Displaying publications 1 - 20 of 116 in total

Abstract:
Sort:
  1. Yenn TW, Lee CC, Ibrahim D, Zakaria L
    J Microbiol, 2012 Aug;50(4):581-5.
    PMID: 22923105 DOI: 10.1007/s12275-012-2083-8
    This study examined the effect of host extract in the culture medium on anti-candidal activity of Phomopsis sp. ED2, previously isolated from the medicinal herb Orthosiphon stamineus Benth. Interestingly, upon addition of aqueous host extract to the culture medium, the ethyl acetate extract prepared from fermentative broth exhibited moderate anti-candidal activity in a disc diffusion assay. The minimal inhibitory concentration of this extract was 62.5 μg/ml and it only exhibited fungistatic activity against C. albicans. In the time-kill study, a 50% growth reduction of C. albicans was observed at 31.4 h for extract from the culture incorporating host extract. In the bioautography assay, only one single spot (Rf 0.59) developed from the extract exhibited anti-candidal activity. A spot with the a similar Rf was not detected for the crude extract from YES broth without host extract. This indicated that the terpenoid anti-candidal compound was only produced when the host extract was introduced into the medium. The study concluded that the incorporation of aqueous extract of the host plant into the culture medium significantly enhanced the anti-candidal activity of Phomopsis sp. ED2.
    Matched MeSH terms: Culture Media/chemistry*
  2. Husain AR, Hadad Y, Zainal Alam MN
    J Lab Autom, 2016 Oct;21(5):660-70.
    PMID: 26185253 DOI: 10.1177/2211068215594770
    This article presents the development of a low-cost microcontroller-based interface for a microbioreactor operation. An Arduino MEGA 2560 board with 54 digital input/outputs, including 15 pulse-width-modulation outputs, has been chosen to perform the acquisition and control of the microbioreactor. The microbioreactor (volume = 800 µL) was made of poly(dimethylsiloxane) and poly(methylmethacrylate) polymers. The reactor was built to be equipped with sensors and actuators for the control of reactor temperature and the mixing speed. The article discusses the circuit of the microcontroller-based platform, describes the signal conditioning steps, and evaluates the capacity of the proposed low-cost microcontroller-based interface in terms of control accuracy and system responses. It is demonstrated that the proposed microcontroller-based platform is able to operate parallel microbioreactor operation with satisfactory performances. Control accuracy at a deviation less than 5% of the set-point values and responses in the range of few seconds have been recorded.
    Matched MeSH terms: Culture Media/chemistry
  3. Kabeir BM, Abd-Aziz S, Muhammad K, Shuhaimi M, Yazid AM
    Lett Appl Microbiol, 2005;41(2):125-31.
    PMID: 16033508
    To develop medida, a Sudanese fermented thin porridge as a probiotic dietary adjunct with high total solids.
    Matched MeSH terms: Culture Media/chemistry
  4. Kwong PJ, Abdullah RB, Wan Khadijah WE
    Theriogenology, 2012 Sep 1;78(4):921-9.
    PMID: 22704387 DOI: 10.1016/j.theriogenology.2012.04.009
    This study was conducted to evaluate the efficiency of potassium simplex optimization medium with amino acids (KSOMaa) as a basal culture medium for caprine intraspecies somatic cell nuclear transfer (SCNT) and caprine-bovine interspecies somatic cell nuclear transfer (iSCNT) embryos. The effect of increased glucose as an energy substrate for late stage development of cloned caprine embryos in vitro was also evaluated. Enucleated caprine and bovine in vitro matured oocytes at metaphase II were reconstructed with caprine ear skin fibroblast cells for the SCNT and iSCNT studies. The cloned caprine and parthenogenetic embryos were cultured in either KSOMaa with 0.2 mM glucose for 8 days (Treatment 1) or KSOMaa for 2 days followed by KSOMaa with additional glucose at a final concentration of 2.78 mM for the last 6 days (Treatment 2). There were no significant differences in the cleavage rates of SCNT (80.7%) and iSCNT (78.0%) embryos cultured in KSOMaa medium. Both Treatment 1 and Treatment 2 could support in vitro development of SCNT and iSCNT embryos to the blastocyst stage. However, the blastocyst development rate of SCNT embryos was significantly higher (P < 0.05) in Treatment 2 compared to Treatment 1. Increasing glucose for later stage embryo development (8-cell stage onwards) during in vitro culture (IVC) in Treatment 2 also improved both caprine SCNT and iSCNT embryo development to the hatched blastocyst stage. In conclusion, this study shows that cloned caprine embryos derived from SCNT and iSCNT could develop to the blastocyst stage in KSOMaa medium supplemented with additional glucose (2.78 mM, final concentration) and this medium also supported hatching of caprine cloned blastocysts.
    Matched MeSH terms: Culture Media/chemistry
  5. Mohammed JN, Wan Dagang WRZ
    World J Microbiol Biotechnol, 2019 Jul 22;35(8):121.
    PMID: 31332590 DOI: 10.1007/s11274-019-2696-8
    The economics of bioflocculant production is coupled with the use of a low-cost substrate at appropriate culture conditions. The use of a waste substrate for this purpose offers an additional treatment measure to mitigate environmental pollution. We investigated the growth of Aspergillus flavus and its bioflocculant yield using chicken viscera hydrolysate as the sole media. The effects of culture conditions including time, pH, shaker speed, temperature and inoculum size on bioflocculant production were all investigated and optimised through response surface method based on the central component design (CCD) package of Design Expert. Next, the purified bioflocculant was physically and chemically characterised. Under optimised culture conditions (incubation time 72 h, pH 7, shaker speed 150 rpm, temperature 35 °C and inoculum 4%), 6.75 g/L yield of crude bioflocculant was recorded. The bioflocculant activity was mostly distributed in the cell-free supernatant with optimum efficiency of 91.8% at a dose of 4 mL/100 mL Kaolin suspension. The purified bioflocculant was a glycoprotein consisting of 23.46% protein and 74.5% sugar, including 46% neutral sugar and 2.01% uronic acid. The X-ray photoelectron spectroscopy fundamental analysis of the purified bioflocculant indicated that the mass proportion of C, O and N, were 63.46%, 27.87% and 8.86%, respectively. The bioflocculant is mainly composed of carbonyl, amino, hydroxyl, and amide functional groups. This study for the first time indicates a high potential of bioflocculant yield from chicken viscera at the appropriate culture conditions.
    Matched MeSH terms: Culture Media/chemistry*
  6. Abdul Manas NH, Chong LY, Tesfamariam YM, Zulkharnain A, Mahmud H, Abang Mahmod DS, et al.
    J Biotechnol, 2020 Jun 20;317:16-26.
    PMID: 32348830 DOI: 10.1016/j.jbiotec.2020.04.011
    Bacterial pigments are potential substitute of chemical photosensitizer for dye-sensitized solar cell (DSSC) due to its non-toxic property and cost-effective production from microbial fermentation. Serratia nematodiphila YO1 was isolated from waterfall in Malaysia and identified using 16S ribosomal RNA. Characterization of the red pigment produced by the bacteria has confirmed the pigment as prodigiosin. Prodigiosin was produced from the fermentation of the bacteria in the presence of different oil substrates. Palm oil exhibited the best performance of cell growth and equivalent prodigiosin yield compared to olive oil and peanut oil. Prodigiosin produced with palm oil supplementation was 93 mg/l compared to 7.8 mg/l produced without supplementation, which recorded 11.9 times improvement. Specific growth rate of the cells improved 1.4 times when palm oil was supplemented in the medium. The prodigiosin pigment produced showed comparable performance as a DSSC sensitizer by displaying an open circuit voltage of 336.1 mV and a maximum short circuit current of 0.098 mV/cm2. This study stands a novelty in proving that the production of prodigiosin is favorable in the presence of palm oil substrate with high saturated fat content, which has not been studied before. This is also among the first bacterial prodigiosin tested as photosensitizer for DSSC application.
    Matched MeSH terms: Culture Media/chemistry
  7. Omar Zaki SS, Kanesan L, Leong MYD, Vidyadaran S
    Cell Biol Int, 2019 Oct;43(10):1201-1204.
    PMID: 30811086 DOI: 10.1002/cbin.11122
    Our work cautions against the use of serum-supplemented culture media in a transwell migration assay when using chemoattractants other than FBS. At 24 h, a 5% foetal bovine serum (FBS) gradient caused BV2 microglia to migrate toward the lower compartment of the transwell apparatus. Interestingly, FBS-supplemented media in the absence of a gradient also resulted in notable microglia migration. Serum can therefore confound the interpretation of a transwell migration assay when another chemoattractant is used.
    Matched MeSH terms: Culture Media/chemistry
  8. Abu Tawila ZM, Ismail S, Dadrasnia A, Usman MM
    Molecules, 2018 Oct 18;23(10).
    PMID: 30340415 DOI: 10.3390/molecules23102689
    The production, optimization, and characterization of the bioflocculant QZ-7 synthesized by a novel Bacillus salmalaya strain 139SI isolated from a private farm soil in Selangor, Malaysia, are reported. The flocculating activity of bioflocculant QZ-7 present in the selected strain was found to be 83.3%. The optimal culture for flocculant production was achieved after cultivation at 35.5 °C for 72 h at pH 7 ± 0.2, with an inoculum size of 5% (v/v) and sucrose and yeast extract as carbon and nitrogen sources. The maximum flocculating activity was found to be 92.6%. Chemical analysis revealed that the pure bioflocculant consisted of 79.08% carbohydrates and 15.4% proteins. The average molecular weight of the bioflocculant was calculated to be 5.13 × 10⁵ Da. Infrared spectrometric analysis showed the presence of carboxyl (COO-), hydroxyl (-OH), and amino (-NH₂) groups, polysaccharides and proteins. The bioflocculant QZ-7 exhibited a wide pH stability range from 4 to 7, with a flocculation activity of 85% at pH 7 ± 0.2. In addition, QZ-7 was thermally stable and retained more than 80% of its flocculating activity after being heated at 80 °C for 30 min. SEM analysis revealed that QZ-7 exhibited a clear crystalline brick-shaped structure. After treating wastewater, the bioflocculant QZ-7 showed significant flocculation performance with a COD removal efficiency of 93%, whereas a BOD removal efficiency of 92.4% was observed in the B. salmalaya strain 139SI. These values indicate the promising applications of the bioflocculant QZ-7 in wastewater treatment.
    Matched MeSH terms: Culture Media/chemistry
  9. Higuchi A, Kao SH, Ling QD, Chen YM, Li HF, Alarfaj AA, et al.
    Sci Rep, 2015 Dec 14;5:18136.
    PMID: 26656754 DOI: 10.1038/srep18136
    The tentative clinical application of human pluripotent stem cells (hPSCs), such as human embryonic stem cells and human induced pluripotent stem cells, is restricted by the possibility of xenogenic contamination resulting from the use of mouse embryonic fibroblasts (MEFs) as a feeder layer. Therefore, we investigated hPSC cultures on biomaterials with different elasticities that were grafted with different nanosegments. We prepared dishes coated with polyvinylalcohol-co-itaconic acid hydrogels grafted with an oligopeptide derived from vitronectin (KGGPQVTRGDVFTMP) with elasticities ranging from 10.3 to 30.4 kPa storage moduli by controlling the crosslinking time. The hPSCs cultured on the stiffest substrates (30.4 kPa) tended to differentiate after five days of culture, whereas the hPSCs cultured on the optimal elastic substrates (25 kPa) maintained their pluripotency for over 20 passages under xeno-free conditions. These results indicate that cell culture matrices with optimal elasticity can maintain the pluripotency of hPSCs in culture.
    Matched MeSH terms: Culture Media/chemistry
  10. Teoh YP, Don MM, Ujang S
    Biotechnol Prog, 2012 Jan-Feb;28(1):232-41.
    PMID: 21990033 DOI: 10.1002/btpr.714
    Two statistical tools, Plackett-Burman design (PBD) and Box-Behnken design (BBD) were used to optimize the mycelia growth of Schizophyllum commune with different nutrient components. Results showed that 32.92 g/L of biomass were produced using a medium consisting of 18.74 g/L yeast extract, 38.65 g/L glucose, and 0.59 g/L MgSO(4).7H(2)O. The experimental data fitted well with the model predicted values within 0.09 to 0.77% error. The biomass was also tested for antifungal activity against wood degrading fungi of rubberwood. Results showed that the minimum inhibitory concentration (MIC) values for antifungal activity range from 0.16 to 5.00 μg/μL. The GC-MS analysis indicated that this fungus produced several compounds, such as glycerin, 2(3H)-furanone, 5-heptyldihydro-, 4H-pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl-, and triacetin.
    Matched MeSH terms: Culture Media/chemistry*
  11. Othman M, Loh HS, Wiart C, Khoo TJ, Lim KH, Ting KN
    J Microbiol Methods, 2011 Feb;84(2):161-6.
    PMID: 21094190 DOI: 10.1016/j.mimet.2010.11.008
    The search for antimicrobial agents from plants has been a growing interest in the last few decades. However, results generated from many of these studies cannot be directly compared due to the absence of standardization in particular antimicrobial methods employed. The need for established methods with consistent results for the evaluation of antimicrobial activities from plant extracts has been proposed by many researchers. Nevertheless, there are still many studies reported in the literature describing different methodologies. The aim of this study was to find optimal methods to give consistent quantitative antimicrobial results for studying plant extracts. Three different agar-based assays (pour plate disc diffusion (PPDD), streak plate disc diffusion (SPDD) and well-in agar (WA)) and one broth-based (turbidometric (TB)) assay were used in this study. Extracts from two plant species (Duabanga grandiflora and Acalypha wilkesiana) were tested on two bacterial species, namely Escherichia coli and Staphylococcus aureus. Amongst the agar-based assays, PPDD produced the most reproducible results. TB was able to show the inhibitory effects of the test samples on the growth kinetic of the bacteria including plant extracts with low polarity. We propose that both agar- (i.e PPDD) and broth-based assays should be employed when assessing the antimicrobial activity of plant crude extracts.
    Matched MeSH terms: Culture Media/chemistry
  12. Yap LS, Lee WL, Ting ASY
    J Microbiol Methods, 2021 12;191:106358.
    PMID: 34743930 DOI: 10.1016/j.mimet.2021.106358
    L-asparaginase from endophytic Fusarium proliferatum (isolate CCH, GenBank accession no. MK685139) isolated from the medicinal plant Cymbopogon citratus (Lemon grass), was optimized for its L-asparaginase production and its subsequent cytotoxicity towards Jurkat E6 cell line. The following factors were optimized; carbon source and concentration, nitrogen source and concentration, incubation period, temperature, pH and agitation rate. Optimization of L-asparaginase production was performed using One-Factor-At-A-Time (OFAT) and Response surface methodology (RSM) model. The cytotoxicity of the crude enzyme from isolate CCH was tested on leukemic Jurkat E6 cell line. The optimization exercise revealed that glucose concentration, nitrogen source, L-asparagine concentration and temperature influenced the L-asparaginase production of CCH. The optimum condition suggested using OFAT and RSM results were consistent. As such, the recommended conditions were 0.20% of glucose, 0.99% of L-asparagine and 5.34 days incubation at 30.50 °C. The L-asparaginase production of CCH increased from 16.75 ± 0.76 IU/mL to 22.42 ± 0.20 IU/mL after optimization. The cytotoxicity of the crude enzyme on leukemic Jurkat cell line recorded IC50 value at 33.89 ± 2.63% v/v. To conclude, the enzyme extract produced from Fusarium proliferatum under optimized conditions is a potential alternative resource for L-asparaginase.
    Matched MeSH terms: Culture Media/chemistry
  13. Tan LK, Ooi PT, Carniel E, Thong KL
    PLoS One, 2014;9(8):e106329.
    PMID: 25170941 DOI: 10.1371/journal.pone.0106329
    Y. enterocolitica and Y. pseudotuberculosis are important food borne pathogens. However, the presence of competitive microbiota makes the isolation of Y. enterocolitica and Y. pseudotuberculosis from naturally contaminated foods difficult. We attempted to evaluate the performance of a modified Cefsulodin-Irgasan-Novobiocin (CIN) agar in the differentiation of Y. enterocolitica from non-Yersinia species, particularly the natural intestinal microbiota. The modified CIN enabled the growth of Y. enterocolitica colonies with the same efficiency as CIN and Luria-Bertani agar. The detection limits of the modified CIN for Y. enterocolitica in culture medium (10 cfu/ml) and in artificially contaminated pork (10(4) cfu/ml) were also comparable to those of CIN. However, the modified CIN provided a better discrimination of Yersinia colonies from other bacteria exhibiting Yersinia-like colonies on CIN (H2S-producing Citrobacter freundii, C. braakii, Enterobacter cloacae, Aeromonas hydrophila, Providencia rettgeri, and Morganella morganii). The modified CIN exhibited a higher recovery rate of Y. enterocolitica from artificially prepared bacterial cultures and naturally contaminated samples compared with CIN. Our results thus demonstrated that the use of modified CIN may be a valuable means to increase the recovery rate of food borne Yersinia from natural samples, which are usually contaminated by multiple types of bacteria.
    Matched MeSH terms: Culture Media/chemistry*
  14. Musa M, Nasir NF, Thirumulu KP
    PMID: 24653569
    Royal jelly is a nutritious substance produced by the young nurse bees and contains significant amounts of proteins which are important for cell growth and proliferation. The aim of this study was to evaluate the effect of royal jelly as an alternative to fetal bovine serum (FBS) in cell culture using cell proliferation assays and live cell imaging.
    Matched MeSH terms: Culture Media/chemistry*
  15. Hasan NAHM, Harith HH, Israf DA, Tham CL
    Mol Biol Rep, 2020 May;47(5):3511-3519.
    PMID: 32279207 DOI: 10.1007/s11033-020-05439-x
    Epithelial-mesenchymal transition (EMT) is one of the mechanisms that contribute to bronchial remodelling which underlie chronic inflammatory airway diseases such as chronic obstructive pulmonary disorder (COPD) and asthma. Bronchial EMT can be triggered by many factors including transforming growth factor β1 (TGFβ1). The majority of studies on TGFβ1-mediated bronchial EMT used BEGM as the culture medium. LHC-9 medium is another alternative available which is more economical but a less common option. Using normal human bronchial epithelial cells (BEAS-2B) cultured in BEGM as a reference, this study aims to validate the induction of EMT by TGFβ1 in cells cultured in LHC-9. Briefly, the cells were maintained in either LHC-9 or BEGM, and induced with TGFβ1 (5, 10 and 20 ng/ml) for 48 h. EMT induction was confirmed by morphological analysis and EMT markers expression by immunoblotting. In both media, cells induced with TGFβ1 displayed spindle-like morphology with a significantly higher radius ratio compared to non-induced cells which displayed a cobblestone morphology. Correspondingly, the expression of the epithelial marker E-cadherin was significantly lower, whereas the mesenchymal marker vimentin expression was significantly higher in induced cells, compared to non-induced cells. By contrast, a slower cell growth rate was observed in LHC-9 compared to that of BEGM. This study demonstrates that neither LHC-9 nor BEGM significantly influence TGFβ1-induced bronchial EMT. However, LHC-9 is less optimal for bronchial epithelial cell growth compared to BEGM. Thus, LHC-9 may be a more cost-effective substitute for BEGM, provided that time is not a factor.
    Matched MeSH terms: Culture Media/chemistry
  16. Chew FN, Tan WS, Boo HC, Tey BT
    Prep Biochem Biotechnol, 2012;42(6):535-50.
    PMID: 23030465 DOI: 10.1080/10826068.2012.660903
    An optimized cultivation condition is needed to maximize the functional green fluorescent protein (GFP) production. Six process variables (agitation rate, temperature, initial medium pH, concentration of inducer, time of induction, and inoculum density) were screened using the fractional factorial design. Three variables (agitation rate, temperature, and time of induction) exerted significant effects on functional GFP production in E. coli shake flask cultivation and were optimized subsequently using the Box-Behnken design. An agitation rate of 206 rpm at 31°C and induction of the protein expression when the cell density (OD(600nm)) reaches 1.04 could enhance the yield of functional GFP production from 0.025 g/L to 0.241 g/L, which is about ninefold higher than the unoptimized conditions. Unoptimized cultivation conditions resulted in protein aggregation and hence reduced the quantity of functional GFP. The model and regression equation based on the shake flask cultivation could be applied to a 2-L bioreactor for maximum functional GFP production.
    Matched MeSH terms: Culture Media/chemistry
  17. Ng MY, Tan WS, Abdullah N, Ling TC, Tey BT
    J Chromatogr A, 2007 Nov 16;1172(1):47-56.
    PMID: 17945242
    Direct recovery of hepatitis B core antigen (HBcAg) from unclarified Escherichia coli homogenates via expanded bed adsorption chromatography (EBA) has been explored in this study. Streamline DEAE was selected as the anion exchanger to recover HBcAg from heat-treated and non-heat-treated unclarified feedstocks. The use of anion-exchanger for direct extraction of proteins from unclarified feedstock is not preferred due to lack of specificity of its ligand. In this study, thermal treatment of the unclarified feedstock at 60 degrees C has resulted in 1.2- and 1.8-fold increases in yield and purity of HBcAg, respectively, compared with that purified from non-heat-treated feedstock. Heating the crude feedstock has resulted in denaturation and precipitation of contaminants in the feedstock, hence reducing non-specific interactions between the cell debris and adsorbent. The selectivity of the anion-exchanger has also been increased as shown in the breakthrough curve obtained. Enzyme-linked immunosorbent assay showed that the antigenicity of the HBcAg from heat-treated unclarified feedstock is still preserved.
    Matched MeSH terms: Culture Media/chemistry*
  18. Tay ST, Na SL, Tajuddin TH
    Mycoses, 2008 Nov;51(6):515-9.
    PMID: 18498307 DOI: 10.1111/j.1439-0507.2008.01516.x
    Cryptococcus albidus and C. laurentii were the predominant non-neoformans cryptococci isolated during an environmental sampling study for C. gattii at Klang Valley, Malaysia. Cryptococcus gattii was not isolated from any of the environmental samples. Cryptococcus albidus and C. laurentii were isolated mainly from vegetative samples of Eucalyptus trees and bird droppings. Upon testing on canavanine-glycine-bromothymol blue (CGB) agar, all the C. albidus isolates remained unchanged. Interestingly, a total of 29 (76.3%) C. laurentii isolates formed blue colours on the CGB agar. Sequence analysis of ITS1-5.8rDNA-ITS2 gene sequences (468 bp) of four CGB-blue C. laurentii isolates demonstrated the closest match (99%) with that of C. laurentii CBS 7140. This study demonstrated the diverse environmental niche of C. albidus and C. laurentii in Malaysia.
    Matched MeSH terms: Culture Media/chemistry*
  19. Sirajuddin SA, Sundram S
    Braz J Microbiol, 2020 Sep;51(3):919-929.
    PMID: 32078730 DOI: 10.1007/s42770-020-00241-0
    Both Gram-positive and Gram-negative bacteria can take up exogenous DNA when they are in a competent state either naturally or artificially. However, the thick peptidoglycan layer in Gram-positive bacteria's cell wall is considered as a possible barrier to DNA uptake. In the present work, two transformation techniques have been evaluated in assessing the protocol's ability to introduce foreign DNA, pBBRGFP-45 plasmid which harbors kanamycin resistance and green fluorescent protein (GFP) genes into a Gram-positive bacterium, Bacillus cereus EB2. B. cereus EB2 is an endophytic bacterium, isolated from oil palm roots. A Gram-negative bacterium, Pseudomonas aeruginosa EB35 was used as a control sample for both transformation protocols. The cells were made competent using respective chemical treatment to Gram-positive and Gram-negative bacteria, and kanamycin concentration in the selective medium was also optimized. Preliminary findings using qualitative analysis of colony polymerase chain reaction (PCR)-GFP indicated that the putative positive transformants for B. cereus EB2 were acquired using the second transformation protocol. The positive transformants were then verified using molecular techniques such as observation of putative colonies on specific media under UV light, plasmid extraction, and validation analyses, followed by fluorescence microscopy. Conversely, both transformation protocols were relatively effective for introduction of plasmid DNA into P. aeruginosa EB35. Therefore, this finding demonstrated the potential of chemically prepared competent cells and the crucial step of heat-shock in foreign DNA transformation process of Gram-positive bacterium namely B. cereus was required for successful transformation.
    Matched MeSH terms: Culture Media/chemistry
  20. Ma YC, Gao MR, Yang H, Jiang JY, Xie W, Su WP, et al.
    Appl Biochem Biotechnol, 2023 Jun;195(6):3628-3640.
    PMID: 36648604 DOI: 10.1007/s12010-023-04319-x
    C50 carotenoids, as unique bioactive molecules, have many biological properties, including antioxidant, anticancer, and antibacterial activity, and have a wide range of potential uses in the food, cosmetic, and biomedical industries. The majority of C50 carotenoids are produced by the sterile fermentation of halophilic archaea. This study aims to look at more cost-effective and manageable ways of producing C50 carotenoids. The basic medium, carbon source supplementation, and optimal culture conditions for Halorubrum sp. HRM-150 C50 carotenoids production by open fermentation were examined in this work. The results indicated that Halorubrum sp. HRM-150 grown in natural brine medium grew faster than artificial brine medium. The addition of glucose, sucrose, and lactose (10 g/L) enhanced both biomass and carotenoids productivity, with the highest level reaching 4.53 ± 0.32 μg/mL when glucose was added. According to the findings of orthogonal studies based on the OD600 and carotenoids productivity, the best conditions for open fermentation were salinity 20-25%, rotation speed 150-200 rpm, and pH 7.0-8.2. The up-scaled open fermentation was carried out in a 7 L medium under optimum culture conditions. At 96 h, the OD600 and carotenoids productivity were 9.86 ± 0.51 (dry weight 10.40 ± 1.27 g/L) and 7.31 ± 0.65 μg/mL (701.40 ± 21.51 μg/g dry weight, respectively). When amplified with both universal bacterial primer and archaeal primer in the open fermentation, Halorubrum remained the dominating species, indicating that contamination was kept within an acceptable level. To summarize, open fermentation of Halorubrum is a promising method for producing C50 carotenoids.
    Matched MeSH terms: Culture Media/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links