Displaying publications 1 - 20 of 139 in total

Abstract:
Sort:
  1. Siti Hanna Elias, Maketab Mohamed, Aznah Nor-Anuar, Khalida Muda, Mohd Arif Hakimi Mat Hassan, Mohd. Nor Othman, et al.
    Sains Malaysiana, 2014;43:1397-1403.
    In the present study, capability of water hyacinth in removing heavy metals such as Cadmium (Cd), Chromium (Cr), Copper (Cu), Zinc (Zn), Iron (Fe), and Boron (B) in ceramic wastewater was investigated. The metal removal efficiency was identified by evaluating the translocation of metals in roots, leaves and shoot of water hyacinth. The heavy metal removal efficiency followed the order Fe>Zn>Cd>Cu>Cr>B during the treatment process. Water hyacinth had luxury consumption of those 6 elements. This study used the circulation system with 3 columns of plants which functioned as bioremediation of the sample. The concentration of metals in roots is much higher 10 times than leaves and stems. Roots give the result of metalR>metalL. The removal concentration from water hyacinth was estimated under pH of 8.21 to 8.49. This study proves water hyacinth to be a best plant for phytoremediation process
    Matched MeSH terms: Ceramics
  2. Ghazali MS, Zakaria A, Rizwan Z, Kamari HM, Hashim M, Zaid MH, et al.
    Int J Mol Sci, 2011;12(3):1496-504.
    PMID: 21673903 DOI: 10.3390/ijms12031496
    The optical band-gap energy (E(g)) is an important feature of semiconductors which determines their applications in optoelectronics. Therefore, it is necessary to investigate the electronic states of ceramic ZnO and the effect of doped impurities under different processing conditions. E(g) of the ceramic ZnO + xBi(2)O(3) + xTiO(2), where x = 0.5 mol%, was determined using a UV-Vis spectrophotometer attached to a Reflectance Spectroscopy Accessory for powdered samples. The samples was prepared using the solid-state route and sintered at temperatures from 1140 to 1260 °C for 45 and 90 minutes. E(g) was observed to decrease with an increase of sintering temperature. XRD analysis indicated hexagonal ZnO and few small peaks of intergranular layers of secondary phases. The relative density of the sintered ceramics decreased and the average grain size increased with the increase of sintering temperature.
    Matched MeSH terms: Ceramics/chemistry*
  3. Sulaiman SB, Keong TK, Cheng CH, Saim AB, Idrus RB
    Indian J Med Res, 2013 Jun;137(6):1093-101.
    PMID: 23852290
    Various materials have been used as scaffolds to suit different demands in tissue engineering. One of the most important criteria is that the scaffold must be biocompatible. This study was carried out to investigate the potential of HA or TCP/HA scaffold seeded with osteogenic induced sheep marrow cells (SMCs) for bone tissue engineering.
    Matched MeSH terms: Ceramics/chemistry
  4. Bayat M, Alarifi IM, Khalili AA, El-Bagory TMAA, Nguyen HM, Asadi A
    Sci Rep, 2019 Oct 25;9(1):15317.
    PMID: 31653877 DOI: 10.1038/s41598-019-51450-z
    A thermo-elastic contact problem of functionally graded materials (FGMs) rotating brake disk with different pure brake pad areas under temperature dependent material properties is solved by Finite Element Method (FEM). The properties of brake disk change gradually from metal to ceramic by power-law distribution along the radial direction from the inner to the outer surface. Areas of the pure pad are changing while the vertical force is constant. The ratio of brake pad thickness to FGMs brake disk thickness is assumed 0.66. Two sources of thermal loads are considered: (1) Heat generation between the pad and brake disk due to contact friction, and (2) External thermal load due to a constant temperature at inner and outer surfaces. Mechanical responses of FGMs disk are compared with several pad contact areas. The results for temperature-dependent and temperature-independent material properties are investigated and presented. The results show that the absolute value of the shear stress in temperature-dependent material can be greater than that for temperature-independent material. The radial stress for some specific grading index (n = 1.5) is compressive near the inner surface for double contact while it is tensile for a single contact. It is concluded that the radial strain for some specific value of grading index (n = 1) is lower than other FGMs and pure double side contact brake disks.
    Matched MeSH terms: Ceramics
  5. Rusnah M, Andanastuti M, Idris B
    Med J Malaysia, 2004 May;59 Suppl B:158-9.
    PMID: 15468866
    The present paper reports on the influence of sintering temperature on the porosity and strength of porous hydroxyapatite (HA). HA powder was first prepared by the sol-gel precipitation method using calcium hydroxide and ortho-phosporic acid. The fine HA powder, measuring <50 microm was then mixed into a slurry with the addition of binder agent, being a mixture of sago and PVA. A small amount of sodium dodecyl sulphate was also used as a foaming agent. Porous HA samples were then prepared via slip casting technique. The surface morphology of the sintered samples was observed under scanning electron microscopy at 20 kV and the compositions were determined via SEM-EDX. A universal testing machine was used to determine the compaction strength of the sintered samples.
    Matched MeSH terms: Ceramics/analysis*
  6. Choudhury D, Vrbka M, Mamat AB, Stavness I, Roy CK, Mootanah R, et al.
    J Mech Behav Biomed Mater, 2017 08;72:192-199.
    PMID: 28500998 DOI: 10.1016/j.jmbbm.2017.05.011
    Coefficient of friction (COF) tests were conducted on 28-mm and 36-mm-diameter hip joint prostheses for four different material combinations, with or without the presence of Ultra High Molecular Weight Polyethylene (UHMWPE) particles using a novel pendulum hip simulator. The effects of three micro dimpled arrays on femoral head against a polyethylene and a metallic cup were also investigated. Clearance played a vital role in the COF of ceramic on polyethylene and ceramic on ceramic artificial hip joints. Micro dimpled metallic femoral heads yielded higher COF against a polyethylene cup; however, with metal on metal prostheses the dimpled arrays significantly reduced the COF. In situ images revealed evidence that the dimple arrays enhanced film formation, which was the main mechanism that contributed to reduced friction.
    Matched MeSH terms: Ceramics/analysis*
  7. Ahmad Zahirani Ahmad Azhar, Hasmaliza Mohamed, Mani Maran Ratnam, Zainal Arifin Ahmad
    MyJurnal
    The microstructure and mechanical properties of ceramic composites produced from alumina, yttria stabilized zirconia and chromia oxide system was investigated. The Cr2O3 weight percent was varied from 0 wt% to 1.0 wt%. Each batch of composition was mixed, uniaxially pressed to 13mm diameter and sintered at 1600 ◦C for 4 h in pressureless conditions. Studies on the effects of the sample microstructures on their mechanical and physical properties such as fracture toughness and bulk density were carried out. Results show that an addition of 0.6 wt% of Cr2O3 produces the best mechanical properties. Furthermore, microstructural observations show that the Al2O3 grain size is significantly dependent on the amount of Cr2O3 additives used. Maximum value obtained with 0.6 wt % Cr2O3 for the fracture toughness is 5.36 MPa.m1/2.
    Matched MeSH terms: Ceramics
  8. Nur Azam Badarulzaman, Lee, Chung Heung, Ahmad Azmin Mohamad, Zainal Arifin Ahmad, Purwadaria, Sunara
    MyJurnal
    Ni–SiC composite coatings were electrodeposited from a Watts-type bath containing 5 g/l SiC particles in suspension. The particles were dispersed with the aid of mechanical agitation at 75 rpm and 150 rpm. EDX analysis confirmed the existence of Ni and SiC in the coatings. The effects of agitation speed on hardness properties of the coatings were investigated. SEM results showed that lower agitation speed could improve the amount of co-deposited SiC particles and increase the hardness of the composite coatings. The bonding between the Ni metal matrix and the SiC ceramic particles was compact.
    Matched MeSH terms: Ceramics
  9. Adam MR, Salleh NM, Othman MHD, Matsuura T, Ali MH, Puteh MH, et al.
    J Environ Manage, 2018 Oct 15;224:252-262.
    PMID: 30055458 DOI: 10.1016/j.jenvman.2018.07.043
    Adsorption is one of the most efficient ways to remove heavy metal from wastewater. In this study, the adsorptive removal of hexavalent chromium, Cr (VI) from aqueous solution was investigated using natural zeolite, clinoptilolite, in the form of hollow fibre ceramic membrane (HFCM). The HFCM sample was prepared using phase inversion-based extrusion technique and followed by sintering process at different sintering temperatures in the range of 900-1050 °C. The fabricated HFCM was characterised using scanning electron microscopy (SEM), contact angle, water permeability, and mechanical strength for all HFCMs sintered at different temperatures. The adsorption and filtration test of Cr (VI) were performed using an in-house water permeation set up with a dead-end cross-flow permeation test. An asymmetric structure with sponge- and finger-like structures across the cross-section of HFCM was observed using SEM. Based on the characterisation data, 1050 °C was chosen to be the best sintering temperature as the water permeability and mechanical strength of this HFCM were 29.14 L/m2∙h and 50.92 MPa, respectively. The performance of the HFCM in adsorption/filtration was 44% of Cr (VI) removal at the Cr (VI) concentration of 40 mg/L and pH 4. In addition, the mathematical model was also performed in simulating the experimental data obtained from this study. All in all, the natural zeolite-based HFCM has a potential as a single-step Cr (VI) removal by membrane adsorption for the wastewater treatment.
    Matched MeSH terms: Ceramics
  10. Mohd Roslan MR, Mohd Kamal NL, Abdul Khalid MF, Mohd Nasir NF, Cheng EM, Beh CY, et al.
    Materials (Basel), 2021 Apr 14;14(8).
    PMID: 33919814 DOI: 10.3390/ma14081960
    Hydroxyapatite (HA) has been widely used as a scaffold in tissue engineering. HA possesses high mechanical stress and exhibits particularly excellent biocompatibility owing to its similarity to natural bone. Nonetheless, this ceramic scaffold has limited applications due to its apparent brittleness. Therefore, this had presented some difficulties when shaping implants out of HA and for sustaining a high mechanical load. Fortunately, these drawbacks can be improved by combining HA with other biomaterials. Starch was heavily considered for biomedical device applications in favor of its low cost, wide availability, and biocompatibility properties that complement HA. This review provides an insight into starch/HA composites used in the fabrication of bone tissue scaffolds and numerous factors that influence the scaffold properties. Moreover, an alternative characterization of scaffolds via dielectric and free space measurement as a potential contactless and nondestructive measurement method is also highlighted.
    Matched MeSH terms: Ceramics
  11. Shullia NI, Raffiudin R, Juliandi B
    Trop Life Sci Res, 2019 Jan;30(1):89-107.
    PMID: 30847035 DOI: 10.21315/tlsr2019.30.1.6
    Genes related to carbohydrate metabolism have evolved rapidly in eusocial bees, including honey bees. However, the characterisation of carbohydrate metabolism genes has not been reported in Apis andreniformis or Apis cerana indica. This study aimed to characterise phosphofructokinase (PFK) and pyruvate kinase (PK) genes in these honey bee species and to analyse the evolution of the genus Apis using these genes. This study found the first data regarding A. andreniformis PFK and PK-like nucleotide sequences. A BLAST-n algorithm-based search showed that A. andreniformis and A. c. indica PFK and PK genes were homologous with those of Apis florea and Apis cerana cerana from Korea, respectively. Multiple alignments of PFKs from five Apis species showed many exon gains and losses, but only one among the PKs. Thus, the exon-intron organisation of the PK genes may be more conserved compare with that of the PFKs. Another evolutionary pattern indicated that more nucleotide substitutions occurred in Apis' PK than PFK genes. Deduced PFK amino acid sequences revealed a PFK consensus pattern of 19 amino acids, while the deduced PK amino acid sequences were predicted to have barrel and alpha/beta domains. Based on these two metabolism-related genes, The Neighbour-joining and Maximum likelihood phylogenetic trees are congruent and revealed that the A. andreniformis and A. florea group were in the basal position. Apis mellifera, A. cerana, and Apis dorsata formed a monophyletic clade, although the positions of A. mellifera and A. dorsata were different in the nucleotide- and amino acid-based phylogenetic trees.
    Matched MeSH terms: Ceramics
  12. Kumar A, Jain A, Sayyed MI, Laariedh F, Mahmoud KA, Nebhen J, et al.
    Sci Rep, 2021 Apr 08;11(1):7784.
    PMID: 33833308 DOI: 10.1038/s41598-021-87256-1
    Nuclear radiation shielding capabilities for a glass series 20Bi2O3 - xPbO - (80 - 2x)B2O3 - xGeO2 (where x = 5, 10, 20, and 30 mol%) have been investigated using the Phy-X/PSD software and Monte Carlo N-Particle transport code. The mass attenuation coefficients (μm) of selected samples have been estimated through XCOM dependent Phy-X/PSD program and MCNP-5 code in the photon-energy range 0.015-15 MeV. So obtained μm values are used to calculate other γ-ray shielding parameters such as half-value layer (HVL), mean-free-path (MFP), etc. The calculated μm values were found to be 71.20 cm2/g, 76.03 cm2/g, 84.24 cm2/g, and 90.94 cm2/g for four glasses S1 to S4, respectively. The effective atomic number (Zeff)values vary between 69.87 and 17.11 for S1 or 75.66 and 29.11 for S4 over 0.05-15 MeV of photon-energy. Sample S4, which has a larger PbO/GeO2 of 30 mol% in the bismuth-borate glass, possesses the lowest MFP and HVL, providing higher radiation protection efficiency compared to all other combinations. It shows outperformance while compared the calculated parameters (HVL and MFP) with the commercial shielding glasses, different alloys, polymers, standard shielding concretes, and ceramics. Geometric Progression (G-P) was applied for evaluating the energy absorption and exposure buildup factors at energies 0.015-15 MeV with penetration depths up to 40 mfp. The buildup factors showed dependence on the MFP and photon-energy as well. The studied samples' neutron shielding behavior was also evaluated by calculating the fast neutron removal cross-section (ΣR), i.e. found to be 0.139 cm-1 for S1, 0.133 cm-1 for S2, 0.128 cm-1 for S3, and 0.12 cm-1 for S4. The results reveal a great potential for using a glass composite sample S4 in radiation protection applications.
    Matched MeSH terms: Ceramics
  13. Abdullah WR, Zakaria A, Ghazali MS
    Int J Mol Sci, 2012;13(4):5278-89.
    PMID: 22606043 DOI: 10.3390/ijms13045278
    High demands on low-voltage electronics have increased the need for zinc oxide (ZnO) varistors with fast response, highly non-linear current-voltage characteristics and energy absorption capabilities at low breakdown voltage. However, trade-off between breakdown voltage and grain size poses a critical bottle-neck in the production of low-voltage varistors. The present study highlights the synthesis mechanism for obtaining praseodymium oxide (Pr(6)O(11)) based ZnO varistor ceramics having breakdown voltages of 2.8 to 13.3 V/mm through employment of direct modified citrate gel coating technique. Precursor powder and its ceramics were examined by means of TG/DTG, FTIR, XRD and FESEM analyses. The electrical properties as a function of Pr(6)O(11) addition were analyzed on the basis of I-V characteristic measurement. The breakdown voltage could be adjusted from 0.01 to 0.06 V per grain boundary by controlling the amount of Pr(6)O(11) from 0.2 to 0.8 mol%, without alteration of the grain size. The non-linearity coefficient, α, varied from 3.0 to 3.5 and the barrier height ranged from 0.56 to 0.64 eV. Breakdown voltage and α lowering with increasing Pr(6)O(11) content were associated to reduction in the barrier height caused by variation in O vacancies at grain boundary.
    Matched MeSH terms: Ceramics/chemical synthesis*; Ceramics/chemistry*
  14. Mohd Al Amin Muhamad Nor, Maryam Mohd Ridzuan, Zainal Arifin Ahmad
    MyJurnal
    Ceramic materials play key role in several biomedical applications. One of them is bone graft which is use in treating bone defect which caused by injury or osteoporosis. Calcium phosphates based ceramic are preferred as bone grafts in hard tissue engineering because of their chemical compositions are similar to the composition of human bone, superior bioresorbable and bioactivity. In this study, β-tricalcium phosphate (β-TCP) ceramic was synthesized by using sol-gel method. Phosphorous pentoxide (P2O5) and calcium nitrate tetrahydrate (Ca(NO3)2.4H2O) were used as calcium and phosphate precursors. The effects of calcination temperature on the synthesis powder were studied using the XRD, SEM-EDS and FTIR techniques. It was found that calcination temperature greatly influence the purity of the synthesized powders. The β-TCP was the dominant phase with the formation of α-TCP at calcination temperature from 600 to 800°C. Pure β-TCP was obtained at calcination of 900°C. As the temperature increased to 1000°C, the β-TCP was decomposed to for calcium phosphate oxide (CPO). The sol-gel method has some advantages over other methods, mainly its simplicity and ability to produce pure β-TCP at lower calcination temperature.
    Matched MeSH terms: Ceramics
  15. Toibah AR, Sopyan I, Mel M
    Med J Malaysia, 2008 Jul;63 Suppl A:83-4.
    PMID: 19024995
    The incorporation of magnesium ions into the calcium phosphate structure is of great interest for the development of artificial bone implants. This paper investigates the preparation of magnesium-doped biphasic calcium phosphate (Mg-BCP) via sol gel method at various concentrations of added Mg. The effect of calcinations temperature (ranging from 500 degrees C to 900 degrees C) and concentrations of Mg incorporated into BCP has been studied by the aid of XRD, TGA and infrared spectroscopy (IR) in transmittance mode analysis. The study indicated that the powder was pure BCP and Mg-BCP with 100% purity and high crystallinity. The results also indicated that beta-tricalcium phosphate (beta-TCP) phase can be observed when the powder was calcined at 800 degrees C and above.
    Matched MeSH terms: Ceramics/chemistry
  16. Tripathy A, Pramanik S, Manna A, Shah NF, Shasmin HN, Radzi Z, et al.
    Sensors (Basel), 2016;16(3):292.
    PMID: 26927116 DOI: 10.3390/s16030292
    Armalcolite, a rare ceramic mineral and normally found in the lunar earth, was synthesized by solid-state step-sintering. The in situ phase-changed novel ceramic nanocrystals of Ca-Mg-Ti-Fe based oxide (CMTFOx), their chemical reactions and bonding with polydimethylsiloxane (PDMS) were determined by X-ray diffraction, infrared spectroscopy, and microscopy. Water absorption of all the CMTFOx was high. The lower dielectric loss tangent value (0.155 at 1 MHz) was obtained for the ceramic sintered at 1050 °C (S1050) and it became lowest for the S1050/PDMS nanocomposite (0.002 at 1 MHz) film, which was made by spin coating at 3000 rpm. The excellent flexibility (static modulus ≈ 0.27 MPa and elongation > 90%), viscoelastic property (tanδ = E″/E': 0.225) and glass transition temperature (Tg: -58.5 °C) were obtained for S1050/PDMS film. Parallel-plate capacitive and flexible resistive humidity sensors have been developed successfully. The best sensing performance of the present S1050 (3000%) and its flexible S1050/PDMS composite film (306%) based humidity sensors was found to be at 100 Hz, better than conventional materials.
    Matched MeSH terms: Ceramics
  17. Shaifudin MS, Ghazali MSM, Kamaruzzaman WMIWM, Wan Abdullah WR, Kassim S, Ismail NQA, et al.
    Materials (Basel), 2021 Feb 03;14(4).
    PMID: 33546094 DOI: 10.3390/ma14040702
    This paper investigated the effects of Pr6O11 and Co3O4 on the electrical properties of ZnO-BaTiO3 varistor ceramics. The Pr6O11 doping has a notable influence on the characteristics of the nonlinear coefficient, varistor voltage, and leakage current where the values varied from 2.29 to 2.69, 12.36 to 68.36 V/mm and 599.33 to 548.16 µA/cm2, respectively. The nonlinear varistor coefficient of 5.50 to 7.15 and the varistor voltage of 7.38 to 8.10 V/mm was also influenced by the use of Co3O4 as a dopant. When the amount of Co3O4 was above 0.5 wt.%, the leakage current increased from 202.41 to 302.71 μA/cm2. The varistor ceramics with 1.5 wt.% Pr6O11 shows good nonlinear electrical performance at higher breakdown voltage and reduced the leakage current of the ceramic materials. Besides, the varistor sample that was doped with 0.5 wt.% Co3O4 was able to enhance the nonlinear electrical properties at low breakdown voltage with a smaller value of leakage current.
    Matched MeSH terms: Ceramics
  18. Anuar MF, Fen YW, Azizan MZ, Rahmat F, Mohd Zaid MH, Khaidir REM, et al.
    Materials (Basel), 2021 Feb 28;14(5).
    PMID: 33670923 DOI: 10.3390/ma14051141
    Arecanut husk (AH) was selected as a material for silica replacement in the synthesis process of glass-ceramics zinc silicate and also the fact that it has no traditional use and often being dumped and results in environmental issues. The process of pyrolysis was carried out at temperature 700 °C and above based on thermogravimetric analysis to produce arecanut husk ash (AHA). The average purity of the silica content in AHA ranged from 29.17% to 45.43%. Furthermore, zinc oxide was introduced to AHA and zinc silicate started to form at sintering temperature 700 °C and showed increased diffraction intensity upon higher sintering temperature of 600 °C to 1000 °C based on X-ray diffraction (XRD) analysis. The grain sizes of the zinc silicate increased from 1011 nm to 3518 nm based on the morphological studies carried out by field emission scanning electron microscopy (FESEM). In addition, the optical band gap of the sample was measured to be in the range from 2.410 eV to 2.697 eV after sintering temperature. From the data, it is believed that a cleaner production of low-cost zinc silicate can be achieved by using arecanut husk and have the potential to be used as phosphors materials.
    Matched MeSH terms: Ceramics
  19. Dewo P, Sharma PK, van der Tas HF, van der Houwen EB, Timmer M, Magetsari R, et al.
    Med J Malaysia, 2008 Jul;63 Suppl A:21-2.
    PMID: 19024964
    The enormous need of orthopaedic (surgical) implants such as osteosynthesis plates is difficult to be fulfilled in developing countries commonly rely on imported ones. One of the alternatives is utilization of local resources, but only after they have been proven safe to use, to overcome this problem. Surface properties are some of the determining factors of safety for those implants. We have succeeded in developing prototype of osteosynthesis plate and the results indicate that Indonesian-made plates need improvement with regards to the surface quality of physical characterization.
    Matched MeSH terms: Ceramics
  20. Fazan F, Besar I, Osman A, Samsudin AR, Khalid KA
    Med J Malaysia, 2008 Jul;63 Suppl A:49-50.
    PMID: 19024978
    This paper chronicled the development of a locally produced bone graft substitute based on calcium phosphate bioceramics called "GranuMaS--from concepts to clinics, and finally to its successful commercialization all within 5-year duration. It was a Prioritized Research (PR) collaborative project of 5 institutions namely SIRIM, ANM, USM, UKM and IIUM, funded by MOSTI to the amount of approximately RM2.5 millions under RM8. This paper also highlighted the requirements needed in terms of technical expertise/manpower, facilities and infrastructure, and government/institutional supports, as well as the challenge faced in developing and commercializing such product.
    Matched MeSH terms: Ceramics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links