Displaying publications 1 - 20 of 62 in total

Abstract:
Sort:
  1. Abdul-Hamid NA, Abas F, Ismail IS, Shaari K, Lajis NH
    J Food Sci, 2015 Nov;80(11):H2603-11.
    PMID: 26457883 DOI: 10.1111/1750-3841.13084
    This study aimed to examine the variation in the metabolite profiles and nitric oxide (NO) inhibitory activity of Ajwa dates that were subjected to 2 drying treatments and different extraction solvents. (1)H NMR coupled with multivariate data analysis was employed. A Griess assay was used to determine the inhibition of the production of NO in RAW 264.7 cells treated with LPS and interferon-γ. The oven dried (OD) samples demonstrated the absence of asparagine and ascorbic acid as compared to the freeze dried (FD) dates. The principal component analysis showed distinct clusters between the OD and FD dates by the second principal component. In respect of extraction solvents, chloroform extracts can be distinguished by the absence of arginine, glycine and asparagine compared to the methanol and 50% methanol extracts. The chloroform extracts can be clearly distinguished from the methanol and 50% methanol extracts by first principal component. Meanwhile, the loading score plot of partial least squares analysis suggested that beta glucose, alpha glucose, choline, ascorbic acid and glycine were among the metabolites that were contributing to higher biological activity displayed by FD and methanol extracts of Ajwa. The results highlight an alternative method of metabolomics approach for determination of the metabolites that contribute to NO inhibitory activity.
    Matched MeSH terms: Choline
  2. Abedi-Firouzjah R, Rostamzadeh A, Banaei A, Shafiee M, Moghaddam ZM, Vafapour H
    Malays J Med Sci, 2020 Feb;27(1):78-86.
    PMID: 32158347 DOI: 10.21315/mjms2020.27.1.8
    Introduction: Idiopathic generalised epilepsy (IGE) refers to a group of epilepsies resulting from the activation of neurons in the whole brain. This study aimed to evaluate the metabolite changes in thalamus as diagnostic biomarkers in IGE patients compared to healthy individuals using magnetic resonance spectroscopy (MRS) technique.

    Methods: The MRS was performed on 35 IGE patients (26 women and 11 men) with average age of 32 (ranged from 18 to 43) and 35 healthy individuals (13 women and 22 men) with average age of 31 (ranged from 21 to 50) as the control group. The levels of N-acetylaspartate (NAA), creatine (Cr) and choline (Cho) were measured using MRS. The NAA/Cr and NAA/Cho ratios were calculated for all participants. These values were statistically compared using t-test between the groups.

    Results: The NAA had significant lower values in IGE patients, 9.6 (SD = 0.8) and 9.9 (SD = 0.7) for right and left thalamus, respectively, compared to 10.9 (SD = 0.9) and 10.7 (SD = 0.9) in control group. The Cr values in the left side of thalamus were significantly higher in IGE patients (6.7 [SD = 0.8] versus 5.8 [SD = 0.5]); however, there was no difference in right thalamus. Measurements showed no difference for amounts of Cho between the groups in both sides of thalamus. The NAA/Cr ratio was 1.48 (SD = 0.14) and 1.48 (SD = 0.16) for right and left thalamus, respectively, in IGE patients in comparison with 1.83 (SD = 0.2) and 1.86 (SD = 0.26) in controls. There was no meaningful variation between the NAA/Cho ratio of the right and left thalamus among the groups.

    Conclusion: Thalamic NAA, Cr and NAA/Cr ratio values in IGE patients showed statistical differences compared to healthy individuals. Evaluating metabolites variations in thalamus using MRS is suggested for differentiating IGE patients from healthy individuals.

    Matched MeSH terms: Choline
  3. Abu Bakar MH, Sarmidi MR, Cheng KK, Ali Khan A, Suan CL, Zaman Huri H, et al.
    Mol Biosyst, 2015 Jul;11(7):1742-74.
    PMID: 25919044 DOI: 10.1039/c5mb00158g
    Metabolomic studies on obesity and type 2 diabetes mellitus have led to a number of mechanistic insights into biomarker discovery and comprehension of disease progression at metabolic levels. This article reviews a series of metabolomic studies carried out in previous and recent years on obesity and type 2 diabetes, which have shown potential metabolic biomarkers for further evaluation of the diseases. Literature including journals and books from Web of Science, Pubmed and related databases reporting on the metabolomics in these particular disorders are reviewed. We herein discuss the potential of reported metabolic biomarkers for a novel understanding of disease processes. These biomarkers include fatty acids, TCA cycle intermediates, carbohydrates, amino acids, choline and bile acids. The biological activities and aetiological pathways of metabolites of interest in driving these intricate processes are explained. The data from various publications supported metabolomics as an effective strategy in the identification of novel biomarkers for obesity and type 2 diabetes. Accelerating interest in the perspective of metabolomics to complement other fields in systems biology towards the in-depth understanding of the molecular mechanisms underlying the diseases is also well appreciated. In conclusion, metabolomics can be used as one of the alternative approaches in biomarker discovery and the novel understanding of pathophysiological mechanisms in obesity and type 2 diabetes. It can be foreseen that there will be an increasing research interest to combine metabolomics with other omics platforms towards the establishment of detailed mechanistic evidence associated with the disease processes.
    Matched MeSH terms: Choline/metabolism
  4. Ahmad Saad FF, Zakaria MH, Appanna B
    J Int Med Res, 2018 Aug;46(8):3138-3148.
    PMID: 29781364 DOI: 10.1177/0300060518773019
    Objectives 18F-choline is a useful tracer for detecting tumours with high lipogenesis. Knowledge of its biodistribution pattern is essential to recognise physiological variants. The aim of this study was to describe the physiologic distribution of 18F-choline and pitfalls in patients with breast cancer. Methods Twenty-one consecutive patients with breast cancer (10 premenopausal and 11 postmenopausal women; mean age, 52.82 ± 10.71 years) underwent 18F-choline positron emission tomography (PET)/computed tomography (CT) for staging. Whole-body PET/CT was acquired after 40 minutes of 18F-choline uptake. Acquired PET images were measured semiquantitatively. Results All patients showed pitfalls unrelated to breast cancer. These findings were predominantly caused by physiological glandular uptake in the liver, spleen, pancreas, bowels, axial skeleton (85%-100%), inflammation and benign changes (4.76%), appendicular skeleton (4.76%-19.049%), and site contamination (61.9%). In <1%, a concomitant metastatic neoplasm was found. The breast showed higher physiological uptake in premenopausal compared with postmenopausal woman (18F-choline maximum standardised uptake values [g/dL] of the right breast = 2.04 ± 0.404 vs 1.59 ± 0.97 and left breast = 2.00 ± 0.56 vs 1.93 ± 1.28, respectively). Conclusion 18F-choline uptake was higher in premenopausal women. Physiological 18F-choline uptake was observed in many sites, representing possible pathologies.
    Matched MeSH terms: Choline
  5. Akhtar MT, Samar M, Shami AA, Mumtaz MW, Mukhtar H, Tahir A, et al.
    Molecules, 2021 Jul 30;26(15).
    PMID: 34361796 DOI: 10.3390/molecules26154643
    Meat is a rich source of energy that provides high-value animal protein, fats, vitamins, minerals and trace amounts of carbohydrates. Globally, different types of meats are consumed to fulfill nutritional requirements. However, the increasing burden on the livestock industry has triggered the mixing of high-price meat species with low-quality/-price meat. This work aimed to differentiate different meat samples on the basis of metabolites. The metabolic difference between various meat samples was investigated through Nuclear Magnetic Resonance spectroscopy coupled with multivariate data analysis approaches like principal component analysis (PCA) and orthogonal partial least square-discriminant analysis (OPLS-DA). In total, 37 metabolites were identified in the gluteal muscle tissues of cow, goat, donkey and chicken using 1H-NMR spectroscopy. PCA was found unable to completely differentiate between meat types, whereas OPLS-DA showed an apparent separation and successfully differentiated samples from all four types of meat. Lactate, creatine, choline, acetate, leucine, isoleucine, valine, formate, carnitine, glutamate, 3-hydroxybutyrate and α-mannose were found as the major discriminating metabolites between white (chicken) and red meat (chevon, beef and donkey). However, inosine, lactate, uracil, carnosine, format, pyruvate, carnitine, creatine and acetate were found responsible for differentiating chevon, beef and donkey meat. The relative quantification of differentiating metabolites was performed using one-way ANOVA and Tukey test. Our results showed that NMR-based metabolomics is a powerful tool for the identification of novel signatures (potential biomarkers) to characterize meats from different sources and could potentially be used for quality control purposes in order to differentiate different meat types.
    Matched MeSH terms: Choline/analysis
  6. Ali MK, Moshikur RM, Wakabayashi R, Tahara Y, Moniruzzaman M, Kamiya N, et al.
    J Colloid Interface Sci, 2019 Sep 01;551:72-80.
    PMID: 31075635 DOI: 10.1016/j.jcis.2019.04.095
    Ionic liquid (IL) surfactants have attracted great interest as promising substitutes for conventional surfactants owing to their exceptional and favorable physico-chemical properties. However, most IL surfactants are not eco-friendly and form unstable micelles, even when using a high concentration of the surfactant. In this study, we prepared a series of halogen-free and biocompatible choline-fatty-acid-based ILs with different chain lengths and degrees of saturation, and we then investigated their micellar properties in aqueous solutions. Characterization of the synthesized surface-active ILs (SAILs) was performed by 1H and 13C nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, and elemental analysis. The surface-active properties of the SAILs were investigated by tensiometry, conductometry, and dynamic light scattering measurements. The critical micelle concentration of the SAILs was found to be 2-4 times lower than those of conventional surfactants. The thermodynamic properties of micellization (ΔG0m, ΔH0m, and ΔS0m) indicate that the micellization process of the SAILs is spontaneous, stable, and entropy-driven at room temperature. The cytotoxicity of the SAILs was evaluated using mammalian cell line NIH 3T3. Importantly, [Cho][Ole] shows lower toxicity than the analogous ILs with conventional surfactants. These results clearly suggest that these environmentally friendly SAILs can be used as a potential alternative to conventional ILs for various purposes, including biological applications.
    Matched MeSH terms: Choline/chemistry*
  7. Ayub Khan SM, Few LL, See Too WC
    Mol Med Rep, 2018 May;17(5):7442-7450.
    PMID: 29568919 DOI: 10.3892/mmr.2018.8762
    Choline kinase (CK) is the first enzyme in the CDP-choline pathway for the synthesis of phosphatidylcholine, the most abundant phospholipid in the mammalian cell membrane. This enzyme exists as three isozymes (α1, α2 and β) and the CKα isozyme has been implicated in cancer pathogenesis. Inhibition of CK activity has been proposed for cancer therapies. MicroRNAs (miRNAs/miRs) are non‑coding RNAs that serve important roles in diverse biological pathways and human diseases, including cancer. However, the regulation of CKα gene expression by miRNAs has never been investigated, to the best of the authors' knowledge. In the present study, two miRNA mimics, miR‑876‑5p and miR‑646, were transfected into the HepG2 cell line and the effect of these miRNAs on the levels of CKα mRNA were determined by reverse transcription‑quantitative polymerase chain reaction. Cells transfected with 25 nM miR‑876‑5p for 48 h exhibited significantly lower levels of CKα mRNA. Following optimization, miR‑876‑5p caused four times lower levels of CKα mRNA compared to the negative control. Effects of the miRNAs on HepG2 cell viability and cellular morphology were additionally analyzed using an MTT cell viability assay and scanning electron microscopy, respectively. HepG2 cells that were transfected with the optimum concentration of miR‑876‑5p for the optimum duration exhibited 25% lower viability than negative control and signs of apoptosis in electron micrographs. The results suggested miR‑876‑5p as a potential miRNA modulator of CKα expression in the cells, and may be relevant for the design of more effective anticancer strategy targeting CK.
    Matched MeSH terms: Choline Kinase/genetics*
  8. Badamasi IM, Maulidiani M, Lye MS, Ibrahim N, Shaari K, Stanslas J
    Curr Neuropharmacol, 2022;20(5):965-982.
    PMID: 34126904 DOI: 10.2174/1570159X19666210611095320
    BACKGROUND: The evaluation of metabolites that are directly involved in the physiological process, few steps short of phenotypical manifestation, remains vital for unravelling the biological moieties involved in the development of the (MDD) and in predicting its treatment outcome.

    METHODOLOGY: Eight (8) urine and serum samples each obtained from consenting healthy controls (HC), twenty-five (25) urine and serum samples each from first episode treatment naïve MDD (TNMDD) patients, and twenty (22) urine and serum samples each s from treatment naïve MDD patients 2 weeks after SSRI treatment (TWMDD) were analysed for metabolites using proton nuclear magnetic resonance (1HNMR) spectroscopy. The evaluation of patients' samples was carried out using Partial Least Squares Discriminant Analysis (PLS-DA) and Orthogonal Partial Least Square- Discriminant Analysis (OPLSDA) models.

    RESULTS: In the serum, decreased levels of lactate, glucose, glutamine, creatinine, acetate, valine, alanine, and fatty acid and an increased level of acetone and choline in TNMDD or TWMDD irrespective of whether an OPLSDA or PLSDA evaluation was used were identified. A test for statistical validations of these models was successful.

    CONCLUSION: Only some changes in serum metabolite levels between HC and TNMDD identified in this study have potential values in the diagnosis of MDD. These changes included decreased levels of lactate, glutamine, creatinine, valine, alanine, and fatty acid, as well as an increased level of acetone and choline in TNMDD. The diagnostic value of these changes in metabolites was maintained in samples from TWMDD patients, thus reaffirming the diagnostic nature of these metabolites for MDD.

    Matched MeSH terms: Choline
  9. Chang CC, Few LL, Konrad M, See Too WC
    PLoS One, 2016;11(5):e0154702.
    PMID: 27149373 DOI: 10.1371/journal.pone.0154702
    Choline kinase beta (CKβ) is one of the CK isozymes involved in the biosynthesis of phosphatidylcholine. CKβ is important for normal mitochondrial function and muscle development as the lack of the ckβ gene in human and mice results in the development of muscular dystrophy. In contrast, CKα is implicated in tumorigenesis and has been extensively studied as an anticancer target. Phosphorylation of human CKα was found to regulate the enzyme's activity and its subcellular location. This study provides evidence for CKβ phosphorylation by protein kinase A (PKA). In vitro phosphorylation of CKβ by PKA was first detected by phosphoprotein staining, as well as by in-gel kinase assays. The phosphorylating kinase was identified as PKA by Western blotting. CKβ phosphorylation by MCF-7 cell lysate was inhibited by a PKA-specific inhibitor peptide, and the intracellular phosphorylation of CKβ was shown to be regulated by the level of cyclic adenosine monophosphate (cAMP), a PKA activator. Phosphorylation sites were located on CKβ residues serine-39 and serine-40 as determined by mass spectrometry and site-directed mutagenesis. Phosphorylation increased the catalytic efficiencies for the substrates choline and ATP about 2-fold, without affecting ethanolamine phosphorylation, and the S39D/S40D CKβ phosphorylation mimic behaved kinetically very similar. Remarkably, phosphorylation drastically increased the sensitivity of CKβ to hemicholinium-3 (HC-3) inhibition by about 30-fold. These findings suggest that CKβ, in concert with CKα, and depending on its phosphorylation status, might play a critical role as a druggable target in carcinogenesis.
    Matched MeSH terms: Choline Kinase/antagonists & inhibitors; Choline Kinase/metabolism*
  10. Chang CH, Few LL, Lim BH, Yvonne-Tee GB, Chew AL, See Too WC
    Parasitol Res, 2023 Jul;122(7):1651-1661.
    PMID: 37202563 DOI: 10.1007/s00436-023-07869-5
    The de novo biosynthesis of phosphatidylcholine and phosphatidylethanolamine in Entamoeba histolytica is largely dependent on the CDP-choline and CDP-ethanolamine pathways. Although the first enzymes of these pathways, EhCK1 and EhCK2, have been previously characterized, their enzymatic activity was found to be low and undetectable, respectively. This study aimed to identify the unusual characteristics of these enzymes in this deadly parasite. The discovery that EhCKs prefer Mn2+ over the typical Mg2+ as a metal ion cofactor is intriguing for CK/EK family of enzymes. In the presence of Mn2+, the activity of EhCK1 increased by approximately 108-fold compared to that in Mg2+. Specifically, in Mg2+, EhCK1 exhibited a Vmax and K0.5 of 3.5 ± 0.1 U/mg and 13.9 ± 0.2 mM, respectively. However, in Mn2+, it displayed a Vmax of 149.1 ± 2.5 U/mg and a K0.5 of 9.5 ± 0.1 mM. Moreover, when Mg2+ was present at a constant concentration of 12 mM, the K0.5 value for Mn2+ was ~ 2.4-fold lower than that in Mn2+ alone, without affecting its Vmax. Although the enzyme efficiency of EhCK1 was significantly improved by about 25-fold in Mn2+, it is worth noting that its Km for choline and ATP were higher than in equimolar of Mg2+ in a previous study. In contrast, EhCK2 showed specific activity towards ethanolamine in Mn2+, exhibiting Michaelis-Menten kinetic with ethanolamine (Km = 312 ± 27 µM) and cooperativity with ATP (K0.5 = 2.1 ± 0.2 mM). Additionally, we investigated the effect of metal ions on the substrate recognition of human choline and ethanolamine kinase isoforms. Human choline kinase α2 was found to absolutely require Mg2+, while choline kinase β differentially recognized choline and ethanolamine in Mg2+ and Mn2+, respectively. Finally, mutagenesis studies revealed that EhCK1 Tyr129 was critical for Mn2+ binding, while Lys233 was essential for substrate catalysis but not metal ion binding. Overall, these findings provide insight into the unique characteristics of the EhCKs and highlight the potential for new approaches to treating amoebiasis. Amoebiasis is a challenging disease for clinicians to diagnose and treat, as many patients are asymptomatic. However, by studying the enzymes involved in the CDP-choline and CDP-ethanolamine pathways, which are crucial for de novo biosynthesis of phosphatidylcholine and phosphatidylethanolamine in Entamoeba histolytica, there is great potential to discover new therapeutic approaches to combat this disease.
    Matched MeSH terms: Choline/metabolism; Choline Kinase/metabolism; Cytidine Diphosphate Choline/metabolism; Phosphatidylcholines
  11. Chang CH, See Too WC, Lim BH, Few LL
    Acta Parasitol, 2024 Mar;69(1):426-438.
    PMID: 38172465 DOI: 10.1007/s11686-023-00763-1
    PURPOSE: Entamoeba histolytica is one of the death-causing parasites in the world. Study on its lipid composition revealed that it is predominated by phosphatidylcholine and phosphatidylethanolamine. Further study revealed that its phosphorylated metabolites might be produced by the Kennedy pathway. Here, we would like to report on the characterizations of enzymes from this pathway that would provide information for the design of novel inhibitors against these enzymes in future.

    METHODOLOGY: E. histolytica HM-1:IMSS genomic DNA was isolated and two putative choline/ethanolamine kinase genes (EhCK1 and EhCK2) were cloned and expressed from Escherichia coli BL21 strain. Enzymatic characterizations were further carried out on the purified enzymes.

    RESULTS: EhCK1 and EhCK2 were identified from E. histolytica genome. The deduced amino acid sequences were more identical to its homologues in human (35-48%) than other organisms. The proteins were clustered as ethanolamine kinase in the constructed phylogeny tree. Sequence analysis showed that they possessed all the conserved motifs in choline kinase family: ATP-binding loop, Brenner's phosphotransferase motif, and choline kinase motif. Here, the open reading frames were cloned, expressed, and purified to apparent homogeneity. EhCK1 showed activity with choline but not ethanolamine. The biochemical characterization showed that it had a Vmax of 1.9 ± 0.1 µmol/min/mg. Its Km for choline and ATP was 203 ± 26 µM and 3.1 ± 0.4 mM, respectively. In contrast, EhCK2 enzymatic activity was only detected when Mn2+ was used as the co-factor instead of Mg2+ like other choline/ethanolamine kinases. Highly sensitive and specific antibody against EhCK1 was developed and used to confirm the endogenous EhCK1 expression using immunoblotting.

    CONCLUSIONS: With the understanding of EhC/EK importance in phospholipid metabolism and their unique characteristic, EhC/EK could be a potential target for future anti-amoebiasis study.

    Matched MeSH terms: Choline/metabolism
  12. Elgharbawy AA, Alam MZ, Moniruzzaman M, Kabbashi NA, Jamal P
    3 Biotech, 2018 May;8(5):236.
    PMID: 29744268 DOI: 10.1007/s13205-018-1253-8
    The pretreatment of empty fruit bunch (EFB) was conducted using an integrated system of IL and cellulases (IL-E), with simultaneous fermentation in one vessel. The cellulase mixture (PKC-Cel) was derived from Trichoderma reesei by solid-state fermentation. Choline acetate [Cho]OAc was utilized for the pretreatment due to its biocompatibility and biodegradability. The treated EFB and its hydrolysate were characterized by the Fourier transform infrared spectroscopy, scanning electron microscopy, and chemical analysis. The results showed that there were significant structural changes in EFB after the treatment in IL-E system. The sugar yield after enzymatic hydrolysis by the PKC-Cel was increased from 0.058 g/g of EFB in the crude sample (untreated) to 0.283 and 0.62 ± 06 g/g in IL-E system after 24 and 48 h of treatment, respectively. The EFB hydrolysate showed the eligibility for ethanol production without any supplements where ethanol yield was 0.275 g ethanol/g EFB in the presence of the IL, while lower yield obtained without IL-pretreatment. Moreover, it was demonstrated that furfural and phenolic compounds were not at the level of suppressing the fermentation process.
    Matched MeSH terms: Choline
  13. Gautam A, Paudel YN, Abidin S, Bhandari U
    Hum Exp Toxicol, 2019 Mar;38(3):356-370.
    PMID: 30526076 DOI: 10.1177/0960327118817862
    The current study investigated the role of guggulsterone (GS), a farnesoid X receptor antagonist, in the choline metabolism and its trimethylamine (TMA)/flavin monooxygenases/trimethylamine-N-oxide (TMAO) inhibiting potential in a series of in vitro and in vivo studies as determined by high-performance liquid chromatography (HPLC), mass spectroscopy (MS), and liquid chromatography (LC)-MS techniques. Atherosclerosis (AS) was successfully induced in a group of experimental animals fed with 2% choline diet for 6 weeks. Serum lipid profiles such as total cholesterol, triglycerides, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and very low-density lipoprotein cholesterol were measured. Pro-inflammatory cytokines levels, markers for a hepatic injury, and oxidative stress markers were assessed. Interestingly, GS reduced the level of TMA/TMAO in both in vitro and in vivo studies as demonstrated by the peaks obtained from HPLC, MS, and LC-MS. Furthermore, GS exhibited cardioprotective and antihyperlipidemic effects as evidenced by the attenuation of levels of several serum lipid profiles and different atherogenic risk predictor indexes. GS also prevented hepatic injury by successfully restoring the levels of hepatic injury biomarkers to normal. Similarly, GS inhibited the production of pro-inflammatory cytokines levels, as well as GS, enhanced antioxidant capacity, and reduced lipid peroxidation. Histopathological study of aortic sections demonstrated that GS maintained the normal architecture in AS-induced rats. On the basis of results obtained from current investigation, we suggest that GS might have a great therapeutic potential for the treatment of AS.
    Matched MeSH terms: Choline/pharmacology
  14. Gonawan FN, Bakar PNMA, Kamaruddin AH
    J Oleo Sci, 2021 Oct 05;70(10):1437-1445.
    PMID: 34497176 DOI: 10.5650/jos.ess21010
    The Lipase-catalyzed synthesis of glyceryl monocaffeate (GMC) in choline chloride-urea of natural deep eutectic solvent (NADES) media is reported to provide amphiphilic character to caffeic acid (CA). The modification of CA into GMC could potentially increase its solubility and widen the application of CA's biological activities in water and oil-based systems. The high conversion was achieved when the reaction was carried out with the addition of more than 20 %v/v water, at a high molar ratio of glycerol and 40°C. It was found that the lipase-catalyzed transesterification of ethyl caffeate (EC) and glycerol in choline chloride-urea of DES media obeyed ping-pong bi-bi mechanism with Vmax = 10.9 mmol.min-1, KmEC = 126.5 mmol and KmGly = 1842.7 mmol.
    Matched MeSH terms: Choline/chemistry*
  15. Hassan H, Abu Bakar S, Halim KN, Idris J, Ahmad Saad FF, Nordin AJ
    J Labelled Comp Radiopharm, 2015 Sep-Oct;58(11-12):458-9.
    PMID: 26395258 DOI: 10.1002/jlcr.3347
    (18)F-Fluoromethylcholine ((18)F-FCH) has been suggested as one of the reputable imaging tracers for diagnosis of prostate tumour in PET/CT examination. Nevertheless, it has never been synthesised in Malaysia. We acknowledged the major problem with (18)F-FCH is due to its relatively low radiochemical yield at the end of synthesis (EOS). Therefore, this technical note presents improved (18)F-FCH radiochemical yields after carrying out optimisation on azeotropic drying of non-carrier-added (18)F-Fluorine.
    Matched MeSH terms: Choline
  16. Hassan H, Abu Bakar S, Halim KN, Idris J, Nordin AJ
    Curr Radiopharm, 2016;9(2):128-36.
    PMID: 26013570
    BACKGROUND AND OBJECTIVE: Prostate cancer continues to be the most prevalent cancer in men in Malaysia. As time progresses, the prospect of PET imaging modality in diagnosis of prostate cancer is promising, with on-going improvement on novel tracers. Among all tracers, 18F-Fluorocholine is reported to be a reputable tracer and reliable diagnostic technique for prostate imaging. Nonetheless, only 18F-Fluorodeoxyglucose (18F-FDG) is available and used in most oncology cases in Malaysia. With a small scale GMP-based radiopharmaceuticals laboratory set-up, initial efforts have been taken to put Malaysia on 18F-Fluorocholine map. This article presents a convenient, efficient and reliable method for quality control analysis of 18F-Fluorocholine. Besides, the aim of this research work is to assist local GMP radiopharmaceuticals laboratories and local authority in Malaysia for quality control analysis of 18F-Fluorocholine guideline.

    METHODS: In this study, prior to synthesis, quality control analysis method for 18F-Fluorocholine was developed and validated, by adapting the equipment set-up used in 18F-Fluorodeoxyglucose (18FFDG) routine production. Quality control on the 18F-Fluorocholine was performed by means of pH, radionuclidic identity, radio-high performance liquid chromatography equipped with ultraviolet, radio- thin layer chromatography, gas chromatography and filter integrity test.

    RESULTS: Post-synthesis; the pH of 18F-Fluorocholine was 6.42 ± 0.04, with half-life of 109.5 minutes (n = 12). The radiochemical purity was consistently higher than 99%, both in radio-high performance liquid chromatography equipped with ultraviolet (r-HPLC; SCX column, 0.25 M NaH2PO4: acetonitrile) and radio-thin layer chromatography method (r-TLC). The calculated relative retention time (RRT) in r-HPLC was 1.02, whereas the retention factor (Rf) in r-TLC was 0.64. Potential impurities from 18F-Fluorocholine synthesis such as ethanol, acetonitrile, dimethylethanolamine and dibromomethane were determined in gas chromatography. Using our parameters, (capillary column: DB-200, 30 m x 0.53 mm x 1 um) and oven temperature of 35°C (isothermal), all compounds were well resolved and eluted within 3 minutes. Level of ethanol and acetonitrile in 18F-Fluorocholine were detected below threshold limit; less than 5 mg/ml and 0.41 mg/ml respectively. Meanwhile, dimethylethanolamine and dibromomethane were undetectable.

    CONCLUSION: A convenient, efficient and reliable quality control analysis work-up procedure for 18FFluorocholine has been established and validated to comply all the release criteria. The convenient method of quality control analysis may provide a guideline to local GMP radiopharmaceutical laboratories to start producing 18F-Fluorocholine as a tracer for prostate cancer imaging.

    Matched MeSH terms: Choline/analogs & derivatives*; Choline/chemical synthesis; Choline/chemistry
  17. Hassan H, Bakar SA, Halim KN, Idris J, Saad FF, Nordin AJ
    Curr Radiopharm, 2016;9(2):121-7.
    PMID: 26239237
    BACKGROUND AND OBJECTIVE: 18F-Fluorocholine has been suggested as one of the reputable imaging tracers for diagnosis of prostate tumour in Positron Emission Tomography / Computed Tomography (PET/CT) modality. Nevertheless, it has never been synthesised in Malaysia. We acknowledged that the major problem with 18F-Fluorocholine is due to its relatively low radiochemical yield at the end of synthesis (EOS). Therefore, this article presents improved 18FFluorocholine radiochemical yields after carrying out optimisation on azeotropic drying of 18F-Fluorine.

    METHODS: In the previous study, the azeotropic drying of non-carrier-added (n.c.a) 18F-Fluorine in the reactor was conducted at atmospheric pressure (0 atm) and shorter duration time. In this study, however, the azeotropic drying of non-carried-added (n.c.a) 18FFluorine was made at a high vacuum pressure (- 0.65 to - 0.85 bar) with an additional time of 30 seconds. At the end of the synthesis, the mean radiochemical yield was statistically compared between the two azeotropic drying conditions so as to observe whether the improvement made was significant to the radiochemical yield.

    RESULTS: From the paired sample t-test analysis, the improvement done to the azeotropic drying of non-carrier-added (n.c.a) 18F-Fluorine was statistically significant (p < 0.05). With the improvement made, the 18F-Fluorcholine radiochemical yield was found to have increase by one fold.

    CONCLUSION: Improved 18F-Fluorocholine radiochemical yields were obtained after the improvement had been done to the azeotropic drying of non-carrier-added (n.c.a) 18F-Fluorine. It was also observed that improvement made to the azeotropic drying of non-carrier-added (n.c.a) 18F-Fluorine did not affect the 18F-Fluorocholine quality control analysis.

    Matched MeSH terms: Choline/analogs & derivatives*; Choline/chemical synthesis
  18. Hayyan M, Hashim MA, Hayyan A, Al-Saadi MA, AlNashef IM, Mirghani ME, et al.
    Chemosphere, 2013 Feb;90(7):2193-5.
    PMID: 23200570 DOI: 10.1016/j.chemosphere.2012.11.004
    In continuation of investigation for environmentally benign protocol for new solvents termed deep eutectic solvents (DESs), it is herein reported results concerning the toxicity and cytotoxicity of choline chloride (ChCl) based DESs with four hydrogen bond donors including glycerine, ethylene glycol, triethylene glycol and urea. The toxicity was investigated using two Gram positive bacteria Bacillus subtilis and Staphylococcus aureus, and two Gram negative bacteria Escherichia coli and Pseudomonas aeruginosa. The cytotoxicity effect was tested using the Artemia salina leach. It was found that there was no toxic effect for the tested DESs on all of the studied bacteria confirming their benign effects on these bacteria. Nevertheless, it was found that the cytotoxicity of DESs was much higher than their individual components (e.g. glycerine, ChCl) indicating that their toxicological behavior is different. For our best knowledge this is the first time that toxicity and cytotoxicity of DESs were studied. The toxicity and cytotoxicity of DESs varied depending on the structure of components. Careful usage of the terms non-toxicity and biodegradability must be considered. More investigation on this matter is required.
    Matched MeSH terms: Choline/toxicity*
  19. Ho MC, Wu TY
    Bioresour Technol, 2020 Apr;301:122684.
    PMID: 31954964 DOI: 10.1016/j.biortech.2019.122684
    In this study, a novel Type II deep eutectic solvent (DES) namely, choline chloride:copper(II) chloride dihydrate (ChCl:CuCl2·2H2O) was used to pretreat oil palm fronds (OPFs). The sequential pretreatment with alkaline hydrogen peroxide (0.25 vol%, 90 min) at ambient conditions and a Type II DES (90 °C, 3 h) at a later stage resulted in a delignification of 55.14% with high xylan (80.79%) and arabinan (98.02%) removals. The characterizations of pretreated OPFs confirmed the excellent performance of DES in OPF fractionation. Thus, the application of a Type II DES at ambient pressure and relatively lower temperature was able to improve the lignin and hemicellulose removals from OPFs.
    Matched MeSH terms: Choline*
  20. Inoue T, Kainuma M, Baba K, Oshiro N, Kimura N, Chan EW
    J Intercult Ethnopharmacol, 2017 Jan 3;6(1):121-127.
    PMID: 28163970 DOI: 10.5455/jice.20161229060034
    In this short review, the current knowledge on the botany, ecology, uses, and medicinal properties of the multipurpose Garcinia subelliptica (Fukugi) is updated. As yet, there are no reviews on this indigenous and heritage coastal tree species of the Ryukyu Islands in Japan, which has ethnocultural, ecological, and pharmacological significance. Planted by the Okinawan people some 300 years ago, Fukugi trees serve as windbreaks and accord protection against the destructive typhoons. The species has become a popular ornamental tree, and its bark has been used for dyeing fabrics. It forms part of the food chain for mammals and insects and serves as nesting sites for birds. Endowed with bioactive compounds of benzophenones, xanthones, biflavonoids, and triterpenoids, G. subelliptica possesses anticancer, anti-inflammatory, anti-tyrosinase, trypanocidal, antibacterial, DNA topoisomerase inhibitory, DNA strand scission, choline acetyltransferase enhancing, hypoxia-inducible factor-1 inhibitory, and antiandrogenic activities. Fukugetin and fukugiside are two novel biflavonoids named after the species. The chemical constituents of Fukugi fruits when compared with those of mangosteen yielded interesting contrasts.
    Matched MeSH terms: Choline O-Acetyltransferase
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links