Displaying publications 1 - 20 of 154 in total

Abstract:
Sort:
  1. Manickam B, Sreedharan R, Elumalai M
    Curr Drug Deliv, 2014;11(1):139-45.
    PMID: 24041312
    One of the popular approaches in controlling drug delivery from the polymeric carriers is suitably achieved by the inclusion of crosslinking agents into the formulations at different concentrations. Nevertheless, addition of the chemical crosslinkers such as glutaraldehyde, formaldehyde etc, used in the drug delivery systems causes very serious cytotoxic reactions. These chemical crosslinking agents did not offer any significant advantageous effects when compared to the natural crosslinking agents for instance genipin, which is quite less toxic, biocompatible and offers very stable crosslinked products. Based on the earlier reports the safety of this particular natural crosslinker is very well established, since it has been widely used as a Chinese traditional medicine for long-time, isolated from fruits of the plant Gardenia jasminoides Ellis. This concise article largely portrayed the value of this unique natural crosslinker, utilized in controlling the drug delivery from the various formulations.
    Matched MeSH terms: Chemistry, Pharmaceutical
  2. Mollataghi A, Hadi AH, Awang K, Mohamad J, Litaudon M, Mukhtar MR
    Molecules, 2011 Aug 04;16(8):6582-90.
    PMID: 21818061 DOI: 10.3390/molecules16086582
    A new neolignan, 3,4-dimethoxy-3',4'-methylenedioxy-2,9-epoxy-6,7-cyclo-1,8-neolign-11-en-5(5H)-one, which has been named (+)-kunstlerone (1), together with six known alkaloids: (+)-norboldine (2), (+)-N-methylisococlaurine (3), (+)-cassythicine (4), (+)-laurotetanine (5), (+)-boldine (6) and (-)-pallidine (7), were isolated from the leaves of Beilschmiedia kunstleri. The structures were established through various spectroscopic methods notably 1D- and 2D-NMR, UV, IR and LCMS-IT-TOF. (+)- Kunstlerone (1) showed a strong antioxidant activity, with an SC(50) of 20.0 µg/mL.
    Matched MeSH terms: Chemistry, Pharmaceutical/methods*
  3. Lim FP, Dolzhenko AV
    Eur J Med Chem, 2014 Oct 6;85:371-90.
    PMID: 25105925 DOI: 10.1016/j.ejmech.2014.07.112
    Purines can be considered as the most ubiquitous and functional N-heterocyclic compounds in nature. Structural modifications of natural purines, particularly using isosteric ring systems, have been in the focus of many drug discovery programs. Fusion of 1,3,5-triazine ring with pyrrole, pyrazole, imidazole, 1,2,3-triazole or 1,2,4-triazole results in seven bicyclic heterocyclic systems isosteric to purine. Application of the isosterism concept for the development of new compounds with therapeutic potential in areas involving purinergic regulation or purine metabolism led to significant advances in medicinal chemistry of the azolo[1,3,5]triazines. These 1,3,5-triazine-based purine-like scaffolds significantly increase level of molecular diversity and allow covering chemical space in the important areas of medicinal chemistry. Some of these azolo[1,3,5]triazine systems have become privileged scaffolds in the development of inhibitors of various kinases, phosphodiesterase, xanthine oxidase, and thymidine phosphorylase, antagonists of adenosine and corticotropin-releasing hormone receptors, anticancer and antiviral agents.
    Matched MeSH terms: Chemistry, Pharmaceutical/methods*
  4. Vallavan V, Krishnasamy G, Zin NM, Abdul Latif M
    Molecules, 2020 Dec 11;25(24).
    PMID: 33322256 DOI: 10.3390/molecules25245848
    Fungi are a rich source of secondary metabolites with several pharmacological activities such as antifungal, antioxidant, antibacterial and anticancer to name a few. Due to the large number of diverse structured chemical compounds they produce, fungi from the phyla Ascomycota, Basidiomycota and Muccoromycota have been intensively studied for isolation of bioactive compounds. Basidiomycetes-derived secondary metabolites are known as a promising source of antibacterial compounds with activity against Gram-positive bacteria. The continued emergence of antimicrobial resistance (AMR) poses a major challenge to patient health as it leads to higher morbidity and mortality, higher hospital-stay duration and substantial economic burden in global healthcare sector. One of the key culprits for AMR crisis is Staphylococcus aureus causing community-acquired infections as the pathogen develops resistance towards multiple antibiotics. The recent emergence of community strains of S. aureus harbouring methicillin-resistant (MRSA), vancomycin-intermediate (VISA) and vancomycin-resistant (VRSA) genes associated with increased virulence is challenging. Despite the few significant developments in antibiotic research, successful MRSA therapeutic options are still needed to reduce the use of scanty and expensive second-line treatments. This paper provides an overview of findings from various studies on antibacterial secondary metabolites from basidiomycetes, with a special focus on antistaphylococcal activity.
    Matched MeSH terms: Chemistry, Pharmaceutical/methods
  5. Chik Z, Basu RC, Pendek R, Lee TC, Mohamed Z
    Clin Ther, 2010 Sep;32(10):1822-31.
    PMID: 21194606 DOI: 10.1016/j.clinthera.2010.09.006
    Rifampicin is a semisynthetic antibiotic derivative of rifamycin used worldwide for the treatment of various forms of tuberculosis.
    Matched MeSH terms: Chemistry, Pharmaceutical
  6. Noordin MI, Chung LY
    Drug Dev Ind Pharm, 2004;30(9):925-30.
    PMID: 15554216
    This study adopts Differential Scanning Calorimetry (DSC) to analyze the thermal properties of samples (2.5-4.0 mg) from the tip, middle, and base sections of individual paracetamol suppositories, which were sampled carefully using a stainless steel scalpel. The contents of paracetamol present in the samples obtained from these sections were determined from the enthalpies of fusion of paracetamol and expressed as % w/w paracetamol to allow comparison of the amount of paracetamol found in each section. The tip, middle, and base sections contained 10.1+/-0.2%, 10.1+/-0.2%, and 10.3+/-0.2% w/w paracetamol, and are statistically similar (One-way anova; p>0.05). This indicates that the preparation technique adopted produces high quality suppositories in terms of content uniformity. The contents of paracetamol in the 120-mg paracetamol suppositories determined by DSC and UV spectrophotometry were statistically equivalent (Students's t-test; p>0.05), 120.8+/-2.6 mg and 120.8+/-1.5 mg, respectively, making DSC a clear alternative method for the measurement of content of drug in suppositories. The main advantages of the method are that samples of only 2.5-4.0 mg are required and the procedure does not require an extraction process, which allows for the analysis to be completed rapidly. In addition, it is highly sensitive and reproducible, with the lower detection limit at 4.0% w/w paracetamol, which is about 2.5 times lower than the content of paracetamol (10% w/w) present in our 120-mg paracetamol suppositories and commercial paracetamol suppositories, which contained about 125 mg paracetamol. Therefore, this method is particularly suited for determination of content uniformity in individual suppositories in quality control (QC) and in process quality control (PQC).
    Matched MeSH terms: Chemistry, Pharmaceutical
  7. Abeer MM, Mohd Amin MC, Martin C
    J Pharm Pharmacol, 2014 Aug;66(8):1047-61.
    PMID: 24628270 DOI: 10.1111/jphp.12234
    The field of pharmaceutical technology is expanding rapidly because of the increasing number of drug delivery options. Successful drug delivery is influenced by multiple factors, one of which is the appropriate identification of materials for research and engineering of new drug delivery systems. Bacterial cellulose (BC) is one such biopolymer that fulfils the criteria for consideration as a drug delivery material.
    Matched MeSH terms: Chemistry, Pharmaceutical/methods
  8. Al-Japairai K, Hamed Almurisi S, Almonem Doolaanea A, Mahmood S, Alheibshy F, Alobaida A, et al.
    Int J Pharm, 2023 Feb 05;632:122571.
    PMID: 36587776 DOI: 10.1016/j.ijpharm.2022.122571
    Taste refers to those sensations perceived through taste buds on the tongue and oral cavity. The unpleasant taste of drugs leads to the refusal of taking the medicine in the paediatric population. It is widely known that a pharmaceutical product's general acceptability is the result of numerous contributing components such as swallowability, palatability (taste, flavour, texture, and mouthfeel), appearance, ease of administration, and patient characteristics. Multiparticulate as a dosage form is a platform technology for overcoming paediatrics' incapacity to swallow monolithic dosage forms, masking many medications' inherent nasty taste, and overcoming the obstacles of manufacturing a commercially taste masked dosage form. This review will discuss the considerations that must be taken into account to prepare taste masked multiparticulate dosage forms in the best way for paediatric use.
    Matched MeSH terms: Chemistry, Pharmaceutical
  9. Ashraf Ali M, Ismail R, Choon TS, Kumar RS, Osman H, Arumugam N, et al.
    Bioorg Med Chem Lett, 2012 Jan 1;22(1):508-11.
    PMID: 22142546 DOI: 10.1016/j.bmcl.2011.10.087
    Pyrrolothiazolyloxindole analogues share vital pharmacological properties, considered useful in Alzheimer's disease (AD). The aim of this study was synthesis and evaluate pyralothiazolyloxindole analogues if possess acetyl cholinesterase (AChE) inhibitory activity. The easily accessible one-pot synthesis of these compounds resulted to be significantly less difficult and expensive than that of donepezil. Several compounds possess anti-cholinesterase activity in the order of micro and sub-micromolar. Particularly, compound was the most potent inhibitors of the series against acetyl cholinesterase enzyme with IC(50) 0.11μmol/L.
    Matched MeSH terms: Chemistry, Pharmaceutical/methods
  10. Rahim H, Sadiq A, Khan S, Khan MA, Shah SMH, Hussain Z, et al.
    Drug Des Devel Ther, 2017;11:2443-2452.
    PMID: 28860715 DOI: 10.2147/DDDT.S140626
    This study was aimed to enhance the dissolution rate, oral bioavailability and analgesic potential of the aceclofenac (AC) in the form of nanosuspension using cost-effective simple precipitation-ultrasonication approach. The nanocrystals were produced using the optimum conditions investigated for AC. The minimum particle size (PS) and polydispersity index was found to be 112±2.01 nm and 0.165, respectively, using hydroxypropyl methylcellulose (1%, w/w), polyvinylpyrrolidone K30 (1%, w/w) and sodium lauryl sulfate (0.12%, w/w). The characterization of AC was performed using zeta sizer, scanning electron microscopy, transmission electron microscopy, powder X-ray diffraction and differential scanning calorimetry. The saturation solubility of the AC nanocrystals was substantially increased 2.6- and 4.5-fold compared to its unprocessed active pharmaceutical ingredient in stabilizer solution and unprocessed drug. Similarly, the dissolution rate of the AC nanocrystals was substantially enhanced compared to its other counterpart. The results showed that >88% of AC nanocrystals were dissolved in first 10 min compared to unprocessed AC (8.38%), microsuspension (66.65%) and its marketed tablets (17.65%). The in vivo studies of the produced stabilized nanosuspension demonstrated that the Cmax were 4.98- and 2.80-fold while area under curve from time of administration to 24 h (AUC0→24 h) were found 3.88- and 2.10-fold greater when compared with unprocessed drug and its marketed formulation, respectively. The improved antinociceptive activity of AC nanocrystals was shown at much lower doses as compared to unprocessed drug, which is purely because of nanonization which may be attributed to improved solubility and dissolution rate of AC, ultimately resulting in its faster rate of absorption.
    Matched MeSH terms: Chemistry, Pharmaceutical/methods*
  11. Soo HL, Quah SY, Sulaiman I, Sagineedu SR, Lim JCW, Stanslas J
    Drug Discov Today, 2019 09;24(9):1890-1898.
    PMID: 31154065 DOI: 10.1016/j.drudis.2019.05.017
    Andrographolide (AGP), a naturally occurring bioactive compound, has been investigated as a lead compound in cancer drug development. Its multidimensional therapeutic effects have raised interest among medicinal chemists, which has led to extensive structural modification of the compound, resulting in analogues with improved pharmacological and pharmaceutical properties. Nevertheless, the analogues with the improved properties need to be rigorously studied to identify drug-like lead compounds. We scrutinised articles published from 2012 to 2018, to objectively provide opinions on the mechanisms of action of AGP and its analogues, as well as their potential as viable anticancer drugs. Preclinical and clinical data, along with the extensive medicinal chemistry efforts, indicate the compounds are potential anticancer agents with specific value in treating recalcitrant cancers such as pancreatic and lung cancers.
    Matched MeSH terms: Chemistry, Pharmaceutical
  12. Fung WY, Yuen KH, Liong MT
    J Agric Food Chem, 2011 Aug 10;59(15):8140-7.
    PMID: 21711050 DOI: 10.1021/jf2009342
    This study explored the potential of soluble dietary fiber (SDF) from agrowastes, okara (soybean solid waste), oil palm trunk (OPT), and oil palm frond (OPF) obtained via alkali treatment, in the nanoencapsulation of Lactobacillus acidophilus . SDF solutions were amended with 8% poly(vinyl alcohol) to produce nanofibers using electrospinning technology. The spinning solution made from okara had a higher pH value at 5.39 ± 0.01 and a higher viscosity at 578.00 ± 11.02 mPa·s (P < 0.05), which resulted in finer fibers. FTIR spectra of nanofibers showed the presence of hemicellulose material in the SDF. Thermal behavior of nanofibers suggested possible thermal protection of probiotics in heat-processed foods. L. acidophilus was incorporated into the spinning solution to produce nanofiber-encapsulated probiotic, measuring 229-703 nm, visible under fluorescence microscopy. Viability studies showed good bacterial survivability of 78.6-90% under electrospinning conditions and retained viability at refrigeration temperature during the 21 day storage study.
    Matched MeSH terms: Chemistry, Pharmaceutical
  13. Wong TW
    J Pharm Pharmacol, 2011 Dec;63(12):1497-512.
    PMID: 22060280 DOI: 10.1111/j.2042-7158.2011.01347.x
    Use of alginate graft copolymers in oral drug delivery reduces dosage form manufacture complexity with reference to mixing or coating processes. It is deemed to give constant or approximately steady weight ratio of alginate to covalently attached co-excipient in copolymers, thereby leading to controllable matrix processing and drug release. This review describes various grafting approaches and their outcome on oral drug release behaviour of alginate graft copolymeric matrices. It examines drug release modulation mechanism of alginate graft copolymers against that of co-excipients in non-grafted formulations.
    Matched MeSH terms: Chemistry, Pharmaceutical
  14. Hasnain MS, Nayak AK, Singh M, Tabish M, Ansari MT, Ara TJ
    Int J Biol Macromol, 2016 Feb;83:71-7.
    PMID: 26608007 DOI: 10.1016/j.ijbiomac.2015.11.044
    Alginate-based bipolymeric-nanobioceramic composite matrices for sustained drug release were developed through incorporation of nano-hydroxyapatite [nHAp] powders within ionotropically-gelled calcium ion-induced alginate-poly (vinyl pyrrolidone) blends polymeric systems. nHAp powders were synthesized by precipitation technique using calcium hydroxide [Ca(OH)2] and orthophosphoric acid [H3PO4] as raw materials. The average particle size of these was synthesized. nHAp powders was found as 19.04 nm and used to prepare nHAp-alginate-PVP beads containing DS. These beads exhibited drug entrapment efficiency (%) of 65.82±1.88 to 94.45±3.72% and average bead sizes of 0.98±0.07 to 1.23±0.15 mm. These beads were characterized by scanning electron microscopy (SEM) and Fourier transform-infra red (FTIR) spectroscopy analyses. Various nHAp-alginate-PVP beads containing DS exhibited prolonged sustained drug release and followed the Koresmeyer-Peppas model of drug release (R2=0.9908-0.9978) with non-Fickian release (anomalous transport) mechanism (n=0.73-0.84) for drug release over 8 h.
    Matched MeSH terms: Chemistry, Pharmaceutical/methods
  15. Kam TS, Lim KH
    Alkaloids Chem Biol, 2008;66:1-111.
    PMID: 19025097
    Matched MeSH terms: Chemistry, Pharmaceutical/methods
  16. Singh I, Nair RS, Gan S, Cheong V, Morris A
    Pharm Dev Technol, 2019 Apr;24(4):448-454.
    PMID: 30084268 DOI: 10.1080/10837450.2018.1509347
    The drawbacks associated with chemical skin permeation enhancers such as skin irritation and toxicity necessitated the research to focus on potential permeation enhancers with a perceived lower toxicity. Crude palm oil (CPO) is obtained by direct compression of the mesocarp of the fruit of the oil palm belonging to the genus Elaeis. In this research, CPO and tocotrienol-rich fraction (TRF) of palm oil were evaluated for the first time as skin permeation enhancers using full-thickness human skin. The in vitro permeation experiments were conducted using excised human skin mounted in static upright 'Franz-type' diffusion cells. The drugs selected to evaluate the enhancing effects of these palm oil derivatives were 5-fluorouracil, lidocaine and ibuprofen: compounds covering a wide range of Log p values. It was demonstrated that CPO and TRF were capable of enhancing the percutaneous permeation of drugs across full-thickness human skin in vitro. Both TRF and CPO were shown to significantly enhance the permeation of ibuprofen with flux values of 30.6 µg/cm2 h and 23.0 µg/cm2 h respectively, compared to the control with a flux of 16.2 µg/cm2 h. The outcome of this research opens further scope for investigation on the transdermal penetration enhancement activity of pure compounds derived from palm oil.
    Matched MeSH terms: Chemistry, Pharmaceutical/methods*
  17. Tang SY, Sivakumar M, Ng AM, Shridharan P
    Int J Pharm, 2012 Jul 1;430(1-2):299-306.
    PMID: 22503988 DOI: 10.1016/j.ijpharm.2012.03.055
    The present study investigated the anti-inflammatory and analgesic activities of novel aspirin oil-in-water (O/W) nanoemulsion and water-in-oil-in-water (W/O/W) nano multiple emulsion formulations generated using ultrasound cavitation techniques. The anti-inflammatory activities of nanoemulsion and nano multiple emulsion were determined using the λ-carrageenan-induced paw edema model. The analgesic activities of both nanoformulations were determined using acetic acid-induced writhing response and hot plate assay. For comparison, the effect of pretreatment with blank nanoemulsion and reference aspirin suspension were also studied for their anti-inflammatory and antinociceptive activities. The results showed that oral administration of nanoemulsion and nano multiple emulsion containing aspirin (60 mg/kg) significantly reduced paw edema induced by λ-carrageenan injection. Both nanoformulations decreased the number of abdominal constriction in acetic acid-induced writhing model. Pretreatment with nanoformulations led to a significant increase in reaction time in hot plate assay. Nanoemulsion demonstrated an enhanced anti-inflammatory and analgesic effects compared to reference suspension while nano multiple emulsion exhibited a mild inhibitory effects in the three experimental animal model tests. The results obtained for nano multiple emulsion were relatively lower than reference. However, administration of blank nanoemulsion did not alter the nociceptive response significantly though it showed slight anti-inflammatory effect. These experimental studies suggest that nanoemulsion and nano multiple emulsion produced a pronounced anti-inflammatory and analgesic effects in rats and may be candidates as new nanocarriers for pharmacological NSAIDs in the treatment of inflammatory disorders and alleviating pains.
    Matched MeSH terms: Chemistry, Pharmaceutical
  18. Peh KK, Wong CF
    Drug Dev Ind Pharm, 2000 Jul;26(7):723-30.
    PMID: 10872090
    Controlled-release grade hydroxypropylmethylcellulose (HPMC) or xanthan gum (XG) and microcrystalline cellulose (MCC) were employed to prepare controlled-release diltiazem hydrochloride tablets. The similarity factor f2 was used for dissolution profile comparison using Herbesser 90 SR as a reference product. Drug release could be sustained in a predictable manner by modifying the content of HPMC or XG. Moreover, the drug release profiles of tablets prepared using these matrix materials were not affected by pH and agitation rate. The f2 values showed that only one batch of tablets (of diltiazem HCl, HPMC or XG, and MCC in proportions of 3.0:3.0:4.0) was considered similar to that of the reference product, with values above 50. The unbiased similarity factor f2* values were not much different from the f2 values, ascribing to a small dissolution variance of the test and reference products. The amount of HPMC or XG incorporated to produce tablets with the desired dissolution profile could be determined from the curves of f2 versus polymer content. Hence, the f2 values can be applied as screening and optimization tools during development of controlled-release preparations.
    Matched MeSH terms: Chemistry, Pharmaceutical/methods*
  19. Yew Beng Kang, Pichika R Mallikarjuna, Davamani A Fabian, Adinarayana Gorajana, Chooi Ling Lim, Eng Lai Tan
    MyJurnal
    Important bioactive molecules are molecules that are pharmacologically active derived from natural sources and through chemical synthesis. Over the years many of such molecules have been discovered through bioprospective endeavours. The discovery of taxol from the pacific yew tree bark that has the ability in stabilising cellular microtubules represents one of the hallmarks of success of such endeavours. In recent years, the discovery process has been aided by the rapid development
    of techniques and technologies in chemistry and biotechnology. The progress in advanced genetics and computational biology has also transformed the way hypotheses are formulated as well as the strategies for drug discovery. Of equal importance is the use of advanced drug delivery vehicles in enhancing the efficacy and bioavailability of bioactive molecules. The availability of suitable animal models for testing and validation is yet another major determinant in increasing the prospect for
    clinical trials of bioactive molecules.
    Matched MeSH terms: Chemistry, Pharmaceutical
  20. Eng-Chong T, Yean-Kee L, Chin-Fei C, Choon-Han H, Sher-Ming W, Li-Ping CT, et al.
    PMID: 23243448 DOI: 10.1155/2012/473637
    Boesenbergia rotunda is a herb from the Boesenbergia genera under the Zingiberaceae family. B. rotunda is widely found in Asian countries where it is commonly used as a food ingredient and in ethnomedicinal preparations. The popularity of its ethnomedicinal usage has drawn the attention of scientists worldwide to further investigate its medicinal properties. Advancement in drug design and discovery research has led to the development of synthetic drugs from B. rotunda metabolites via bioinformatics and medicinal chemistry studies. Furthermore, with the advent of genomics, transcriptomics, proteomics, and metabolomics, new insights on the biosynthetic pathways of B. rotunda metabolites can be elucidated, enabling researchers to predict the potential bioactive compounds responsible for the medicinal properties of the plant. The vast biological activities exhibited by the compounds obtained from B. rotunda warrant further investigation through studies such as drug discovery, polypharmacology, and drug delivery using nanotechnology.
    Matched MeSH terms: Chemistry, Pharmaceutical
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links