, Faizah O, Nazrun AS, Norazlina M, Norliza M, et al.
    Singapore Med J, 2011 Nov;52(11):786-93.
    PMID: 22173247
    Glucocorticoids cause osteoporosis by decreasing bone formation and increasing bone resorption activity. Glucocorticoid action in bones depends on the activity of 11-beta-hydroxysteroid dehydrogenase type 1 (11β-HSD1) enzyme, which plays an important role in regulating corticosteroids. 11β-HSD1 is expressed by human and rat osteoblasts. We aimed to investigate the relationship between 11β-HSD1 dehydrogenase activity and bone histomorphometric changes in glucocorticoid-induced osteoporotic bone in rats.
    Matched MeSH terms: Bone and Bones/metabolism
  9. Ekeuku SO, Pang KL, Chin KY
    Drug Des Devel Ther, 2021;15:259-275.
    PMID: 33519191 DOI: 10.2147/DDDT.S287280
    PURPOSE: Caffeic acid is a metabolite of hydroxycinnamate and phenylpropanoid, which are commonly synthesized by all plant species. It is present in various food sources that are known for their antioxidant properties. As an antioxidant, caffeic acid ameliorates reactive oxygen species, which have been reported to cause bone loss. Some studies have highlighted the effects of caffeic acid against bone resorption.

    METHODS: A systematic review of the literature was conducted to identify relevant studies on the effects of caffeic acid on bone. A comprehensive search was conducted from July to November 2020 using PubMed, Scopus, Cochrane Library and Web of Science databases. Cellular, animal and human studies reporting the effects of caffeic acid, as a single compound, on bone cells or bone were considered.

    RESULTS: The literature search found 226 articles on this topic, but only 24 articles met the inclusion criteria and were included in this review. The results showed that caffeic acid supplementation reduced osteoclastogenesis and bone resorption, possibly through its antioxidant potential and increased expression of osteoblast markers. However, some studies showed that caffeic acid did not affect bone resorption in ovariectomized rats and might impair bone mechanical properties in normal rats.

    CONCLUSION: Caffeic acid potentially regulates the bone remodelling process by inhibiting osteoclastogenesis and bone resorption, as well as osteoblast apoptosis. Thus, it has medicinal values against bone diseases.

    Matched MeSH terms: Bone and Bones/metabolism
  10. Hapidin H, Othman F, Soelaiman IN, Shuid AN, Mohamed N
    Calcif. Tissue Int., 2011 Jan;88(1):41-7.
    PMID: 20953592 DOI: 10.1007/s00223-010-9426-4
    Nicotine is a major alkaloid of tobacco, which can increase free radical formation, leading to osteoporosis. The effects of nicotine administration and cessation on bone histomorphometry and biomarkers were studied in 28 Sprague-Dawley male rats. Rats aged 3 months and weighing 250-300 g were divided into four groups: control (C, normal saline for 4 months), nicotine for 2 months (N2), nicotine for 4 months (N4), and nicotine cessation (NC). The NC group was given nicotine for the first 2 months and then allowed to recover for the following 2 months without nicotine. Histomorphometric analysis was done using an image analyzer. ELISA kits were used to measure serum osteocalcin (bone formation marker) and pyridinoline (PYD, bone resorption marker) levels at month 0, month 2, and month 4. All test groups showed a significant decrease in BV/TV, Ob.S/BS, dLS/BS, MAR, BFR/BS, and osteocalcin levels and an increase in sLS/BS and PYD levels compared to group C. No significant differences were observed in all parameters measured among the test groups, except for MAR and BFR/BS. In conclusion, nicotine administration at a dose of 7 mg/kg for 2 and 4 months has detrimental effects on bone metabolism. Nicotine administration at 7 mg/kg for 2 months is sufficient to produce significant effects on bone histomorphometric parameters and biomarkers. In addition, prolonging the treatment for another 2 months did not show any significant differences. Cessation of nicotine for 2 months did not reverse the effects.
    Matched MeSH terms: Bone and Bones/metabolism
  11. Wen HJ, Huang TH, Li TL, Chong PN, Ang BS
    Osteoporos Int, 2017 02;28(2):539-547.
    PMID: 27613719 DOI: 10.1007/s00198-016-3759-4
    Measurement of bone turnover markers is an alternative way to determine the effects of exercise on bone health. A 10-week group-based step aerobics exercise significantly improved functional fitness in postmenopausal women with low bone mass, and showed a positive trend in reducing resorption activity via bone turnover markers.

    INTRODUCTION: The major goal of this study was to determine the effects of short-term group-based step aerobics (GBSA) exercise on the bone metabolism, bone mineral density (BMD), and functional fitness of postmenopausal women (PMW) with low bone mass.

    METHODS: Forty-eight PMW (aged 58.2 ± 3.5 years) with low bone mass (lumbar spine BMD T-score of -2.00 ± 0.67) were recruited and randomly assigned to an exercise group (EG) or to a control group (CG). Participants from the EG attended a progressive 10-week GBSA exercise at an intensity of 75-85 % of heart rate reserve, 90 min per session, and three sessions per week. Serum bone metabolic markers (C-terminal telopeptide of type 1 collagen [CTX] and osteocalcin), BMD, and functional fitness components were measured before and after the training program. Mixed-models repeated measures method was used to compare differences between the groups (α = 0.05).

    RESULTS: After the 10-week intervention period, there was no significant exercise program by time interaction for CTX; however, the percent change for CTX was significantly different between the groups (EG = -13.1 ± 24.4 % vs. CG = 11.0 ± 51.5 %, P bone metabolism and general health by significantly reduced bone resorption activity and improved functional fitness in PMW with low bone mass. This suggested GBSA could be adopted as a form of group-based exercise for senior community.

    Matched MeSH terms: Bone and Bones/metabolism
  12. Megat Abdul Wahab R, Abdullah N, Zainal Ariffin SH, Che Abdullah CA, Yazid F
    Molecules, 2020 Jul 08;25(14).
    PMID: 32650572 DOI: 10.3390/molecules25143129
    A hydroxyapatite scaffold is a suitable biomaterial for bone tissue engineering due to its chemical component which mimics native bone. Electronic states which present on the surface of hydroxyapatite have the potential to be used to promote the adsorption or transduction of biomolecules such as protein or DNA. This study aimed to compare the morphology and bioactivity of sinter and nonsinter marine-based hydroxyapatite scaffolds. Field emission scanning electron microscopy (FESEM) and micro-computed tomography (microCT) were used to characterize the morphology of both scaffolds. Scaffolds were co-cultured with 5 × 104/cm2 of MC3T3-E1 preosteoblast cells for 7, 14, and 21 days. FESEM was used to observe the cell morphology, and MTT and alkaline phosphatase (ALP) assays were conducted to determine the cell viability and differentiation capacity of cells on both scaffolds. Real-time polymerase chain reaction (rtPCR) was used to identify the expression of osteoblast markers. The sinter scaffold had a porous microstructure with the presence of interconnected pores as compared with the nonsinter scaffold. This sinter scaffold also significantly supported viability and differentiation of the MC3T3-E1 preosteoblast cells (p < 0.05). The marked expression of Col1α1 and osteocalcin (OCN) osteoblast markers were also observed after 14 days of incubation (p < 0.05). The sinter scaffold supported attachment, viability, and differentiation of preosteoblast cells. Hence, sinter hydroxyapatite scaffold from nacreous layer is a promising biomaterial for bone tissue engineering.
    Matched MeSH terms: Bone and Bones/metabolism*
  13. Ima-Nirwana S, Suhaniza S
    J Med Food, 2004;7(1):45-51.
    PMID: 15117552
    Long-term glucocorticoid treatment is associated with severe side effects, such as obesity and osteoporosis. A palm oil-derived vitamin E mixture had been shown previously to be protective against osteoporosis in rats given 120 microg/kg dexamethasone daily for 12 weeks. In this study we determined the effects of two isomers of vitamin E (i.e., palm oil-derived gamma-tocotrienol and the commercially available alpha-tocopherol, 60 mg/kg of body weight/day) on body composition and bone calcium content in adrenalectomized rats replaced with two doses of dexamethasone, 120 microg/kg and 240 microg/kg daily. Treatment period was 8 weeks. gamma-Tocotrienol (60 mg/kg of body weight/day) was found to reduce body fat mass and increase the fourth lumbar vertebra bone calcium content in these rats, while alpha-tocopherol (60 mg/kg of body weight/day) was ineffective. Therefore, in conclusion, palm oil-derived gamma-tocotrienol has the potential to be utilized as a prophylactic agent in prevention of the side effects of long-term glucocorticoid use.
    Matched MeSH terms: Bone and Bones/metabolism*
  14. Carlhoff S, Duli A, Nägele K, Nur M, Skov L, Sumantri I, et al.
    Nature, 2021 Aug;596(7873):543-547.
    PMID: 34433944 DOI: 10.1038/s41586-021-03823-6
    Much remains unknown about the population history of early modern humans in southeast Asia, where the archaeological record is sparse and the tropical climate is inimical to the preservation of ancient human DNA1. So far, only two low-coverage pre-Neolithic human genomes have been sequenced from this region. Both are from mainland Hòabìnhian hunter-gatherer sites: Pha Faen in Laos, dated to 7939-7751 calibrated years before present (yr cal BP; present taken as AD 1950), and Gua Cha in Malaysia (4.4-4.2 kyr cal BP)1. Here we report, to our knowledge, the first ancient human genome from Wallacea, the oceanic island zone between the Sunda Shelf (comprising mainland southeast Asia and the continental islands of western Indonesia) and Pleistocene Sahul (Australia-New Guinea). We extracted DNA from the petrous bone of a young female hunter-gatherer buried 7.3-7.2 kyr cal BP at the limestone cave of Leang Panninge2 in South Sulawesi, Indonesia. Genetic analyses show that this pre-Neolithic forager, who is associated with the 'Toalean' technocomplex3,4, shares most genetic drift and morphological similarities with present-day Papuan and Indigenous Australian groups, yet represents a previously unknown divergent human lineage that branched off around the time of the split between these populations approximately 37,000 years ago5. We also describe Denisovan and deep Asian-related ancestries in the Leang Panninge genome, and infer their large-scale displacement from the region today.
    Matched MeSH terms: Bone and Bones/metabolism
  15. Hasan WNW, Chin KY, Jolly JJ, Ghafar NA, Soelaiman IN
    PMID: 29683099 DOI: 10.2174/1871530318666180423122409
    BACKGROUND: Osteoporosis is a silent skeletal disease characterized by low bone mass and destruction of skeletal microarchitecture, leading to an increased fracture risk. This occurs due to an imbalance in bone remodelling, whereby the rate of bone resorption is greater than bone formation. Mevalonate pathway, previously known to involve in cholesterol synthesis, is an important regulatory pathway for bone remodelling.

    OBJECTIVE: This review aimed to provide an overview of the relationship between mevalonate pathway and bone metabolism, as well as agents which act through this pathway to achieve their therapeutic potential.

    DISCUSSION: Mevalonate pathway produces farnesyl pyrophosphate and geranylgeranyl pyrophosphate essential in protein prenylation. An increase in protein prenylation favours bone resorption over bone formation. Non-nitrogen containing bisphosphonates inhibit farnesyl diphosphate synthase which produces farnesyl pyrophosphate. They are used as the first line therapy for osteoporosis. Statins, a well-known class of cholesterol-lowering agents, inhibit 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase, the rate-determining enzyme in the mevalonate pathway. It was shown to increase bone mineral density and prevent fracture in humans. Tocotrienol is a group of vitamin E commonly found in palm oil, rice bran and annatto bean. It causes degradation of HMG-CoA reductase. Many studies demonstrated that tocotrienol prevented bone loss in animal studies but its efficacy has not been tested in humans.

    CONCLUSION: Mevalonate pathway can be exploited to develop effective antiosteoporosis agents.

    Matched MeSH terms: Bone and Bones/metabolism
  16. Parvaneh M, Karimi G, Jamaluddin R, Ng MH, Zuriati I, Muhammad SI
    Clin Interv Aging, 2018;13:1555-1564.
    PMID: 30214175 DOI: 10.2147/CIA.S169223
    Purpose: Osteoporosis is one of the major health concerns among the elderly population, especially in postmenopausal women. Many menopausal women over 50 years of age lose their bone density and suffer bone fractures. In addition, many mortality and morbidity cases among the elderly are related to hip fracture. This study aims to investigate the effect of Lactobacillus helveticus (L. helveticus) on bone health status among ovariectomized (OVX) bone loss-induced rats.

    Methods: The rats were either OVX or sham OVX (sham), then were randomly assigned into three groups, G1: sham, G2: OVX and G3: OVX+L. helveticus (1 mL of 108-109 colony forming units). The supplementation was force-fed to the rats once a day for 16 weeks while control groups were force-fed with demineralized water.

    Results: L. helveticus upregulated the expression of Runx2 and Bmp2, increased serum osteocalcin, bone volume/total volume and trabecular thickness, and decreased serum C-terminal telopeptide and total porosity percentage. It also altered bone microstructure, as a result increasing bone mineral density and bone strength.

    Conclusion: Our results indicate that L. helveticus attenuates bone remodeling and consequently improves bone health in OVX rats by increasing bone formation along with bone resorption reduction. This study suggests a potential therapeutic effect of L. helveticus (ATCC 27558) on postmenopausal osteoporosis.

    Matched MeSH terms: Bone and Bones/metabolism
  17. Kokubo T
    Med J Malaysia, 2004 May;59 Suppl B:91-2.
    PMID: 15468833
    Metallic materials implanted into bone defects are generally encapsulated by a fibrous tissue. Some metallic materials such as titanium and tantalum, however, have been revealed to bond to the living bone without forming the fibrous tissue, when they were subjected to NaOH solution and heat treatments. Thus treated metals form bone tissue around them even in muscle, when they take a porous form. This kind of osteoconductive and osteoinductive properties are attributed to sodium titanate or tantalate layer on their surfaces formed by the NaOH and heat treatments. These layers induce the deposition of bonelike apatite on the surface of the metals in the living body. This kind of bioactive metals are useful as bone substitutes even highly loaded portions, such as hip joint, spine and tooth root.
    Matched MeSH terms: Bone and Bones/metabolism
  18. Shalan NA, Mustapha NM, Mohamed S
    Nutrition, 2017 Jan;33:42-51.
    PMID: 27908549 DOI: 10.1016/j.nut.2016.08.006
    OBJECTIVE: Black tea and Nonileaf are among the dietary compounds that can benefit patients with bone resorption disorders. Their bone regeneration effects and their mechanisms were studied in estrogen-deficient rats.

    METHODS: Noni leaves (three doses) and black tea water extracts were fed to ovariectomized rats for 4 mo, and their effects (analyzed via mechanical measurements, micro-computed tomography scan, and reverse transcriptase polymerase chain reaction mRNA) were compared with Remifemin (a commercial phytoestrogen product from black cohosh).

    RESULTS: The water extracts (dose-dependently for noni leaves) increased bone regeneration biomarker (runt-related transcription factor 2, bone morphogenetic protein 2, osteoprotegerin, estrogen receptor 1 [ESR1], collagen type I alpha 1A) expressions and reduced the inflammatory biomarkers (interleukin-6, tumor necrosis factor-α, nuclear factor [NF]-κB, and receptor activator of NF-κB ligand) mRNA expressions/levels in the rats. The extracts also improved bone physical and mechanical properties. The extracts demonstrated bone regeneration through improving bone size and structure, bone mechanical properties (strength and flexibility), and bone mineralization and density.

    CONCLUSIONS: The catechin-rich extract favored bone regeneration and suppressed bone resorption. The mechanisms involved enhancing osteoblast generation and survival, inhibiting osteoclast growth and activities, suppressing inflammation, improving bone collagen synthesis and upregulating ESR1 expression to augment phytoestrogenic effects. Estrogen deficiency bone loss and all extracts studied (best effect from Morinda leaf at 300 mg/kg body weight) mitigated the loss, indicating benefits for the aged and menopausal women.

    Matched MeSH terms: Bone and Bones/metabolism
  19. Crotti TN, Dharmapatni AA, Alias E, Haynes DR
    J Immunol Res, 2015;2015:281287.
    PMID: 26064999 DOI: 10.1155/2015/281287
    The field of osteoimmunology has emerged in response to the range of evidences demonstrating the close interrelationship between the immune system and bone metabolism. This is pertinent to immune-mediated diseases, such as rheumatoid arthritis and periodontal disease, where there are chronic inflammation and local bone erosion. Periprosthetic osteolysis is another example of chronic inflammation with associated osteolysis. This may also involve immune mediation when occurring in a patient with rheumatoid arthritis (RA). Similarities in the regulation and mechanisms of bone loss are likely to be related to the inflammatory cytokines expressed in these diseases. This review highlights the role of immune-related factors influencing bone loss particularly in diseases of chronic inflammation where there is associated localized bone loss. The importance of the balance of the RANKL-RANK-OPG axis is discussed as well as the more recently appreciated role that receptors and adaptor proteins involved in the immunoreceptor tyrosine-based activation motif (ITAM) signaling pathway play. Although animal models are briefly discussed, the focus of this review is on the expression of ITAM associated molecules in relation to inflammation induced localized bone loss in RA, chronic periodontitis, and periprosthetic osteolysis, with an emphasis on the soluble and membrane bound factor osteoclast-associated receptor (OSCAR).
    Matched MeSH terms: Bone and Bones/metabolism*
  20. Maniam S, Mohamed N, Shuid AN, Soelaiman IN
    Basic Clin Pharmacol Toxicol, 2008 Jul;103(1):55-60.
    PMID: 18598299 DOI: 10.1111/j.1742-7843.2008.00241.x
    The aim of this study was to investigate the effects of vitamin E on the levels of lipid peroxidation and antioxidant enzymes in rat bones. Fifty-six normal male Sprague-Dawley rats, aged 3 months, were randomly divided into seven groups with eight rats in each group. The age-matched control group was given the vehicle olive oil, by oral gavage daily. Six of the treatment groups received either palm tocotrienol or pure alpha-tocopherol at the dose of 30, 60 or 100 mg/kg body weight, by oral gavage daily, 6 days a week for 4 months. Thiobarbituric acid-reactive substance (TBARS) that is an index to measure the level of lipid peroxidation and the antioxidant enzymes, glutathione peroxidase and superoxide dismutase levels were measured in the femur at the end of the study. Palm tocotrienol at the dose of 100 mg/kg body weight significantly reduced the TBARS level in the femur with a significant increase in glutathione peroxidase activity compared to the age-matched control group. These were not observed in the alpha-tocopherol groups. Palm tocotrienol was more effective than pure alpha-tocopherol acetate in suppressing lipid peroxidation in bone. Palm tocotrienol showed better protective effect against free radical damage in the femur compared to alpha-tocopherol. This study suggests that palm tocotrienol plays an important role in preventing imbalance in bone metabolism due to free radicals.
    Matched MeSH terms: Bone and Bones/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links