Displaying publications 1 - 20 of 190 in total

Abstract:
Sort:
  1. Kamarudin MN, Mohd Raflee NA, Hussein SS, Lo JY, Supriady H, Abdul Kadir H
    Drug Des Devel Ther, 2014;8:1765-80.
    PMID: 25336920 DOI: 10.2147/DDDT.S67980
    Alpha-lipoic acid, a potent antioxidant with multifarious pharmacological benefits has been reported to be neuroprotective in several neuronal models and used to treat neurological disorders such as Alzheimer's disease. Nonetheless, conclusive mechanisms of alpha-lipoic acid for its protective effects particularly in NG108-15 cells have never been investigated. In this study, the intricate neuroprotective molecular mechanisms by (R)-(+)-alpha-lipoic acid (R-LA) against H2O2-induced cell death in an in vitro model of neurodegeneration were elucidated. Pretreatment with R-LA (2 hours) significantly increased NG108-15 cell viability as compared to H2O2-treated cells and mitigated the induction of apoptosis as evidenced by Hoechst 33342/propidium iodide staining. R-LA (12.5-50 μM) aggrandized the reduced glutathione over glutathione disulfide ratio followed by a reduction in the intracellular reactive oxygen species level and an increase in mitochondrial membrane potential following H2O2 exposure. Moreover, pretreatment with R-LA stimulated the activation of PI3K-Akt through mTORC1 and mTORC2 components (mTOR, rictor and raptor) and production of antiinflammatory cytokine, IL-10 which led to the inactivation of glycogen synthase kinase-3β (GSK-3β) and reduction of both Bax/Bcl2 and Bax/Bcl-xL ratios, accompanied by inhibition of the cleaved caspase-3. Additionally, this observation was preceded by the suppression of NF-κβ p65 translocation and production of proinflammatory cytokines (IL-6 and TNF-α). The current findings accentuate new mechanistic insight of R-LA against apoptogenic and brain inflammatory factors in a neuronal model. These results further advocate the therapeutic potential of R-LA for the treatment of neurodegenerative diseases.
    Matched MeSH terms: Cell Death/drug effects
  2. Jorfi S, Ansa-Addo EA, Mariniello K, Warde P, Bin Senian AA, Stratton D, et al.
    J Gen Virol, 2023 Sep;104(9).
    PMID: 37665326 DOI: 10.1099/jgv.0.001884
    Like most non-enveloped viruses, CVB1 mainly uses cell lysis to spread. Details of a nonlytic virus transmission remain unclear. Extracellular Vesicles (EVs) transfer biomolecules between cells. We show that CVB1 entry into HeLa cells results in apoptosis and release of CVB1-induced 'medium-sized' EVs (CVB1i-mEVs). These mEVs (100-300 nm) harbour CVB1 as shown by immunoblotting with anti-CVB1-antibody; viral capsids were detected by transmission electron microscopy and RT-PCR revealed CVB1 RNA. The percentage of mEVs released from CVB1-infected HeLa cells harbouring virus was estimated from TEM at 34 %. Inhibition of CVB1i-mEV production, with calpeptin or siRNA knockdown of CAPNS1 in HeLa cells limited spread of CVB1 suggesting these vesicles disseminate CVB1 virions to new host cells by a nonlytic EV-to-cell mechanism. This was confirmed by detecting CVB1 virions inside HeLa cells after co-culture with CVB1i-mEVs; EV release may also prevent apoptosis of infected cells whilst spreading apoptosis to secondary sites of infection.
    Matched MeSH terms: Cell Death
  3. Cheong JKK, Yap S, Ooi ET, Ooi EH
    Comput Methods Programs Biomed, 2019 Jul;176:17-32.
    PMID: 31200904 DOI: 10.1016/j.cmpb.2019.04.028
    BACKGROUND AND OBJECTIVES: Recently, there have been calls for RFA to be implemented in the bipolar mode for cancer treatment due to the benefits it offers over the monopolar mode. These include the ability to prevent skin burns at the grounding pad and to avoid tumour track seeding. The usage of bipolar RFA in clinical practice remains uncommon however, as not many research studies have been carried out on bipolar RFA. As such, there is still uncertainty in understanding the effects of the different RF probe configurations on the treatment outcome of RFA. This paper demonstrates that the electrode lengths have a strong influence on the mechanics of bipolar RFA. The information obtained here may lead to further optimization of the system for subsequent uses in the hospitals.

    METHODS: A 2D model in the axisymmetric coordinates was developed to simulate the electro-thermophysiological responses of the tissue during a single probe bipolar RFA. Two different probe configurations were considered, namely the configuration where the active electrode is longer than the ground and the configuration where the ground electrode is longer than the active. The mathematical model was first verified with an existing experimental study found in the literature.

    RESULTS: Results from the simulations showed that heating is confined only to the region around the shorter electrode, regardless of whether the shorter electrode is the active or the ground. Consequently, thermal coagulation also occurs in the region surrounding the shorter electrode. This opened up the possibility for a better customized treatment through the development of RF probes with adjustable electrode lengths.

    CONCLUSIONS: The electrode length was found to play a significant role on the outcome of single probe bipolar RFA. In particular, the length of the shorter electrode becomes the limiting factor that influences the mechanics of single probe bipolar RFA. Results from this study can be used to further develop and optimize bipolar RFA as an effective and reliable cancer treatment technique.

    Matched MeSH terms: Cell Death
  4. Peng S, Ying AF, Tai BC, Soo RA
    Transl Lung Cancer Res, 2020 Aug;9(4):1124-1137.
    PMID: 32953491 DOI: 10.21037/tlcr-20-246
    Background: We conducted a meta-analysis to assess the efficacy of immune checkpoint inhibitors (ICIs) (PD-1/L1 and CTLA-4 inhibitors) in first and subsequent lines in East Asians and non-East Asians.

    Methods: We searched PubMed-MEDLINE, Embase and Scopus, from inception to 20 Sep 2019, and reviewed major conferences' abstracts, for randomised controlled trials of ICI in advanced-stage NSCLC (Stage IIIB or IV) without EGFR mutation that reported hazard ratios (HRs) stratified by geographical region including the region "Asia" or "East Asia". The primary outcome measures were overall survival (OS) and progression-free survival (PFS). The pooled HR and its 95% confidence interval (CI) for OS and PFS in East Asians and non-East Asians were calculated using a random effect model and the difference compared using an interaction test.

    Results: A total of 5,465 patients from 7 randomised controlled trials involving CTLA-4 and/or PD-1/L1 inhibitors were included, with 1,740 (32%) East Asians and 3,725 (68%) non-East Asians. ICI was associated with an improvement in OS and PFS for both East Asian (OS HR, 0.74; 95% CI, 0.65-0.85; PFS HR, 0.56; 95% CI, 0.40-0.79) and non-East Asian patients (OS HR, 0.78; 95% CI, 0.72-0.85; PFS HR, 0.69; 95% CI, 0.56-0.85), with no significant difference between the two groups (Pinteraction=0.55 for OS; Pinteraction=0.33 for PFS). Subgroup analyses showed a statistically significant superior PFS (but not OS) for East Asians than non-East Asians in trials that used immune checkpoint inhibitor in the first-line treatment (Pinteraction=0.02). No significant regional difference was found in further subgroups of pure ICI and combination of ICI with chemotherapy.

    Conclusions: There is no significant difference in response to ICI between East Asians and non-East Asians with advanced stage NSCLC, and the statistically significant subgroup difference in PFS in the first line use of ICI may not be clinically significant.

    Matched MeSH terms: Programmed Cell Death 1 Receptor
  5. Kusrini E, Hashim F, Azmi WN, Amin NM, Estuningtyas A
    PMID: 26474244 DOI: 10.1016/j.saa.2015.09.021
    The terbium trinitrate.trihydrate.18-crown ether-6, Tb(NO3)3(OH2)3.(18C6) complex has been characterized by elemental analysis, photoluminescence and single X-ray diffraction. The IC50 values were determined based on MTT assay while light and fluorescence microscopy imaging were employed to evaluate the cellular morphological changes. Alkaline comet assay was performed to analyze the DNA damage. The photoluminescence spectrum of the Tb complex excited at 325 nm displayed seven luminescence peaks corresponding to the (5)D4→(7)F(0, 1, 2, 3, 4, 5, 6) transitions. The cytotoxicity and genotoxicity studies indicated that the Tb(NO3)3(OH2)3.(18C6) complex and its salt form as well as the 18C6 molecule have excellent anti-amoebic activity with very low IC50 values are 7, 2.6 and 1.2 μg/mL, respectively, with significant decrease (p<0.05) in Acanthamoeba viability when the concentration was increased from 0 to 30 μg/mL. The mode of cell death in Acanthamoeba cells following treatment with the Tb complex was apoptosis. This is in contrast to the Tb(NO3)3.6H2O salt- and 18C6 molecule-treated Acanthamoeba, which exhibited necrotic type cells. The percentage of DNA damage following treatment with all the compounds at the IC25 values showed high percentage of type 1 with the % nuclei damage are 14.15±2.4; 46.00±4.2; 36.36±2.4; 45.16±0.6%, respectively for untreated, treated with Tb complex, Tb salt and 18C6 molecule. The work features promising potential of Tb(NO3)3(OH2)3.(18C6) complex as anti-amoebic agent, representing a therapeutic option for Acanthamoeba keratitis infection.
    Matched MeSH terms: Cell Death
  6. Lim YC, Quek H, Offenhäuser C, Fazry S, Boyd A, Lavin M, et al.
    J Neurooncol, 2018 Jul;138(3):509-518.
    PMID: 29564746 DOI: 10.1007/s11060-018-2838-0
    Glioblastoma (GBM) is a highly fatal disease with a 5 year survival rate of less than 22%. One of the most effective treatment regimens to date is the use of radiotherapy which induces lethal DNA double-strand breaks to prevent tumour growth. However, recurrence occurs in the majority of patients and is in-part a result of robust radioresistance mechanisms. In this study, we demonstrate that the multifunctional cytokine, interleukin-6 (IL-6), confers a growth advantage in GBM cells but does not have the same effect on normal neural progenitor cells. Further analysis showed IL-6 can promote radioresistance in GBM cells when exposed to ionising radiation. Ablation of the Ataxia-telangiectasia mutated serine/threonine kinase that is recruited and activated by DNA double-strand breaks reverses the effect of radioresistance and re-sensitised GBM to DNA damage thus leading to increase cell death. Our finding suggests targeting the signaling cascade of DNA damage response is a potential therapeutic approach to circumvent IL-6 from promoting radioresistance in GBM.
    Matched MeSH terms: Cell Death/physiology; Cell Death/radiation effects
  7. Tan HY, Yong YK, Shankar EM, Paukovics G, Ellegård R, Larsson M, et al.
    J Immunol, 2016 05 15;196(10):4052-63.
    PMID: 27076678 DOI: 10.4049/jimmunol.1502203
    Tuberculosis-associated immune reconstitution inflammatory syndrome (TB-IRIS) complicates combination antiretroviral therapy (cART) in up to 25% of patients with HIV/TB coinfection. Monocytes and IL-18, a signature cytokine of inflammasome activation, are implicated in TB-IRIS pathogenesis. In this study, we investigated inflammasome activation both pre- and post-cART in TB-IRIS patients. HIV/TB patients exhibited higher proportions of monocytes expressing activated caspase-1 (casp1) pre-cART, compared with HIV patients without TB, and patients who developed TB-IRIS exhibited the greatest increase in casp1 expression. CD64(+) monocytes were a marker of increased casp1 expression. Furthermore, IL-1β, another marker of inflammasome activation, was also elevated during TB-IRIS. TB-IRIS patients also exhibited greater upregulation of NLRP3 and AIM2 inflammasome mRNA, compared with controls. Analysis of plasma mitochondrial DNA levels showed that TB-IRIS patients experienced greater cell death, especially pre-cART. Plasma NO levels were lower both pre- and post-cART in TB-IRIS patients, providing evidence of inadequate inflammasome regulation. Plasma IL-18 levels pre-cART correlated inversely with NO levels but positively with monocyte casp1 expression and mitochondrial DNA levels, and expression of IL-18Rα on CD4(+) T cells and NK cells was higher in TB-IRIS patients, providing evidence that IL-18 is a marker of inflammasome activation. We propose that inflammasome activation in monocytes/macrophages of HIV/TB patients increases with ineffective T cell-dependent activation of monocytes/macrophages, priming them for an excessive inflammatory response after cART is commenced, which is greatest in patients with TB-IRIS.
    Matched MeSH terms: Cell Death
  8. Patmanathan SN, Johnson SP, Lai SL, Panja Bernam S, Lopes V, Wei W, et al.
    Sci Rep, 2016 05 10;6:25650.
    PMID: 27160553 DOI: 10.1038/srep25650
    Oral squamous cell carcinoma (OSCC) is a lethal disease with a 5-year mortality rate of around 50%. Molecular targeted therapies are not in routine use and novel therapeutic targets are required. Our previous microarray data indicated sphingosine 1-phosphate (S1P) metabolism and signalling was deregulated in OSCC. In this study, we have investigated the contribution of S1P signalling to the pathogenesis of OSCC. We show that the expression of the two major enzymes that regulate S1P levels were altered in OSCC: SPHK1 was significantly upregulated in OSCC tissues compared to normal oral mucosa and low levels of SGPL1 mRNA correlated with a worse overall survival. In in vitro studies, S1P enhanced the migration/invasion of OSCC cells and attenuated cisplatin-induced death. We also demonstrate that S1P receptor expression is deregulated in primary OSCCs and that S1PR2 is over-expressed in a subset of tumours, which in part mediates S1P-induced migration of OSCC cells. Lastly, we demonstrate that FTY720 induced significantly more apoptosis in OSCC cells compared to non-malignant cells and that FTY720 acted synergistically with cisplatin to induce cell death. Taken together, our data show that S1P signalling promotes tumour aggressiveness in OSCC and identify S1P signalling as a potential therapeutic target.
    Matched MeSH terms: Cell Death
  9. Sham NFR, Hasani NAH, Hasan N, Karim MKA, Fuad SBSA, Hasbullah HH, et al.
    Sci Rep, 2023 Feb 22;13(1):3108.
    PMID: 36813833 DOI: 10.1038/s41598-023-29925-x
    Cancer recurrence is often associated with the acquisition of radioresistance by cancer tissues due to failure in radiotherapy. The underlying mechanism leading to the development of acquired radioresistance in the EMT6 mouse mammary carcinoma cell line and the potential pathway involved was investigated by comparing differential gene expressions between parental and acquired radioresistance cells. EMT6 cell line was exposed to 2 Gy/per cycle of gamma-ray and the survival fraction between EMT6-treated and parental cells was compared. EMT6RR_MJI (acquired radioresistance) cells was developed after 8 cycles of fractionated irradiation. The development of EMT6RR_MJI cells was confirmed with further irradiation at different doses of gamma-ray, and both the survival fraction and migration rates were measured. Higher survival fraction and migration rates were obtained in EMT6RR_MJI cells after exposure to 4 Gy and 8 Gy gamma-ray irradiations compared to their parental cells. Gene expression between EMT6RR_MJI and parental cells was compared, and 16 genes identified to possess more than tenfold changes were selected and validated using RT-PCR. Out of these genes, 5 were significantly up-regulated i.e., IL-6, PDL-1, AXL, GAS6 and APCDD1. Based on pathway analysis software, the development of acquired radioresistance in EMT6RR_MJI was hypothesized through JAK/STAT/PI3K pathway. Presently, CTLA-4 and PD-1 were determined to be associated with JAK/STAT/PI3K pathway, where both their expressions were significantly increased in EMT6RR_MJI compared to parental cells in the 1st, 4th and 8th cycle of radiation. As a conclusion, the current findings provided a mechanistic platform for the development of acquired radioresistance in EMT6RR_MJI through overexpression of CTLA-4 and PD-1, and novel knowledge on therapeutic targets for recurrent radioresistant cancers.
    Matched MeSH terms: Programmed Cell Death 1 Receptor*
  10. Tie, Tung Hing, Rusliza Basir, Chuah, Yaw Kuang, Herni Talib, Norshariza Nordin
    MyJurnal
    Activin proteins are members of the transforming growth factor-β family. Activin A is involved in several biological responses including wound repair, cell death, proliferation and differentiation of many cell types. Biologically active activins consist of homodimers or heterodimers of two beta (β) subunits that are linked together by a single covalent disulphide bond. The subunits in humans are βA, βB, βC and βE. As an example, a combination of two βA subunits will produce a unit of activin A. These proteins are found in most cells of body such as macrophage and activated circulating monocytes. Their role in inflammation can be categorised into two types, either pro- or anti-inflammatory agents, depending on the cell type and phase. Activin signals are kept in balance by antagonist follistatin (Fst), which is a glycoprotein expressed in tissues and encoded by the follistatin gene in humans.
    Matched MeSH terms: Cell Death
  11. Er HM, Cheng EH, Radhakrishnan AK
    J Ethnopharmacol, 2007 Sep 25;113(3):448-56.
    PMID: 17698306
    The anti-proliferative effects of the aqueous and methanol extracts of leaves of Pereskia bleo (Kunth) DC (Cactaceae) against a mouse mammary cancer cell line (4T1) and a normal mouse fibroblast cell line (NIH/3T3) were evaluated under an optimal (in culture medium containing 10% foetal bovine serum (FBS)) and a sub-optimal (in culture medium containing 0.5% FBS) conditions. Under the optimal condition, the aqueous extract showed a significant (p<0.05) anti-proliferative effect at 200 microg/mL and 300 microg/mL in 4T1 cells and 300 microg/mL in NIH/3T3 cells, whereas the methanol extract did not show any notable anti-proliferative effect in these cell lines, at any of the concentrations tested. Under the sub-optimal condition, the aqueous extract showed a significant (p<0.05) anti-proliferative effect at 200 microg/mL and 300 microg/mL in NIH/3T3 cells, whilst the methanol extract showed a significant (p<0.05) anti-proliferative effect at 200 microg/mL and 300 microg/mL in both cell lines. An upward trend of apoptosis was observed in both 4T1 and NIH/3T3 cells treated with increasing concentrations of the aqueous extract. The level of apoptosis observed at all the concentrations of the aqueous extract tested was consistently higher than necrosis. There was a significant (p<0.05) increase in the level of necrosis observed in the 4T1 cells treated with 300 microg/mL of the methanol extract. Generally, the level of necrosis was noted to be higher than that of apoptosis in the methanol extract-treated cells. The mutagenicity assay performed showed that in the absence of S-9 liver metabolic activation, the extract was not mutagenic up to the concentration of 165 microg/mL . However, in the presence of S-9 liver metabolic activation, the aqueous extract was mutagenic at all the concentrations tested. This study shows that both the aqueous and methanol extracts of the leaves from Pereskia bleo (Kunth) DC (Cactaceae) do not have appreciable anti-proliferative effect on the 4T1 and NIH/3T3 cells as the EC(50) values obtained are greater than 50 microg/mL when tested under optimal culture condition. Moreover, the aqueous extract may form mutagenic compound(s) upon the metabolisation by liver enzymes.
    Matched MeSH terms: Cell Death/drug effects
  12. Moo CL, Yang SK, Osman MA, Yuswan MH, Loh JY, Lim WM, et al.
    Pol J Microbiol, 2020;69:1-6.
    PMID: 32162852 DOI: 10.33073/pjm-2020-007
    Natural products such as essential oils (EOs) are secondary metabolites that can be obtained from either plant or animal sources or produced by microorganisms. Much attention has been given to exploring the use of secondary metabolites as natural antibacterial agents. This study investigates the antibacterial activity and mechanism of β-caryophyllene, a compound that can be found in various EOs, against Bacillus cereus. The minimum inhibitory concentration of β-caryophyllene against B. cereus was 2.5% (v/v), whereas killing kinetics of β-caryophyllene at minimum inhibitory concentration recorded complete bactericidal activity within 2 hours. Zeta-potential measurement in the cells treated with half the minimum inhibitory concentration of β-caryophyllene at 1.25% (v/v) showed an increase in the membrane permeability surface charge to -3.98 mV, compared to untreated cells (-5.46 mV). Intracellular contents leakage of UV-absorbing materials was detected in the cells treated with β-caryophyllene. Additionally, β-caryophyllene does not interfere with the efflux activity of B. cereus via the ethidium bromide influx/efflux activity. The results revealed that β-caryophyllene was able to alter membrane permeability and integrity of B. cereus, leading to membrane damage and intracellular content leakage, which eventually caused cell death.

    Natural products such as essential oils (EOs) are secondary metabolites that can be obtained from either plant or animal sources or produced by microorganisms. Much attention has been given to exploring the use of secondary metabolites as natural antibacterial agents. This study investigates the antibacterial activity and mechanism of β-caryophyllene, a compound that can be found in various EOs, against Bacillus cereus. The minimum inhibitory concentration of β-caryophyllene against B. cereus was 2.5% (v/v), whereas killing kinetics of β-caryophyllene at minimum inhibitory concentration recorded complete bactericidal activity within 2 hours. Zeta-potential measurement in the cells treated with half the minimum inhibitory concentration of β-caryophyllene at 1.25% (v/v) showed an increase in the membrane permeability surface charge to –3.98 mV, compared to untreated cells (–5.46 mV). Intracellular contents leakage of UV-absorbing materials was detected in the cells treated with β-caryophyllene. Additionally, β-caryophyllene does not interfere with the efflux activity of B. cereus via the ethidium bromide influx/efflux activity. The results revealed that β-caryophyllene was able to alter membrane permeability and integrity of B. cereus, leading to membrane damage and intracellular content leakage, which eventually caused cell death.

    Matched MeSH terms: Cell Death
  13. Ismail NA, Shameli K, Wong MM, Teow SY, Chew J, Sukri SNAM
    Mater Sci Eng C Mater Biol Appl, 2019 Nov;104:109899.
    PMID: 31499959 DOI: 10.1016/j.msec.2019.109899
    In this study, a comparative study of effect using honey on copper nanoparticles (Cu-NPs) via simple, environmentally friendly process and inexpensive route was reported. Honey and ascorbic acid act as stabilizing and reducing agents with the assistance of sonochemical method. The products were characterized using UV-visible (UV-vis) spectroscopy, X-Ray Diffraction (XRD), High-Resolution Transmission Electron Microscopy (HRTEM), Field-Emission Scanning Electron Microscopy (FESEM) and Fourier Transform Infrared (FTIR) spectroscopy. The reddish brown colour demonstrated the formation of Cu-NPs and UV-visible proved the plasmon resonance of Cu-NPs. XRD also confirmed a highly pure Cu-NPs obtained with absence of copper oxide in which the structure is crystalline. The spherical size of the Cu-NPs was acquire in the presence of honey which is 3.68 ± 0.78 nm with narrow particle distribution. The antibacterial activity was seen against gram-positive and gram-negative bacteria which are Enterococcus faecalis (E. faecalis) and Escherichia coli (E. coli). At higher concentration of Cu-NPs, they were more effective in killing both bacteria. The Cu-NPs without and with honey exhibited toxicities toward normal and cancerous cells. However, Cu-NPs without honey showed more potent killing activity against normal and cancer cells.
    Matched MeSH terms: Cell Death/drug effects
  14. Ninan N, Muthiah M, Bt Yahaya NA, Park IK, Elain A, Wong TW, et al.
    Colloids Surf B Biointerfaces, 2014 Mar 1;115:244-52.
    PMID: 24362063 DOI: 10.1016/j.colsurfb.2013.11.048
    In this article, gelatin/copper activated faujasites (CAF) composite scaffolds were fabricated by lyophilisation technique for promoting partial thickness wound healing. The optimised scaffold with 0.5% (w/w) of CAF, G (0.5%), demonstrated pore size in the range of 10-350 μm. Agar disc diffusion tests verified the antibacterial role of G (0.5%) and further supported that bacterial lysis was due to copper released from the core of CAF embedded in the gelatin matrix. The change in morphology of bacteria as a function of CAF content in gelatin scaffold was studied using SEM analysis. The confocal images revealed the increase in mortality rate of bacteria with increase in concentration of incorporated CAF in gelatin matrix. Proficient oxygen supply to needy cells is a continuing hurdle faced by tissue engineering scaffolds. The dissolved oxygen measurements revealed that CAF embedded in the scaffold were capable of increasing oxygen supply and thereby promote cell proliferation. Also, G (0.5%) exhibited highest cell viability on NIH 3T3 fibroblast cells which was mainly attributed to the highly porous architecture and its ability to enhance oxygen supply to cells. In vivo studies conducted on Sprague Dawley rats revealed the ability of G (0.5%) to promote skin regeneration in 20 days. Thus, the obtained data suggest that G (0.5%) is an ideal candidate for wound healing applications.
    Matched MeSH terms: Cell Death/drug effects
  15. Law JW, Law LN, Letchumanan V, Tan LT, Wong SH, Chan KG, et al.
    Molecules, 2020 Nov 17;25(22).
    PMID: 33212836 DOI: 10.3390/molecules25225365
    Worldwide cancer incidence and mortality have always been a concern to the community. The cancer mortality rate has generally declined over the years; however, there is still an increased mortality rate in poorer countries that receives considerable attention from healthcare professionals. This suggested the importance of the prompt detection, effective treatment, and prevention strategies. The genus Streptomyces has been documented as a prolific producer of biologically active secondary metabolites. Streptomycetes from mangrove environments attract researchers' attention due to their ability to synthesize diverse, interesting bioactive metabolites. The present review highlights research on mangrove-derived streptomycetes and the production of anticancer-related compounds from these microorganisms. Research studies conducted between 2008 and 2019, specifically mentioning the isolation of streptomycetes from mangrove areas and described the successful purification of compound(s) or generation of crude extracts with cytotoxic activity against human cancer cell lines, were compiled in this review. It is anticipated that there will be an increase in prospects for mangrove-derived streptomycetes as one of the natural resources for the isolation of chemotherapeutic agents.
    Matched MeSH terms: Cell Death/drug effects
  16. Yaacob NS, Hamzah N, Nik Mohamed Kamal NN, Zainal Abidin SA, Lai CS, Navaratnam V, et al.
    PMID: 20684795 DOI: 10.1186/1472-6882-10-42
    The leaves of Strobilanthes crispus (S. crispus) which is native to the regions of Madagascar to the Malay Archipelago, are used in folk medicine for their antidiabetic, diuretic, anticancer and blood pressure lowering properties. Crude extracts of this plant have been found to be cytotoxic to human cancer cell lines and protective against chemically-induced hepatocarcinogenesis in rats. In this study, the cytotoxicity of various sub-fractions of dichloromethane extract isolated from the leaves of S. crispus was determined and the anticancer activity of one of the bioactive sub-fractions, SC/D-F9, was further analysed in breast and prostate cancer cell lines.
    Matched MeSH terms: Cell Death/drug effects*
  17. Hakkimane SS, Shenoy VP, Gaonkar SL, Bairy I, Guru BR
    Int J Nanomedicine, 2018;13:4303-4318.
    PMID: 30087562 DOI: 10.2147/IJN.S163925
    INTRODUCTION: Tuberculosis (TB) is the single largest infectious disease which requires a prolonged treatment regime with multiple drugs. The present treatment for TB includes frequent administration of a combination of four drugs for a duration of 6 months. This leads to patient's noncompliance, in addition to developing drug-resistant strains which makes treatment more difficult. The formulation of drugs with biodegradable polymeric nanoparticles (NPs) promises to overcome this problem.

    MATERIALS AND METHODS: In this study, we focus on two important drugs used for TB treatment - rifampicin (RIF) and isoniazid (INH) - and report a detailed study of RIF-loaded poly lactic-co-glycolic acid (PLGA) NPs and INH modified as INH benz-hydrazone (IH2) which gives the same therapeutic effect as INH but is more stable and enhances the drug loading in PLGA NPs by 15-fold compared to INH. The optimized formulation was characterized using particle size analyzer, scanning electron microscopy and transmission electron microscopy. The drug release from NPs and stability of drug were tested in different pH conditions.

    RESULTS: It was found that RIF and IH2 loaded in NPs release in a slow and sustained manner over a period of 1 month and they are more stable in NPs formulation compared to the free form. RIF- and IH2-loaded NPs were tested for antimicrobial susceptibility against Mycobacterium tuberculosis H37Rv strain. RIF loaded in PLGA NPs consistently inhibited the growth at 70% of the minimum inhibitory concentration (MIC) of pure RIF (MIC level 1 µg/mL), and pure IH2 and IH2-loaded NPs showed inhibition at MIC equivalent to the MIC of INH (0.1 µg/mL).

    CONCLUSION: These results show that NP formulations will improve the efficacy of drug delivery for TB treatment.

    Matched MeSH terms: Cell Death/drug effects
  18. Teoh WY, Sim KS, Moses Richardson JS, Abdul Wahab N, Hoe SZ
    PMID: 24369485 DOI: 10.1155/2013/958407
    Gynura bicolor (Compositae) which is widely used by the locals as natural remedies in folk medicine has limited scientific studies to ensure its efficacy and nontoxicity. The current study reports the total phenolic content, antioxidant capacity, cytotoxicity, and acute oral toxicity of crude methanol and its fractionated extracts (hexane, ethyl acetate, and water) of G. bicolor leaves. Five human colon cancer cell lines (HT-29, HCT-15, SW480, Caco-2, and HCT 116), one human breast adenocarcinoma cell line (MCF7), and one human normal colon cell line (CCD-18Co) were used to evaluate the cytotoxicity of G. bicolor. The present findings had clearly demonstrated that ethyl acetate extract of G. bicolor with the highest total phenolic content among the extracts showed the strongest antioxidant activity (DPPH radical scavenging assay and metal chelating assay), possessed cytotoxicity, and induced apoptotic and necrotic cell death, especially towards the HCT 116 and HCT-15 colon cancer cells. The acute oral toxicity study indicated that methanol extract of G. bicolor has negligible level of toxicity when administered orally and has been regarded as safe in experimental rats. The findings of the current study clearly established the chemoprevention potential of G. bicolor and thus provide scientific validation on the therapeutic claims of G. bicolor.
    Matched MeSH terms: Cell Death
  19. Lay MM, Karsani SA, Banisalam B, Mohajer S, Abd Malek SN
    Biomed Res Int, 2014;2014:410184.
    PMID: 24818141 DOI: 10.1155/2014/410184
    In recent years, the utilization of certain medicinal plants as therapeutic agents has drastically increased. Phaleria macrocarpa (Scheff.) Boerl is frequently used in traditional medicine. The present investigation was undertaken with the purpose of developing pharmacopoeial standards for this species. Nutritional values such as ash, fiber, protein, fat, and carbohydrate contents were investigated, and phytochemical screenings with different reagents showed the presence of flavonoids, glycosides, saponin glycosides, phenolic compounds, steroids, tannins, and terpenoids. Our results also revealed that the water fraction had the highest antioxidant activity compared to the methanol extract and other fractions. The methanol and the fractionated extracts (hexane, chloroform, ethyl acetate, and water) of P. macrocarpa seeds were also investigated for their cytotoxic effects on selected human cancer cells lines (MCF-7, HT-29, MDA-MB231, Ca Ski, and SKOV-3) and a normal human fibroblast lung cell line (MRC-5). Information from this study can be applied for future pharmacological and therapeutic evaluations of the species, and may assist in the standardization for quality, purity, and sample identification. To the best of our knowledge, this is the first report on the phytochemical screening and cytotoxic effect of the crude and fractionated extracts of P. macrocarpa seeds on selected cells lines.
    Matched MeSH terms: Cell Death/drug effects
  20. Wynn, Aye Aye, Myint, Ohnmar, Mya, Nang Khin
    MyJurnal
    Apoptosis is a programmed cell death which occurs following a variety of stimuli. Physiologically the process is important for morphogenesis of organs and homeostasis of different types of cells. Apoptotic cell death is responsible for a variety of pathologic states such as elimination of cell death in mutated cells, infected cells, tumour cells and transplant rejection well as the pathological atrophy. In this review, there is discussion about the control of apoptosis, detection methods of apoptosis, its association with infectious and non-communicable diseases. Intracellular microorganisms survive through inhibition of host cell apoptosis as well as they destroy the parenchymal cells causing impaired functions. It plays important role in tumourigenesis. There are possible therapeutic roles of drugs that modify apoptosis in human diseases.
    Matched MeSH terms: Cell Death
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links