Displaying publications 1 - 20 of 76 in total

Abstract:
Sort:
  1. Lee KH, Chow YL, Sharmili V, Abas F, Alitheen NB, Shaari K, et al.
    Int J Mol Sci, 2012;13(3):2985-3008.
    PMID: 22489138 DOI: 10.3390/ijms13032985
    Our preliminary screening has shown that curcumin derivative BDMC33 [2,6-bis(2,5-dimethoxybenzylidene)cyclohexanone] exerted promising nitric oxide inhibitory activity in activated macrophages. However, the molecular basis and mechanism for its pharmacological action is yet to be elucidated. The aim of this study was to investigate the anti-inflammatory properties of BDMC33 and elucidate its underlying mechanism action in macrophage cells. Our current study demonstrated that BDMC33 inhibits the secretion of major pro-inflammatory mediators in stimulated macrophages, and includes NO, TNF-α and IL-1β through interference in both nuclear factor kappaB (NF-κB) and mitogen activator protein kinase (MAPK) signaling cascade in IFN-γ/LPS-stimulated macrophages. Moreover, BDMC33 also interrupted LPS signaling through inhibiting the surface expression of CD-14 accessory molecules. In addition, the inhibitory action of BDMC33 not only restricted the macrophages cell (RAW264.7), but also inhibited the secretion of NO and TNF-α in IFN-γ/LPS-challenged microglial cells (BV-2). The experimental data suggests the inflammatory action of BDMC33 on activated macrophage-like cellular systems, which could be used as a future therapeutic agent in the management of chronic inflammatory diseases.
    Matched MeSH terms: Curcumin/pharmacology
  2. Tham CL, Hazeera Harith H, Wai Lam K, Joong Chong Y, Singh Cheema M, Roslan Sulaiman M, et al.
    Eur J Pharmacol, 2015 Feb 15;749:1-11.
    PMID: 25560198 DOI: 10.1016/j.ejphar.2014.12.015
    2,6-bis-(4-hydroxyl-3-methoxybenzylidine)cyclohexanone (BHMC) has been proven to selectively inhibit the synthesis of proinflammatory mediators in lipopolysaccharide-induced U937 monocytes through specific interruption of p38 Mitogen-Activated Protein Kinase enzymatic activity and improves the survival rate in a murine lethal sepsis model. The present study addressed the effects of BHMC upon lipopolysaccharide-induced endothelial dysfunction in human umbilical vein endothelial cells to determine the underlying mechanisms. The cytotoxicity effect of BHMC on HUVEC were determined by MTT assay. The effects of BHMC on endothelial dysfunction induced by lipopolysaccharide such as endothelial hyperpermeability, monocyte-endothelial adhesion, transendothelial migration, up-regulation of adhesion molecules and chemokines were evaluated. The effects of BHMC at transcriptional and post-translational levels were determined by Reverse Transcriptase-Polymerase Chain Reaction and Western Blots. The mode of action of BHMC was dissected by looking into the activation of Nuclear Factor-kappa B and Mitogen-Activated Protein Kinases. BHMC concentration-dependently reduced endothelial hyperpermeability, leukocyte-endothelial cell adhesion and monocyte transendothelial migration through inhibition of the protein expression of adhesion molecules (Intercellular Adhesion Molecule-1 and Vascular Cell Adhesion Molecule-1) and secretion of chemokines (Monocyte Chemotactic Protein-1) at the transcriptional level. BHMC restored endothelial dysfunction via selective inhibition of p38 Mitogen-Activated Protein Kinase enzymatic activity which indirectly prevents the activation of Nuclear Factor-kappaB and Activator Protein-1 transcription factors. These findings further support earlier observations on the inhibition of BHMC on inflammatory events through specific disruption of p38 Mitogen-Activated Protein Kinase enzymatic activity and provide new insights into the inhibitory effects of BHMC on lipopolysaccharide-induced endothelial dysfunction.
    Matched MeSH terms: Curcumin/pharmacology
  3. Bukhari SN, Lauro G, Jantan I, Bifulco G, Amjad MW
    Bioorg Med Chem, 2014 Aug 1;22(15):4151-61.
    PMID: 24938495 DOI: 10.1016/j.bmc.2014.05.052
    Arachidonic acid and its metabolites have generated high level of interest among researchers due to their vital role in inflammation. The inhibition of enzymes involved in arachidonic acid metabolism has been considered as synergistic anti-inflammatory effect. A series of novel α,β-unsaturated carbonyl based compounds were synthesized and evaluated for their inhibitory activity on secretory phospholipase A₂ (sPLA₂), cyclooxygenases (COX), soybean lipoxygenase (LOX) in addition to proinflammatory cytokines comprising IL-6 and TNF-α. Six α,β-unsaturated carbonyl based compounds (2, 3, 4, 12, 13 and 14) exhibited strong inhibition of sPLA₂ activity, with IC₅₀ values in the range of 2.19-8.76 μM. Nine compounds 1-4 and 10-14 displayed inhibition of COX-1 with IC₅₀ values ranging from 0.37 to 1.77 μM (lower than that of reference compound), whereas compounds 2, 10, 13 and 14 strongly inhibited the COX-2. The compounds 10-14 exhibited strong inhibitory activity against LOX enzyme. All compounds were evaluated for the inhibitory activities against LPS-induced TNF-α and IL-6 release in the macrophages. On the basis of screening results, five active compounds 3, 4, 12, 13 and 14 were found strong inhibitors of TNF-α and IL-6 release in a dose-dependent manner. Molecular docking experiments were performed to clarify the molecular aspects of the observed COX and LOX inhibitory activities of the investigated compounds. Present findings increases the possibility that these α,β-unsaturated carbonyl based compounds might serve as beneficial starting point for the design and development of improved anti-inflammatory agents.
    Matched MeSH terms: Curcumin/pharmacology
  4. Chuah LH, Roberts CJ, Billa N, Abdullah S, Rosli R
    Colloids Surf B Biointerfaces, 2014 Apr 1;116:228-36.
    PMID: 24486834 DOI: 10.1016/j.colsurfb.2014.01.007
    Curcumin, which is derived from turmeric has gained much attention in recent years for its anticancer activities against various cancers. However, due to its poor absorption, rapid metabolism and elimination, curcumin has a very low oral bioavailability. Therefore, we have formulated mucoadhesive nanoparticles to deliver curcumin to the colon, such that prolonged contact between the nanoparticles and the colon leads to a sustained level of curcumin in the colon, improving the anticancer effect of curcumin on colorectal cancer. The current work entails the ex vivo mucoadhesion study of the formulated nanoparticles and the in vitro effect of mucoadhesive interaction between the nanoparticles and colorectal cancer cells. The ex vivo study showed that curcumin-containing chitosan nanoparticles (CUR-CS-NP) have improved mucoadhesion compared to unloaded chitosan nanoparticles (CS-NP), suggesting that curcumin partly contributes to the mucoadhesion process. This may lead to an enhanced anticancer effect of curcumin when formulated in CUR-CS-NP. Our results show that CUR-CS-NP are taken up to a greater extent by colorectal cancer cells, compared to free curcumin. The prolonged contact offered by the mucoadhesion of CUR-CS-NP onto the cells resulted in a greater reduction in percentage cell viability as well as a lower IC50, indicating a potential improved treatment outcome. The formulation and free curcumin appeared to induce cell apoptosis in colorectal cancer cells, by arresting the cell cycle at G2/M phase. The superior anticancer effects exerted by CUR-CS-NP indicated that this could be a potential treatment for colorectal cancer.
    Matched MeSH terms: Curcumin/pharmacology*
  5. Tham CL, Lam KW, Rajajendram R, Cheah YK, Sulaiman MR, Lajis NH, et al.
    Eur J Pharmacol, 2011 Feb 10;652(1-3):136-44.
    PMID: 21114991 DOI: 10.1016/j.ejphar.2010.10.092
    We previously showed that 2,6-bis-(4-hydroxyl-3-methoxybenzylidine)cyclohexanone (BHMC), suppressed the synthesis of various proinflammatory mediators. In this study we explain the mechanism of action of BHMC in lipopolysaccharide (LPS)-induced U937 monocytes and further show that BHMC prevents lethality of CLP-induced sepsis. BHMC showed dose-dependent inhibitory effects on p38, JNK and ERK 1/2 activity as determined by inhibition of phosphorylation of downstream transcription factors ATF-2, c-Jun and Elk-1 respectively. Inhibition of these transcription factors subsequently caused total abolishment of AP-1-DNA binding. BHMC inhibited p65 NF-κB nuclear translocation and DNA binding of p65 NF-κB only at the highest concentration used (12.5μM) but failed to alter phosphorylation of JNK, ERK1/2 and STAT-1. Since the inhibition of p38 activity was more pronounced we evaluated the possibility that BHMC may bind to p38. Molecular docking experiments confirmed that BHMC fits well in the highly conserved hydrophobic pocket of p38 MAP kinase. We also show that BHMC was able to improve survival from lethal sepsis in a murine caecal-ligation and puncture (CLP) model.
    Matched MeSH terms: Curcumin/pharmacology
  6. Tham CL, Liew CY, Lam KW, Mohamad AS, Kim MK, Cheah YK, et al.
    Eur J Pharmacol, 2010 Feb 25;628(1-3):247-54.
    PMID: 19958764 DOI: 10.1016/j.ejphar.2009.11.053
    Curcumin is a highly pleiotropic molecule with significant regulatory effects upon inflammation and inflammatory related diseases. However curcumin has one major important limitation in which it has poor bioavailability. Design of synthetic structural derivatives of curcumin is but one approach that has been used to overcome its poor bioavailability while retaining, or further enhancing, its drug-like effects. We have synthesized a series of curcumin analogues and describe the effects of 2,6-bis-4-(hydroxyl-3-methoxy-benzylidine)-cyclohexanone or BHMC upon nitric oxide and cytokine synthesis in cellular models of inflammation. BHMC showed a significant dose-response inhibitory action upon the synthesis of NO and we have shown that this effect was due to suppression of both iNOS gene and enzyme expression without any effects upon scavenging of nitrite. We also demonstrated that BHMC has a very minimal effect upon iNOS activity with no effect at all upon the secretion of PGE(2) but has a strong inhibitory effect upon MCP-1 and IL-10 secretion and gene expression. Secretion and gene expression of TNF-alpha and IL-6 were moderately inhibited whereas IL-8 and IL-1beta were not altered. We conclude that BHMC selectively inhibits the synthesis of several inflammatory mediators. BHMC should be considered a promising drug lead for preclinical and further pharmacological studies.
    Matched MeSH terms: Curcumin/pharmacology*
  7. Sulaiman H, Hamid RA, Ting YL, Othman F
    J Cancer Res Ther, 2012 Jul-Sep;8(3):404-10.
    PMID: 23174723 DOI: 10.4103/0973-1482.103521
    CONTEXT: Ardisia crispa Thunb. A. DC (Myrsinaceae) or locally known as hen's eyes has been used in local folk medicine as a remedy in various illnesses. Previously, it has been reported to inhibit various inflammatory diseases. However, research done on this plant is still limited.
    AIMS: In the present study, the hexane fraction of the A. crispa root (ACRH) was evaluated on the peri-initiation and promotion phases of skin carcinogenesis.
    MATERIALS AND METHODS: This two-stage skin carcinogenesis was induced by a single topical application of 7,12-dimethylbenz(α)anthracene (DMBA) and promoted by repeated treatment with croton oil for 10 weeks in Imprinting Control Region (ICR) mice. Morphological observation would be conducted to measure tumor incidence, tumor burden, and tumor volume. Histological evaluation on the skin tissue would also be done.
    RESULTS: The carcinogen control group exhibited 66.67% of tumor incidence. Although, in the ACRH-treated groups, at 30 mg/kg, the mice showed only 10% of tumor incidence with a significant reduction (P < 0.05) in the values of tumor burden and tumor volume of 2.00 and 0.52 mm(3), respectively. Furthermore, the result was significantly lower than that of the carcinogen and curcumin control. At 100 mg/kg, ACRH showed a comparable result to carcinogen control. On the contrary, at 300 mg/kg, ACRH exhibited 100% tumor incidence and showed a significant elevated (P < 0.05) value of tumor burden (3.80) and tumor volume (14.67 ± 2.48 mm(3)).
    CONCLUSIONS: The present study thus demonstrates that the anti-tumor effect of the chemopreventive potential of ACRH is at a lower dosage (30 mg/kg bwt) in both the initiating and promotion period, yet it exhibits a promoting effect at a higher dosage (300 mg/kg bwt).
    Matched MeSH terms: Curcumin/pharmacology
  8. Abdul Satar N, Ismail MN, Yahaya BH
    Molecules, 2021 Feb 18;26(4).
    PMID: 33670440 DOI: 10.3390/molecules26041056
    Cancer stem cells (CSCs) represent a small subpopulation within a tumour. These cells possess stem cell-like properties but also initiate resistance to cytotoxic agents, which contributes to cancer relapse. Natural compounds such as curcumin that contain high amounts of polyphenols can have a chemosensitivity effect that sensitises CSCs to cytotoxic agents such as cisplatin. This study was designed to investigate the efficacy of curcumin as a chemo-sensitiser in CSCs subpopulation of non-small cell lung cancer (NSCLC) using the lung cancer adenocarcinoma human alveolar basal epithelial cells A549 and H2170. The ability of curcumin to sensitise lung CSCs to cisplatin was determined by evaluating stemness characteristics, including proliferation activity, colony formation, and spheroid formation of cells treated with curcumin alone, cisplatin alone, or the combination of both at 24, 48, and 72 h. The mRNA level of genes involved in stemness was analysed using quantitative real-time polymerase chain reaction. Liquid chromatography-mass spectrometry was used to evaluate the effect of curcumin on the CSC niche. A combined treatment of A549 subpopulations with curcumin reduced cellular proliferation activity at all time points. Curcumin significantly (p < 0.001) suppressed colonies formation by 50% and shrank the spheroids in CSC subpopulations, indicating inhibition of their self-renewal capability. This effect also was manifested by the down-regulation of SOX2, NANOG, and KLF4. Curcumin also regulated the niche of CSCs by inhibiting chemoresistance proteins, aldehyde dehydrogenase, metastasis, angiogenesis, and proliferation of cancer-related proteins. These results show the potential of using curcumin as a therapeutic approach for targeting CSC subpopulations in non-small cell lung cancer.
    Matched MeSH terms: Curcumin/pharmacology*
  9. Ravichandiran V, Masilamani K, Senthilnathan B, Maheshwaran A, Wong TW, Roy P
    Curr Drug Deliv, 2017;14(8):1053-1059.
    PMID: 27572089 DOI: 10.2174/1567201813666160829100453
    BACKGROUND: Curcumin is a yellow polyphenolic chemopreventive agent isolated from the rhizomes of Curcuma longa. It is approved as Generally Regarded as Safe by US FDA. Nonetheless, its clinical success is limited due to its poor aqueous solubility, fast metabolism and short biological half-life attributes.

    OBJECTIVE: Quercetin-decorated liposomes of curcumin (QCunp) are perceived to be able to overcome these biopharmaceutical drawbacks.

    METHODS: Curcumin liposomes with/without quercetin were prepared by lipid hydration technique. The liposomes were characterized for their particle size, zeta potential, surface morphology, drug loading and release characteristics. The toxicity of the liposomes were evaluated in-vitro and their invivo efficacy were tested against Dalton's ascites lymphoma in mice.

    RESULTS: Liposomes designed showed particle size of 261.8 ± 2.1 nm with a negative zeta potential of -22.6±1.6 mV. Quercetin decorated liposomes were more effective in increasing the life span and body weight of lymphoma inflicted mice compared to those without quercetin. Similarly, the presence of quercetin also contributed to enhanced cytotoxicity of the liposomal formulation towards HT-29 cells and HCT-15 cells.

    CONCLUSION: Newer liposomal design exhibited promising potential to emerge as alternative anticancer therapeutics.

    Matched MeSH terms: Curcumin/pharmacology
  10. Lee HM, Patel V, Shyur LF, Lee WL
    Phytomedicine, 2016 Nov 15;23(12):1535-1544.
    PMID: 27765374 DOI: 10.1016/j.phymed.2016.09.005
    BACKGROUND: Oral cancer is the sixth most common cancer worldwide and 90% of oral malignancies are caused by oral squamous cell carcinoma (OSCC). Curcumin, a phytocompound derived from turmeric (Curcuma longa) was observed to have anti-cancer activity which can be developed as an alternative treatment option for OSCC. However, OSCC cells with various clinical-pathological features respond differentially to curcumin treatment.

    HYPOTHESIS: Intracellular copper levels have been reported to correlate with tumor pathogenesis and affect the sensitivity of cancer cells to cytotoxic chemotherapy. We hypothesized that intracellular copper levels may affect the sensitivity of oral cancer cells to curcumin.

    METHODS: We analysed the correlation between intracellular copper levels and response to curcumin treatment in a panel of OSCC cell lines derived from oral cancer patients. Exogenous copper was supplemented in curcumin insensitive cell lines to observe the effect of copper on curcumin-mediated inhibition of cell viability and migration, as well as induction of oxidative stress and apoptosis. Protein markers of cell migration and oxidative stress were also analysed using Western blotting.

    RESULTS: Concentrations of curcumin which inhibited 50% OSCC cell viability (IC50) was reduced up to 5 times in the presence of 250 µM copper. Increased copper level in curcumin-treated OSCC cells was accompanied by the induction of intracellular ROS and increased level of Nrf2 which regulates oxidative stress responses in cells. Supplemental copper also inhibited migration of curcumin-treated cells with enhanced level of E-cadherin and decreased vimentin, indications of suppressed epithelial-mesenchymal transition. Early apoptosis was observed in combined treatment but not in treatment with curcumin or copper alone.

    CONCLUSION: Supplement of copper significantly enhanced the inhibitory effect of curcumin treatment on migration and viability of oral cancer cells. Together, these findings provide molecular insight into the role of copper in overcoming insensitivity of oral cancer cells to curcumin treatment, suggesting a new strategy for cancer therapy.

    Matched MeSH terms: Curcumin/pharmacology
  11. Aziz MNM, Hussin Y, Che Rahim NF, Nordin N, Mohamad NE, Yeap SK, et al.
    Molecules, 2018 Jan 05;23(1).
    PMID: 29303982 DOI: 10.3390/molecules23010075
    Osteosarcoma is one of the primary malignant bone tumors that confer low survival rates for patients even with intensive regime treatments. Therefore, discovery of novel anti-osteosarcoma drugs derived from natural products that are not harmful to the normal cells remains crucial. Curcumin is one of the natural substances that have been extensively studied due to its anti-cancer properties and is pharmacologically safe considering its ubiquitous consumption for centuries. However, curcumin suffers from a poor circulating bioavailability, which has led to the development of a chemically synthesized curcuminoid analog, namely (Z)-3-hydroxy-1-(2-hydroxyphenyl)-3-phenylprop-2-en-1-one (DK1). In this study, the cytotoxic effects of the curcumin analog DK1 was investigated in both U-2OS and MG-63 osteosarcoma cell lines using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and cell death was microscopically examined via acridine orange/propidium iodide (AO/PI) double staining. Flow cytometer analysis including Annexin V/Fluorescein isothiocyanate (FITC), cell cycle analysis and JC-1 were adapted to determine the mode of cell death. Subsequently in order to determine the mechanism of cell death, quantitative polymerase chain reaction (qPCR) and proteome profiling was carried out to measure the expression of several apoptotic-related genes and proteins. Results indicated that DK1 induced U-2 OS and MG-63 morphological changes and substantially reduced cell numbers through induction of apoptosis. Several apoptotic genes and proteins were steadily expressed after treatment with DK1; including caspase 3, caspase 9, and BAX, which indicated that apoptosis occurred through a mitochondria-dependent signaling pathway. In conclusion, DK1 could be considered as a potential candidate for an anti-osteosarcoma drug in the near future, contingent upon its ability to induce apoptosis in osteosarcoma cell lines.
    Matched MeSH terms: Curcumin/pharmacology*
  12. Baharuddin P, Satar N, Fakiruddin KS, Zakaria N, Lim MN, Yusoff NM, et al.
    Oncol Rep, 2016 Jan;35(1):13-25.
    PMID: 26531053 DOI: 10.3892/or.2015.4371
    Natural compounds such as curcumin have the ability to enhance the therapeutic effectiveness of common chemotherapy agents through cancer stem-like cell (CSC) sensitisation. In the present study, we showed that curcumin enhanced the sensitivity of the double-positive (CD166+/EpCAM+) CSC subpopulation in non-small cell lung cancer (NSCLC) cell lines (A549 and H2170) to cisplatin-induced apoptosis and inhibition of metastasis. Our results revealed that initial exposure of NSCLC cell lines to curcumin (10-40 µM) markedly reduced the percentage of viability to an average of ~51 and ~54% compared to treatment with low dose cisplatin (3 µM) with only 94 and 86% in both the A549 and H2170 cells. Moreover, sensitisation of NSCLC cell lines to curcumin through combined treatment enhanced the single effect induced by low dose cisplatin on the apoptosis of the double-positive CSC subpopulation by 18 and 20% in the A549 and H2170 cells, respectively. Furthermore, we found that curcumin enhanced the inhibitory effects of cisplatin on the highly migratory CD166+/EpCAM+ subpopulation, marked by a reduction in cell migration to 9 and 21% in the A549 and H2170 cells, respectively, indicating that curcumin may increase the sensitivity of CSCs to cisplatin-induced migratory inhibition. We also observed that the mRNA expression of cyclin D1 was downregulated, while a substantial increased in p21 expression was noted, followed by Apaf1 and caspase-9 activation in the double-positive (CD166+/EpCAM+) CSC subpopulation of A549 cells, suggested that the combined treatments induced cell cycle arrest, therefore triggering CSC growth inhibition via the intrinsic apoptotic pathway. In conclusion, we provided novel evidence of the previously unknown therapeutic effects of curcumin, either alone or in combination with cisplatin on the inhibition of the CD166+/EpCAM+ subpopulation of NSCLC cell lines. This finding demonstrated the potential therapeutic approach of using curcumin that may enhance the effects of cisplatin by targeting the CSC subpopulation in NSCLC.
    Matched MeSH terms: Curcumin/pharmacology*
  13. Muthoosamy K, Abubakar IB, Bai RG, Loh HS, Manickam S
    Sci Rep, 2016 Sep 06;6:32808.
    PMID: 27597657 DOI: 10.1038/srep32808
    Metastasis of lung carcinoma to breast and vice versa accounts for one of the vast majority of cancer deaths. Synergistic treatments are proven to be the effective method to inhibit malignant cell proliferation. It is highly advantageous to use the minimum amount of a potent toxic drug, such as paclitaxel (Ptx) in ng/ml together with a natural and safe anticancer drug, curcumin (Cur) to reduce the systemic toxicity. However, both Cur and Ptx suffer from poor bioavailability. Herein, a drug delivery cargo was engineered by functionalizing reduced graphene oxide (G) with an amphiphilic polymer, PF-127 (P) by hydrophobic assembly. The drugs were loaded via pi-pi interactions, resulting in a nano-sized GP-Cur-Ptx of 140 nm. A remarkably high Cur loading of 678 wt.% was achieved, the highest thus far compared to any other Cur nanoformulations. Based on cell proliferation assay, GP-Cur-Ptx is a synergistic treatment (CI 
    Matched MeSH terms: Curcumin/pharmacology
  14. Kooi OK, Ling CY, Rodzi R, Othman F, Mohtarrudin N, Suhaili Z, et al.
    PMID: 25392583
    BACKGROUND: Melastoma malabathricum L. Smith (family Melastomaceae) is a shrub that has been used by the Malay practitioners of traditional medicine to treat various types of ailments. The present study aimed to determine the chemopreventive activity of methanol extract of M. malabathricum leaves (MEMM) using the standard 7,12-dimethylbenz(α)anthracene (DMBA)/croton oil-induced mouse skin carcinogenesis model.

    MATERIALS AND METHODS: In the initiation phase, the mice received a single dose of 100µl/100 µg DMBA (group I-V) or 100µl acetone (group VI) topically on the dorsal shaved skin area followed by the promotion phase involving treatment with the respective test solutions (100 µl of acetone, 10 mg/kg curcumin or MEMM (30, 100 and 300mg/kg)) for 30 min followed by the topical application of tumour promoter (100µl croton oil). Tumors were examined weekly and the experiment lasted for 15 weeks.

    RESULTS: MEMM and curcumin significantly (p<0.05) reduced the tumour burden, tumour incidence and tumour volume, which were further supported by the histopathological findings.

    CONCLUSION: MEMM demonstrated chemoprevention possibly via its antioxidant and anti-inflammatory activities, and the action of flavonoids like quercitrin.

    Matched MeSH terms: Curcumin/pharmacology
  15. Leong SW, Faudzi SM, Abas F, Aluwi MF, Rullah K, Wai LK, et al.
    Molecules, 2014 Oct 09;19(10):16058-81.
    PMID: 25302700 DOI: 10.3390/molecules191016058
    A series of ninety-seven diarylpentanoid derivatives were synthesized and evaluated for their anti-inflammatory activity through NO suppression assay using interferone gamma (IFN-γ)/lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Twelve compounds (9, 25, 28, 43, 63, 64, 81, 83, 84, 86, 88 and 97) exhibited greater or similar NO inhibitory activity in comparison with curcumin (14.7 ± 0.2 µM), notably compounds 88 and 97, which demonstrated the most significant NO suppression activity with IC50 values of 4.9 ± 0.3 µM and 9.6 ± 0.5 µM, respectively. A structure-activity relationship (SAR) study revealed that the presence of a hydroxyl group in both aromatic rings is critical for bioactivity of these molecules. With the exception of the polyphenolic derivatives, low electron density in ring-A and high electron density in ring-B are important for enhancing NO inhibition. Meanwhile, pharmacophore mapping showed that hydroxyl substituents at both meta- and para-positions of ring-B could be the marker for highly active diarylpentanoid derivatives.
    Matched MeSH terms: Curcumin/pharmacology
  16. Ming-Tatt L, Khalivulla SI, Akhtar MN, Mohamad AS, Perimal EK, Khalid MH, et al.
    Basic Clin Pharmacol Toxicol, 2012 Mar;110(3):275-82.
    PMID: 21967232 DOI: 10.1111/j.1742-7843.2011.00804.x
    This study investigated the potential antinociceptive efficacy of a novel synthetic curcuminoid analogue, 2,6-bis-(4-hydroxy-3-methoxybenzylidene)cyclohexanone (BHMC), using chemical- and thermal-induced nociception test models in mice. BHMC (0.03, 0.1, 0.3 and 1.0 mg/kg) administered via intraperitoneal route (i.p.) produced significant dose-related inhibition in the acetic acid-induced abdominal constriction test in mice with an ID(50) of 0.15 (0.13-0.18) mg/kg. It was also demonstrated that BHMC produced significant inhibition in both neurogenic (first phase) and inflammatory phases (second phase) of the formalin-induced paw licking test with an ID(50) of 0.35 (0.27-0.46) mg/kg and 0.07 (0.06-0.08) mg/kg, respectively. Similarly, BHMC also exerted significant increase in the response latency period in the hot-plate test. Moreover, the antinociceptive effect of the BHMC in the formalin-induced paw licking test and the hot-plate test was antagonized by pre-treatment with the non-selective opioid receptor antagonist, naloxone. Together, these results indicate that the compound acts both centrally and peripherally. In addition, administration of BHMC exhibited significant inhibition of the neurogenic nociception induced by intraplantar injections of glutamate and capsaicin with ID(50) of 0.66 (0.41-1.07) mg/kg and 0.42 (0.38-0.51) mg/kg, respectively. Finally, it was also shown that BHMC-induced antinociception was devoid of toxic effects and its antinociceptive effect was associated with neither muscle relaxant nor sedative action. In conclusion, BHMC at all doses investigated did not cause any toxic and sedative effects and produced pronounced central and peripheral antinociceptive activities. The central antinociceptive activity of BHMC was possibly mediated through activation of the opioid system as well as inhibition of the glutamatergic system and TRPV1 receptors, while the peripheral antinociceptive activity was perhaps mediated through inhibition of various inflammatory mediators.
    Matched MeSH terms: Curcumin/pharmacology
  17. Lee KH, Ab Aziz FH, Syahida A, Abas F, Shaari K, Israf DA, et al.
    Eur J Med Chem, 2009 Aug;44(8):3195-200.
    PMID: 19359068 DOI: 10.1016/j.ejmech.2009.03.020
    A series of 46 curcumin related diarylpentanoid analogues were synthesized and evaluated for their anti-inflammatory, antioxidant and anti-tyrosinase activities. Among these compounds 2, 13 and 33 exhibited potent NO inhibitory effect on IFN-gamma/LPS-activated RAW 264.7 cells as compared to L-NAME and curcumin. However, these series of diarylpentanoid analogues were not significantly inhibiting NO scavenging, total radical scavenging and tyrosinase enzyme activities. The results revealed that the biological activity of these diarylpentanoid analogues is most likely due to their action mainly upon inflammatory mediator, inducible nitric oxide synthase (iNOS). The present results showed that compounds 2, 13 and 33 might serve as a useful starting point for the design of improved anti-inflammatory agents.
    Matched MeSH terms: Curcumin/pharmacology*
  18. Bukhari SN, Jantan I
    Mini Rev Med Chem, 2015;15(13):1110-21.
    PMID: 26420724
    There is a crucial need to develop new effective drugs for Alzheimer's disease (AD) as the currently available AD treatments provide only momentary and incomplete symptomatic relief. Amongst natural products, curcumin, a major constituent of turmeric, has been intensively investigated for its neuroprotective effect against β-amyloid (Aβ)-induced toxicity in cultured neuronal cells. The ability of curcumin to attach to Aβ peptide and prevent its accumulation is attributed to its three structural characteristics such as the presence of two aromatic end groups and their co-planarity, the length and rigidity of the linker region and the substitution conformation of these aromatics. However, curcumin failed to reach adequate brain levels after oral absorption in AD clinical trials due to its low water solubility and poor oral bioavailability. A number of new curcumin analogs that mimic the active site of the compound along with analogs that mimic the curcumin anti-amyloid effect combined with anticholinesterase effect have been developed to enhance the bioavailability, pharmacokinetics, water solubility, stability at physiological conditions and delivery of curcumin. In this article, we have summarized all reported synthetic analogs of curcumin showing effects on β-amyloid and discussed their potential as therapeutic and diagnostic agents for AD.
    Matched MeSH terms: Curcumin/pharmacology*
  19. Aldahoun MA, Jaafar MS, Al-Akhras MH, Bououdina M
    Artif Cells Nanomed Biotechnol, 2017 Jun;45(4):843-853.
    PMID: 27137748 DOI: 10.1080/21691401.2016.1178137
    Curcumin is more soluble in ethanol, dimethylsulfoxide, methanol and acetone than in water. In this study, nanocurcumin combined with 8 mT AC static magnetic field was used to enhance cellular uptake, bioavailability, and ultimate efficiency of curcumin against prostate cancer cell line (PC3), four bacteria strains (two Gram positive: Micrococcus luteus ATCC 9341, Staphylococcus aureus ATCC 29213 and two Gram negative: Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853), mammalian cell line (HEK) and human erythrocytes (RBC). The efficiency (E%) between IC50 of nanocurcumin combined with magnetic field (NANOCUR-MF) and control against PC3 was 35.93%, which is three times higher compared to curcumin combined with magnetic field (CUR-MF); i.e., 10.77%. However, their E% against HEK was not significant; 1.4% for NANOCUR-MF and 1.95% for CUR-MF. Moreover, depending in minimum bacterial concentration (MBC), the use of MF leads to a reduction of MBCs for all tested bacteria compared with control. The obtained results established the applicability of (MF) in enhancing cellular uptake for PC3 and tested bacteria strains by increasing the penetration of drug (nanocurcumin and parent curcumin) into cell with fixing mild cytotoxic profile for HEK and RBC.
    Matched MeSH terms: Curcumin/pharmacology*
  20. Paulraj F, Abas F, Lajis NH, Othman I, Hassan SS, Naidu R
    Molecules, 2015;20(7):11830-60.
    PMID: 26132907 DOI: 10.3390/molecules200711830
    In an effort to study curcumin analogues as an alternative to improve the therapeutic efficacy of curcumin, we screened the cytotoxic potential of four diarylpentanoids using the HeLa and CaSki cervical cancer cell lines. Determination of their EC50 values indicated relatively higher potency of 1,5-bis(2-hydroxyphenyl)-1,4-pentadiene-3-one (MS17, 1.03 ± 0.5 μM; 2.6 ± 0.9 μM) and 1,5-bis(4-hydroxy-3-methoxyphenyl)-1,4-pentadiene-3-one (MS13, 2.8 ± 0.4; 6.7 ± 2.4 μM) in CaSki and HeLa, respectively, with significantly greater growth inhibition at 48 and 72 h of treatment compared to the other analogues or curcumin. Based on cytotoxic and anti-proliferative activity, MS17 was selected for comprehensive apoptotic studies. At 24 h of treatment, fluorescence microscopy detected that MS17-exposed cells exhibited significant morphological changes consistent with apoptosis, corroborated by an increase in nucleosomal enrichment due to DNA fragmentation in HeLa and CaSki cells and activation of caspase-3 activity in CaSki cells. Quantitative real-time PCR also detected significant down-regulation of HPV18- and HPV16-associated E6 and E7 oncogene expression following treatment. The overall data suggests that MS17 treatment has cytotoxic, anti-proliferative and apoptosis-inducing potential in HPV-positive cervical cancer cells. Furthermore, its role in down-regulation of HPV-associated oncogenes responsible for cancer progression merits further investigation into its chemotherapeutic role for cervical cancer.
    Matched MeSH terms: Curcumin/pharmacology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links