Displaying publications 1 - 20 of 135 in total

Abstract:
Sort:
  1. Abd Wahib SM, Wan Ibrahim WA, Sanagi MM, Kamboh MA, Abdul Keyon AS
    J Chromatogr A, 2018 Jan 12;1532:50-57.
    PMID: 29241956 DOI: 10.1016/j.chroma.2017.11.059
    A facile dispersive-micro-solid phase extraction (D-μ-SPE) method coupled with HPLC for the analysis of selected non-steroidal anti-inflammatory drugs (NSAIDs) in water samples was developed using a newly prepared magnetic sporopollenin-cyanopropyltriethoxysilane (MS-CNPrTEOS) sorbent. Sporopollenin homogenous microparticles of Lycopodium clavatum spores possessed accessible functional groups that facilitated surface modification. Simple modification was performed by functionalization with 3-cyanopropyltriethoxysilane (CNPrTEOS) and magnetite was introduced onto the biopolymer to simplify the extraction process. MS-CNPrTEOS was identified by infrared spectrometrywhile the morphology and the magnetic property were confirmed by scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM), respectively. To maximize the extraction performance of ketoprofen, ibuprofen, diclofenac and mefenamic acid using the proposed MS-CNPrTEOS, important D-μ-SPE parameters were comprehensively optimized. The optimum extraction conditions were sorbent amount, 40 mg; extraction time, 5 min; desorption time; 5 min; sample volume, 15 mL; sample pH 2.0; and salt addition, 2.5% (w/v). The feasibility of the developed method was evaluated using spiked tap water, lake water, river water and waste water samples. Results showed that ketoprofen and ibuprofen were linear in the range of 1.0-1000 μg L-1whilst diclofenac and mefenamic acid were linear in the range 0.8-500 μg L-1. The results also showed good detection limits for the studied NSAIDs in the range of 0.21-0.51 μg L-1and good recoveries for spiked water samples in the range of 85.1-106.4%. The MS-CNPrTEOS proved a promising dispersive sorbent and applicable to facile and rapid assay of NSAIDs in water samples.
    Matched MeSH terms: Carotenoids/chemistry
  2. Adiiba SH, Chan ES, Lee YY, Amelia, Chang MY, Song CP
    J Sci Food Agric, 2022 Dec;102(15):6921-6929.
    PMID: 35662022 DOI: 10.1002/jsfa.12053
    BACKGROUND: Crude palm oil (CPO) is rich with phytonutrients such as carotenoids and tocols which possesses many health benefits. The aim of this research was to develop a methanol-free process to produce palm phytonutrients via enzymatic hydrolysis. In this work, triacylglycerol was hydrolyzed into free fatty acids (FFAs) using three different types of liquid lipases derived from Aspergillus oryzae (ET 2.0), Aspergillus niger (Habio) and Candida antartica (CALB).

    RESULTS: ET 2.0 was found to be the best enzyme for hydrolysis. Under the optimum condition, the FFA content achievable was 790 g kg-1 after 24 h of reaction with 1:1 water-to-oil mass ratio at 50 °C and stirring speed of 9 × g. Furthermore, with the addition of 2 g kg-1 ascorbic acid, it was found that 98% of carotenoids and 96% of tocols could be retained after hydrolysis.

    CONCLUSION: This work shows that enzymatic hydrolysis, which is inherently safer, cleaner and sustainable is feasible to replace the conventional methanolysis for the production of palm phytonutrients. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

    Matched MeSH terms: Carotenoids
  3. Agduma AR, Sese MD
    Trop Life Sci Res, 2016 Aug;27(2):37-52.
    PMID: 27688850 DOI: 10.21315/tlsr2016.27.2.4
    The biochemical changes in two Selaginella species namely, S. tamariscina (Beauv.) Spring and S. plana (Desv. ex Poir.) Heiron., as induced by desiccation and subsequent rehydration were explored. Plants were allowed to dehydrate naturally by withholding irrigation until shoot's relative water content (RWC) reached <10%. After which, dehydrated plants were watered until fully rehydrated states were obtained which was about 90% RWC or more. Desiccation-tolerance characteristics were observed in S. tamariscina while desiccation-sensitivity features were seen in S. plana. Membrane integrity was maintained in S. tamariscina but not in S. plana as evidenced in the relative electrolyte leakage measurements during desiccation phase and the subsequent rehydration stage. Pigment analyses revealed conservation of some chlorophylls and carotenoids during desiccation and reaching control levels following rehydration in S. tamariscina. Very low pigment contents were found in S. plana during desiccation phase and the pigments were not recovered during rehydration attempt. Meanwhile, compatible solute determination showed rise in total sugar and proline contents of desiccated S. tamariscina only, indicating presence of biochemical protection machineries in this species and absence of such in S. plana during dehydrating conditions. These data indicate that one key element for desiccation-tolerance in lower vascular plants is the ability to protect tissues from severe damages caused by intense desiccation.
    Matched MeSH terms: Carotenoids
  4. Ahmad NF, Kamboh MA, Nodeh HR, Halim SNBA, Mohamad S
    Environ Sci Pollut Res Int, 2017 Sep;24(27):21846-21858.
    PMID: 28776296 DOI: 10.1007/s11356-017-9820-9
    The present work describes the successful functionalization/magnetization of bio-polymeric spores of Lycopodium clavatum (sporopollenin) with 1-(2-hydroxyethyl) piperazine. Analytical techniques, i.e., Fourier transform infrared (FT-IR), field emission scanning electron microscope (FESEM), energy-dispersive X-ray spectroscopy (EDS), and vibrating sample magnetometer (VSM), were used to confirm the formation of 1-(2-hydroxyethyl) piperazine-functionalized magnetic sporopollenin (MNPs-Sp-HEP). The proposed adsorbent (MNPs-Sp-HEP) was used for the removal of noxious Pb(II) and As(III) metal ions from aqueous media through a batch-wise method. Different experimental parameters were optimized for the effective removal of selected noxious metal ions. Maximum adsorption capacity (q m ) 13.36 and 69.85 mg g-1 for Pb(II) and As(III), respectively, were obtained. Thermodynamic parameters such as free energy (ΔG°), entropy (ΔS°), and enthalpy (ΔH°) were also studied from the adsorption results and were used to elaborate the mechanism of their confiscation. The obtained results indicated that newly adsorbent can be successfully applied for the decontamination of noxious Pb(II) and As(III) from the aqueous environment.
    Matched MeSH terms: Carotenoids/chemical synthesis*
  5. Ahmed IA, Mikail MA, Bin Ibrahim M, Bin Hazali N, Rasad MS, Ghani RA, et al.
    Food Chem, 2015 Apr 1;172:778-87.
    PMID: 25442620 DOI: 10.1016/j.foodchem.2014.09.122
    Baccaurea angulata is an underutilised tropical fruit of Borneo Island of Malaysia. The effect of solvents was examined on yield, total phenolic (TPC), total flavonoids (TFC), total carotene content (TCC), free radical scavenging activities and lipid peroxidation inhibition activities. The results indicated that the pulp (edible portion) had the highest yield, while methanol extracts were significantly (p < 0.01) found to contain higher TPC, TFC and TCC than phosphate buffered saline (PBS) extracts for all the fruits parts. The methanol extracts also showed remarkable antiradical activity and significant lipid peroxidation inhibition activities, with their IC50 results highly comparable to that of commercial blueberry. The variations in the results among the extracts suggest different interactions, such as negative or antagonistic (interference), additive and synergistic effect interactions. The study indicated that B. angulata like other underutilised tropical fruits contained remarkable primary antioxidants. Thus, the fruit has the potential to be sources of antioxidant components.
    Matched MeSH terms: Carotenoids/analysis
  6. Aishah, B., Hannah, K., Zati Alyani, O.
    MyJurnal
    Quality degradation is normally judge by monitoring independently the loss of a certain quality
    attribute during storage. However, the rate of degradation for each of the quality attributes
    present in a food product is not the same. This study focus on deterioration of vitamin C,
    lycopene, total phenolics and antioxidant activity of ready-to-drink pink guava juice (PGJ)
    during storage at elevated temperatures. Kinetic order, rate constant (k), activation energy
    (Ea) and temperature coefficient (Q10) of the degradation were derived by applying Arrhenius
    equation. The results obtained showed that freshly made PGJ contain 39.79±2.18 mg/100 mL
    of vitamin C, 3.17±0.27 mg/L of lycopene, 28.08±4.11 mgGAE/100 mL of total phenolic
    content (TPC) and 13.20±1.91 mMTE/100 mL of ferric reducing antioxidant power (FRAP).
    All quality attributes measured in this study showed zero-order kinetic reaction. The results
    also showed that FRAP has the highest Ea of 49.52 KJ/mol and Q10 of 1.80, followed by
    vitamin C (Ea=41.49 KJ/mol; Q10=1.64), lycopene (Ea=31.75 KJ/mol; Q10=1.46), and lastly
    TPC (Ea=14.11 KJ/mol; Q10=1.18). The predicted total depletion of each quality attribute
    at refrigerated storage (5o
    C) were 266 days for antioxidant activity, 158 days for vitamin C
    and lycopene, and 63 days for total phenolics. This study provide useful information on the
    degradation rate and availability of health beneficial and bioactive compounds present in fruit
    juice beverage during storage.
    Matched MeSH terms: Carotenoids
  7. Al-Juhaimi F, Ghafoor K, Özcan MM, Jahurul MHA, Babiker EE, Jinap S, et al.
    J Food Sci Technol, 2018 Oct;55(10):3872-3880.
    PMID: 30228385 DOI: 10.1007/s13197-018-3370-0
    Bioactive compounds from plant sources are generally categorized as natural antioxidants with well-known health benefits. The health-promoting characteristics of natural antioxidants include anti-inflammatory, anti-diabetic, and hepatic effects as well as free radical scavenging. Herein, a comprehensive and comparative review are presented about the effects of conventional (thermal and mechanical) and relatively new (non-thermal) processing methods on phytochemicals and discussed the importance of implementing the use of those methods that could be of very helpful retaining the quality of the bioactive compounds in plant-based foods. Plant-based foods rich in phenolics, vitamin C, carotenoids, and other compounds undergo a range of processing operations before they are consumed. Most of these methods involve thermal treatments of fruits, stems, leaves, and roots. These techniques have varying effects on bioactive compounds and their activities, and the magnitude of these effects depends on process parameters such as temperature, time, and the food matrix. Thermal processing can be detrimental to bioactive compounds while nonthermal procedures may not cause significant deterioration of important health-promoting phytochemicals and in some cases can improve their bio-activity and bio-availability. The detrimental effects of conventional processing on the quality of natural antioxidants have been compared to the effects of innovative nonthermal food treatments such as gamma and ultraviolet irradiation, ultraviolet light, pulsed electric fields, and high hydrostatic pressure.
    Matched MeSH terms: Carotenoids
  8. Alam MA, Juraimi AS, Rafii MY, Abdul Hamid A, Aslani F, Hasan MM, et al.
    Biomed Res Int, 2014;2014:296063.
    PMID: 24579078 DOI: 10.1155/2014/296063
    The methanolic extracts of 13 accessions of purslane were analyzed for their total phenol content (TPC), total flavonoid contents (TFC), and total carotenoid contents (TCC) and antioxidant activity of extracts was screened using FRAP assay and DPPH radical scavenging methods. The TPC, TFC, and TCC ranged from 0.96 ± 0.04 to 9.12 ± 0.29 mg GAE/g DW, 0.13 ± 0.04 to 1.44 ± 0.08 mg RE/g DW, and 0.52 ± 0.06 to 5.64 ± 0.09 mg (β-carotene equivalent) BCE/g DW, respectively. The DPPH scavenging (IC50) activity varied between 2.52 ± 0.03 mg/mL and 3.29 ± 0.01 mg/mL and FRAP ranged from 7.39 ± 0.08 to 104.2 ± 6.34  μmol TE/g DW. Among all the measured micro- and macrominerals K content was the highest followed by N, Na, Ca, Mg, P, Fe, Zn, and Mn. The overall findings proved that ornamental purslane was richer in antioxidant properties, whereas common purslane possesses more mineral contents than ornamental ones.
    Matched MeSH terms: Carotenoids/analysis
  9. Ali A, Ong MK, Forney CF
    Food Chem, 2014 Jan 1;142:19-26.
    PMID: 24001808 DOI: 10.1016/j.foodchem.2013.07.039
    The objective of this study was to compare the physico-chemical characteristics and antioxidant activity of ozone-treated papaya fruit and untreated fruit. Freshly harvested papaya fruit were exposed continuously to ozone fumigation (0, 1.5, 2.5, 3.5 and 5ppm) for 96h prior to ambient storage at 25±3°C and 70±5% relative humidity (RH) for up to 14days. The fruit exposed to 2.5ppm ozone had higher levels of total soluble solids (25.0%), ascorbic acid content (12.4%), β-carotene content (19.6%), lycopene content (52.1%), and antioxidant activity (30.9%), and also reduced weight loss (11.5%) at day 10 compared to the control. The sensory attributes of papaya treated with 2.5ppm ozone was superior in sweetness and overall acceptability. These results support the application of ozone as a non-thermal and safe food preservation technique for papaya which can benefit both the producers and consumers.
    Matched MeSH terms: Carotenoids/analysis
  10. Ali Hassan SH, Fry JR, Abu Bakar MF
    Biomed Res Int, 2013;2013:138950.
    PMID: 24288662 DOI: 10.1155/2013/138950
    Garcinia parvifolia belongs to the same family as mangosteen (Garcinia mangostana), which is known locally in Sabah as "asam kandis" or cherry mangosteen. The present study was conducted to determine the phytochemicals content (total phenolic, flavonoid, anthocyanin, and carotenoid content) and antioxidant and acetylcholinesterase inhibition activity of the flesh and peel of G. parvifolia. All samples were freeze-dried and extracted using 80% methanol and distilled water. For the 80% methanol extract, the flesh of G. parvifolia displayed higher phenolic and flavonoid contents than the peel, with values of 7.2 ± 0.3 mg gallic acid equivalent (GAE)/g and 5.9 ± 0.1 mg rutin equivalent (RU)/g, respectively. Anthocyanins were detected in the peel part of G. parvifolia but absent in the flesh. The peel of G. parvifolia displayed higher total carotenoid content as compared to the flesh part with the values of 17.0 ± 0.3 and 3.0 ± 0.0 mg β-carotene equivalents (BC)/100 g, respectively. The free-radical scavenging, ferric reducing, and acetylcholinesterase inhibition effect of the flesh were higher as compared to the peel in both extracts. These findings suggested that the edible part of G. parvifolia fruit has a potential as a natural source of antioxidant and anti-Alzheimer's agents.
    Matched MeSH terms: Carotenoids/analysis
  11. Amirul Alam M, Juraimi AS, Rafii MY, Hamid AA, Aslani F, Alam MZ
    Food Chem, 2015 Feb 15;169:439-47.
    PMID: 25236249 DOI: 10.1016/j.foodchem.2014.08.019
    Dry matter (DM), total phenolics, flavonoids, carotenoid contents, and antioxidant activity of 12 purslane accessions were investigated against five levels of salinity (0, 8, 16, 24 and 32dSm(-1)). In untreated plants, the DM contents ranged between 8.0-23.4g/pot; total phenolics contents (TPC) between 0.96-9.12mgGAEg(-1)DW; total flavonoid contents (TFC) between 0.15-1.44mgREg(-1)DW; and total carotenoid contents (TCC) between 0.52BCEg(-1)DW. While FRAP activity ranged from 8.64-104.21mgTEg(-1)DW (about 12-fold) and DPPH activity between 2.50-3.30mgmL(-1) IC50 value. Different levels of salinity treatment resulted in 8-35% increases in TPC; about 35% increase in TFC; and 18-35% increases in FRAP activity. Purslane accessions Ac4, Ac5, Ac6 and Ac8 possessed potentials for salinity-induced augmented production of bioactive compounds which in turn can be harnessed for possible human health benefits.
    Matched MeSH terms: Carotenoids/analysis
  12. Azaman SNA, Nagao N, Yusoff FM, Tan SW, Yeap SK
    PeerJ, 2017;5:e3473.
    PMID: 28929006 DOI: 10.7717/peerj.3473
    The responses of two species of microalgae, Chlorella sorokiniana and Chlorella zofingiensis, were compared regarding their morphological and biochemical properties under photoautotrophic and mixotrophic conditions. These microalgae were cultured under both conditions, and their crude ethanolic extracts were examined for their pigment and total phenolic contents. In addition, the microalgae's antioxidant activities were determined using a DPPH radical scavenging assay and a ferric reducing antioxidant power (FRAP) assay. Both strains showed increases in cell size due to the accumulation of lipid bodies and other cell contents, especially carotenoids, under the mixotrophic condition. Notably, reductions in phenolic and chlorophyll contents were observed to be associated with lower antioxidant activity. C. zofingiensis compared with C. sorokiniana, demonstrated higher antioxidant activity and carotenoid content. This study showed that different species of microalgae responded differently to varying conditions by producing different types of metabolites, as evidenced by the production of higher levels of phenolic compounds under the photoautotrophic condition and the production of the same levels of carotenoids under both photoautotrophic and mixotrophic conditions.
    Matched MeSH terms: Carotenoids
  13. Azizah, A.H., Wee, K.C., Azizah, O., Azizah, M.
    MyJurnal
    Effect of various cooking methods on antioxidant content and radical scavenging activity of pumpkin was evaluated. Pumpkin (Cucurbita moschata) was boiled and stir-fried for 2, 4 and 6 minutes respectively. Beta-carotene and lycopene were determined using HPLC and total phenolics measured using Folin-Ciocalteu method. The free radical scavenging activity of the samples was determined using 1, 1-diphenyl-2 picrylhydrazyl assay. Interestingly, result of the study showed an increase in both beta-carotene (2 to 4 times) and lycopene (17 to 40 times) content of pumpkin after cooking for 2, 4 and 6 minutes. However, the treatment resulted in 18 to 54% losses of total phenolics content of the pumpkin. Nevertheless, the free radical scavenging activity exhibited by cooked pumpkins was found to be high, in the range of 81.1% to 94.6% with IC50 of 1.41 to 1.62 mg ml-1
    .
    Matched MeSH terms: Carotenoids
  14. Azizan A, Ahamad Bustamam MS, Maulidiani M, Shaari K, Ismail IS, Nagao N, et al.
    Mar Drugs, 2018 May 07;16(5).
    PMID: 29735927 DOI: 10.3390/md16050154
    Microalgae are promising candidate resources from marine ecology for health-improving effects. Metabolite profiling of the microalgal diatom, Chaetoceros calcitrans was conducted by using robust metabolomics tools, namely ¹H nuclear magnetic resonance (NMR) spectroscopy coupled with multivariate data analysis (MVDA). The unsupervised data analysis, using principal component analysis (PCA), resolved the five types of extracts made by solvents ranging from polar to non-polar into five different clusters. Collectively, with various extraction solvents, 11 amino acids, cholesterol, 6 fatty acids, 2 sugars, 1 osmolyte, 6 carotenoids and 2 chlorophyll pigments were identified. The fatty acids and both carotenoid pigments as well as chlorophyll, were observed in the extracts made from medium polar (acetone, chloroform) and non-polar (hexane) solvents. It is suggested that the compounds were the characteristic markers that influenced the separation between the clusters. Based on partial least square (PLS) analysis, fucoxanthin, astaxanthin, violaxanthin, zeaxanthin, canthaxanthin, and lutein displayed strong correlation to 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging and nitric oxide (NO) inhibitory activity. This metabolomics study showed that solvent extractions are one of the main bottlenecks for the maximum recovery of bioactive microalgal compounds and could be a better source of natural antioxidants due to a high value of metabolites.
    Matched MeSH terms: Carotenoids/metabolism
  15. Bakker MF, Peeters PH, Klaasen VM, Bueno-de-Mesquita HB, Jansen EH, Ros MM, et al.
    Am J Clin Nutr, 2016 Feb;103(2):454-64.
    PMID: 26791185 DOI: 10.3945/ajcn.114.101659
    BACKGROUND: Carotenoids and vitamin C are thought to be associated with reduced cancer risk because of their antioxidative capacity.

    OBJECTIVE: This study evaluated the associations of plasma carotenoid, retinol, tocopherol, and vitamin C concentrations and risk of breast cancer.

    DESIGN: In a nested case-control study within the European Prospective Investigation into Cancer and Nutrition cohort, 1502 female incident breast cancer cases were included, with an oversampling of premenopausal (n = 582) and estrogen receptor-negative (ER-) cases (n = 462). Controls (n = 1502) were individually matched to cases by using incidence density sampling. Prediagnostic samples were analyzed for α-carotene, β-carotene, lycopene, lutein, zeaxanthin, β-cryptoxanthin, retinol, α-tocopherol, γ-tocopherol, and vitamin C. Breast cancer risk was computed according to hormone receptor status and age at diagnosis (proxy for menopausal status) by using conditional logistic regression and was further stratified by smoking status, alcohol consumption, and body mass index (BMI). All statistical tests were 2-sided.

    RESULTS: In quintile 5 compared with quintile 1, α-carotene (OR: 0.61; 95% CI: 0.39, 0.98) and β-carotene (OR: 0.41; 95% CI: 0.26, 0.65) were inversely associated with risk of ER- breast tumors. The other analytes were not statistically associated with ER- breast cancer. For estrogen receptor-positive (ER+) tumors, no statistically significant associations were found. The test for heterogeneity between ER- and ER+ tumors was statistically significant only for β-carotene (P-heterogeneity = 0.03). A higher risk of breast cancer was found for retinol in relation to ER-/progesterone receptor-negative tumors (OR: 2.37; 95% CI: 1.20, 4.67; P-heterogeneity with ER+/progesterone receptor positive = 0.06). We observed no statistically significant interaction between smoking, alcohol, or BMI and all investigated plasma analytes (based on tertile distribution).

    CONCLUSION: Our results indicate that higher concentrations of plasma β-carotene and α-carotene are associated with lower breast cancer risk of ER- tumors.

    Matched MeSH terms: Carotenoids/blood*; Carotenoids/therapeutic use
  16. Bakshi HA, Zoubi MSA, Hakkim FL, Aljabali AAA, Rabi FA, Hafiz AA, et al.
    Nutrients, 2020 06 26;12(6).
    PMID: 32604971 DOI: 10.3390/nu12061901
    Pancreatic cancer is one of the fatal causes of global cancer-related deaths. Although surgery and chemotherapy are standard treatment options, post-treatment outcomes often end in a poor prognosis. In the present study, we investigated anti-pancreatic cancer and amelioration of radiation-induced oxidative damage by crocin. Crocin is a carotenoid isolated from the dietary herb saffron, a prospect for novel leads as an anti-cancer agent. Crocin significantly reduced cell viability of BXPC3 and Capan-2 by triggering caspase signaling via the downregulation of Bcl-2. It modulated the expression of cell cycle signaling proteins P53, P21, P27, CDK2, c-MYC, Cyt-c and P38. Concomitantly, crocin treatment-induced apoptosis by inducing the release of cytochrome c from mitochondria to cytosol. Microarray analysis of the expression signature of genes induced by crocin showed a substantial number of genes involved in cell signaling pathways and checkpoints (723) are significantly affected by crocin. In mice bearing pancreatic tumors, crocin significantly reduced tumor burden without a change in body weight. Additionally, it showed significant protection against radiation-induced hepatic oxidative damage, reduced the levels of hepatic toxicity and preserved liver morphology. These findings indicate that crocin has a potential role in the treatment, prevention and management of pancreatic cancer.
    Matched MeSH terms: Carotenoids
  17. Balasubramaniam V, June Chelyn L, Vimala S, Mohd Fairulnizal MN, Brownlee IA, Amin I
    Heliyon, 2020 Aug;6(8):e04654.
    PMID: 32817893 DOI: 10.1016/j.heliyon.2020.e04654
    Three species of Malaysian edible seaweed (Eucheuma denticulatum, Sargassum polycystum and Caulerpa lentillifera) were analyzed for their carotenoid composition using a combination of high-performance thin layer chromatography (HPTLC) and ultra-high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UHPLC-ESI-MS/MS), while the antioxidant capacities were determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and oxygen radical absorbance capacity (ORAC) assays. The HPTLC analysis exhibited a distinct carotenoid pattern among the three seaweed groups. The UHPLC-ESI-MS/MS analysis showed fucoxanthin as the major carotenoid present in S. polycystum while lutein and zeaxanthin in E. denticulatum. For C. lentillifera, β-carotene and canthaxanthin were the major carotenoids. Some of the carotenoids, such as rubixanthin, dinoxanthin, diatoxanthin and antheraxanthin, were also tentatively detected in E. denticulatum and S. polycystum. For antioxidant activity, S. polycystum (20 %) and E. denticulatum (1128 μmol TE/g) showed the highest activity in the DPPH and ORAC assays, respectively. The findings suggest the three edible varieties of seaweeds may provide a good dietary source with a potential to reduce antioxidative stress.
    Matched MeSH terms: Carotenoids
  18. Batool U, Nawaz R, Ahmad S, Irshad MA, Irfan A, Gaafar AZ, et al.
    Sci Rep, 2024 Jan 08;14(1):797.
    PMID: 38191635 DOI: 10.1038/s41598-023-48808-9
    Physicochemical and phytochemical assessment of leaf mustard (Brassica juncea L.) grown in different agroclimatic conditions is essential to highlight their compositional variability and evaluate the most suitable bunch of agroclimatic and agronomic practices. B. juncea is one of the important leafy vegetables that serve as source of vitamin A and C and iron, and plenty of antioxidants. This in situ research was executed to assess the quality variability of B. juncea grown in different agroecosystems. Leaves' samples of B. juncea were procured from 15 farmers' fields exhibiting different agroclimatic conditions i.e., elevation, nutrient management, temperature, irrigation, and tillage practices. Leaves' samples were subjected to physicochemical and phytochemical analysis, i.e., moisture, pH, TSS, ascorbic acid, carotenoids, phenolics, flavonoids, and antioxidant potential. In the leaves' samples of B. juncea, the target properties were found to vary significantly (P ≤ 0.05) in different agroclimatic conditions. The moisture content, ascorbic acid, phenolic content, carotenoids, and antioxidants were found in the range of 62.7-79.3%, 74-91 mg/100 g, 49.2-49.2 mg GAE/100 g, 436.3-480 mg β carotene/100 g, 32.7-46.67%, respectively. This study elaborates the significant variation of physicochemical and phytochemical attributes of B. juncea due to the prevailing agroclimatic conditions. This necessitates the appropriate choice of B. juncea concerning its composition and ecological conditions of its cultivation in the prospective health benefits.
    Matched MeSH terms: Carotenoids
  19. Begum H, Yusoff FM, Banerjee S, Khatoon H, Shariff M
    Crit Rev Food Sci Nutr, 2016 Oct 02;56(13):2209-22.
    PMID: 25674822 DOI: 10.1080/10408398.2013.764841
    Microalgae are the major photosynthesizers on earth and produce important pigments that include chlorophyll a, b and c, β-carotene, astaxanthin, xanthophylls, and phycobiliproteins. Presently, synthetic colorants are used in food, cosmetic, nutraceutical, and pharmaceutical industries. However, due to problems associated with the harmful effects of synthetic colorants, exploitation of microalgal pigments as a source of natural colors becomes an attractive option. There are various factors such as nutrient availability, salinity, pH, temperature, light wavelength, and light intensity that affect pigment production in microalgae. This paper reviews the availability and characteristics of microalgal pigments, factors affecting pigment production, and the application of pigments produced from microalgae. The potential of microalgal pigments as a source of natural colors is enormous as an alternative to synthetic coloring agents, which has limited applications due to regulatory practice for health reasons.
    Matched MeSH terms: Carotenoids
  20. Bienaymé A, Servant M
    DOI: 10.1007/BF01884062
    During two years the authors have assembled monthly analytical data of oilpalms, from 15 different stations. The determinations spread as far as the French, Portuguese and Spanish territory in Africa and British Malaya also. The following analyses were carried out: iodine number, titer point, melting point and the carotenoids of these oils, according to origine, race and time of gathering. As to iodine number and amount of carotenoid, the race is decisive for these data; the oils from the natural stock of the Ivory Coast have a higher iodine number (57-60). The oils from the natural stock of Togo, Dahomey, Portuguese and French Guinea are richer in carotene (up to 0.16, even 0.19%) with medium iodine number (54-56). The oils from the industrial plantations, with selected trees of the race Dura-Deli, from the Far East as well as from the Ivory Coast, have lower iodine numbers (52-53) and are poor in carotene (0.05). South of the equator in Africa, all analysed races of oil palms had a lower iodine number (53-55) and were poor in carotene (0.05). During one year the amount of carotene fluctuates about one third of its maximum; this maximum is rather striking in Togo and Dahomey; it is to be found from January to May; period of high production of the oil in the Palm groves, e.g. in the dry season with warm climate and good insolation. Heavy rain-showers effect a rapid decrease of the contents of carotene after six weeks (duration of the formation of the fruit). Furthermore, the residual oils (extracted by solvents) were analysed; they are 2 to 3 times richer in carotenoids than the common palm oil; but the contents of β-carotene seems somewhat lower. The authors think it possible to find exactly defined uses for the different oils. © 1958 Uitgeverij Dr. W. Junk.
    Matched MeSH terms: Carotenoids
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links