Displaying publications 1 - 20 of 34 in total

Abstract:
Sort:
  1. Rehman K, Zulfakar MH
    Pharm Res, 2017 01;34(1):36-48.
    PMID: 27620176 DOI: 10.1007/s11095-016-2036-8
    PURPOSE: To characterize bigel system as a topical drug delivery vehicle and to establish the immunomodulatory role of imiquimod-fish oil combination against skin cancer and inflammation resulting from chemical carcinogenesis.

    METHODS: Imiquimod-loaded fish oil bigel colloidal system was prepared using a blend of carbopol hydrogel and fish oil oleogel. Bigels were first characterized for their mechanical properties and compared to conventional gel systems. Ex vivo permeation studies were performed on murine skin to analyze the ability of the bigels to transport drug across skin and to predict the release mechanism via mathematical modelling. Furthermore, to analyze pharmacological effectiveness in skin cancer and controlling imiquimod-induced inflammatory side effects, imiquimod-fish oil combination was tested in vitro on epidermoid carcinoma cells and in vivo in Swiss albino mice cancer model.

    RESULTS: Imiquimod-loaded fish oil bigels exhibited higher drug availability inside the skin as compared to individual imiquimod hydrogel and oleogel controls through quasi-Fickian diffusion mechanism. Imiquimod-fish oil combination in bigel enhanced the antitumor effects and significantly reduced serum pro-inflammatory cytokine levels such as tumor necrosis factor-alpha and interleukin-6, and reducing tumor progression via inhibition of vascular endothelial growth factor. Imiquimod-fish oil combination also resulted in increased expression of interleukin-10, an anti-inflammatory cytokine, which could also aid anti-tumor activity against skin cancer.

    CONCLUSION: Imiquimod administration through a bigel vehicle along with fish oil could be beneficial for controlling imiquimod-induced inflammatory side effects and in the treatment of skin cancer.

    Matched MeSH terms: Delayed-Action Preparations/chemistry
  2. Kamba SA, Ismail M, Hussein-Al-Ali SH, Ibrahim TA, Zakaria ZA
    Molecules, 2013 Aug 30;18(9):10580-98.
    PMID: 23999729 DOI: 10.3390/molecules180910580
    Drug delivery systems are designed to achieve drug therapeutic index and enhance the efficacy of controlled drug release targeting with specificity and selectivity by successful delivery of therapeutic agents at the desired sites without affecting the non-diseased neighbouring cells or tissues. In this research, we developed and demonstrated a bio-based calcium carbonate nanocrystals carrier that can be loaded with anticancer drug and selectively deliver it to cancer cells with high specificity by achieving the effective osteosarcoma cancer cell death without inducing specific toxicity. The results showed pH sensitivity of the controlled release characteristics of the drug at normal physiological pH 7.4 with approximately 80% released within 1,200 min but when exposed pH 4.8 the corresponding 80% was released in 50 min. This study showed that the DOX-loaded CaCO₃ nanocrystals have promising applications in delivery of anticancer drugs.
    Matched MeSH terms: Delayed-Action Preparations/chemistry
  3. Barahuie F, Hussein MZ, Fakurazi S, Zainal Z
    Int J Mol Sci, 2014;15(5):7750-86.
    PMID: 24802876 DOI: 10.3390/ijms15057750
    Layered hydroxides (LHs) have recently fascinated researchers due to their wide application in various fields. These inorganic nanoparticles, with excellent features as nanocarriers in drug delivery systems, have the potential to play an important role in healthcare. Owing to their outstanding ion-exchange capacity, many organic pharmaceutical drugs have been intercalated into the interlayer galleries of LHs and, consequently, novel nanodrugs or smart drugs may revolutionize in the treatment of diseases. Layered hydroxides, as green nanoreservoirs with sustained drug release and cell targeting properties hold great promise of improving health and prolonging life.
    Matched MeSH terms: Delayed-Action Preparations/chemistry*
  4. Barahuie F, Hussein MZ, Hussein-Al-Ali SH, Arulselvan P, Fakurazi S, Zainal Z
    Int J Nanomedicine, 2013;8:1975-87.
    PMID: 23737666 DOI: 10.2147/IJN.S42718
    In the study reported here, magnesium/aluminum (Mg/Al)-layered double hydroxide (LDH) was intercalated with an anticancer drug, protocatechuic acid, using ion-exchange and direct coprecipitation methods, with the resultant products labeled according to the method used to produce them: "PANE" (ie, protocatechuic acid-Mg/Al nanocomposite synthesized using the ion-exchange method) and "PAND" (ie, protocatechuic acid-Mg/Al nanocomposite synthesized using the direct method), respectively. Powder X-ray diffraction and Fourier transform infrared spectroscopy confirmed the intercalation of protocatechuic acid into the inter-galleries of Mg/Al-LDH. The protocatechuic acid between the interlayers of PANE and PAND was found to be a monolayer, with an angle from the z-axis of 8° for PANE and 15° for PAND. Thermogravimetric and differential thermogravimetric analysis results revealed that the thermal stability of protocatechuic acid was markedly enhanced upon intercalation. The loading of protocatechuic acid in PANE and PAND was estimated to be about 24.5% and 27.5% (w/w), respectively. The in vitro release study of protocatechuic acid from PANE and PAND in phosphate-buffered saline at pH 7.4, 5.3, and 4.8 revealed that the nanocomposites had a sustained release property. After 72 hours incubation of PANE and PAND with MCF-7 human breast cancer and HeLa human cervical cancer cell lines, it was found that the nanocomposites had suppressed the growth of these cancer cells, with a half maximal inhibitory concentration of 35.6 μg/mL for PANE and 36.0 μg/mL for PAND for MCF-7 cells, and 19.8 μg/mL for PANE and 30.3 μg/mL for PAND for HeLa cells. No half maximal inhibitory concentration for either nanocomposite was found for 3T3 cells.
    Matched MeSH terms: Delayed-Action Preparations/chemistry
  5. Hussein MZ, Rahman NS, Sarijo SH, Zainal Z
    Int J Mol Sci, 2012;13(6):7328-42.
    PMID: 22837696 DOI: 10.3390/ijms13067328
    Herbicides, namely 4-(2,4-dichlorophenoxy) butyrate (DPBA) and 2-(3-chlorophenoxy) propionate (CPPA), were intercalated simultaneously into the interlayers of zinc layered hydroxide (ZLH) by direct reaction of zinc oxide with both anions under aqueous environment to form a new nanohybrid containing both herbicides labeled as ZCDX. Successful intercalation of both anions simultaneously into the interlayer gallery space of ZLH was studied by PXRD, with basal spacing of 28.7 Å and supported by FTIR, TGA/DTG and UV-visible studies. Simultaneous release of both CPPA and DPBA anions into the release media was found to be governed by a pseudo second-order equation. The loading and percentage release of the DPBA is higher than the CPPA anion, which indicates that the DPBA anion was preferentially intercalated into and released from the ZLH interlayer galleries. This work shows that layered single metal hydroxide, particularly ZLH, is a suitable host for the controlled release formulation of two herbicides simultaneously.
    Matched MeSH terms: Delayed-Action Preparations/chemistry
  6. Barahuie F, Hussein MZ, Abd Gani S, Fakurazi S, Zainal Z
    Int J Nanomedicine, 2014;9:3137-49.
    PMID: 25061291 DOI: 10.2147/IJN.S59541
    BACKGROUND: We characterize a novel nanocomposite that acts as an efficient anticancer agent.

    METHODS: This nanocomposite consists of zinc layered hydroxide intercalated with protocatechuate (an anionic form of protocatechuic acid), that has been synthesized using a direct method with zinc oxide and protocatechuic acid as precursors.

    RESULTS: The resulting protocatechuic acid nanocomposite (PAN) showed a basal spacing of 12.7 Å, indicating that protocatechuate was intercalated in a monolayer arrangement, with an angle of 54° from the Z-axis between the interlayers of the zinc layered hydroxide, and an estimated drug loading of about 35.7%. PAN exhibited the properties of a mesoporous type material, with greatly enhanced thermal stability of protocatechuate as compared to its free counterpart. The presence of protocatechuate in the interlayers of the zinc layered hydroxide was further supported by Fourier transform infrared spectroscopy. Protocatechuate was released from PAN in a slow and sustained manner. This mechanism of release was well represented by a pseudo-second order kinetics model. PAN has shown increased cytotoxicity compared to the free form of protocatechuic acid in all cancer cell lines tested. Tumor growth suppression was extensive, particularly in HepG2 and HT29 cell lines.

    CONCLUSION: PAN is suitable for use as a controlled release formulation, and our in vitro evidence indicates that PAN is an effective anticancer agent. PAN may have potential as a chemotherapeutic drug for human cancer.

    Matched MeSH terms: Delayed-Action Preparations/chemistry
  7. Bera H, Abbasi YF, Gajbhiye V, Liew KF, Kumar P, Tambe P, et al.
    Mater Sci Eng C Mater Biol Appl, 2020 May;110:110628.
    PMID: 32204068 DOI: 10.1016/j.msec.2020.110628
    The current study dealt with the synthesis and characterization of carboxymethyl fenugreek galactomannang-g-poly(N-isopropylacrylamide-co-N,N'-methylene-bis-acrylamide)-bentonite [CFG-g-P(NIPA-co-MBA)-BEN] based nanocomposites (NCs) as erlotinib (ERL)-delivery devices for lung cancer cells to suppress excessive cell proliferation. The blank NCs exhibited outstanding biodegradability and pH/temperature-dependent swelling profiles, which were significantly influenced by their BEN contents (0-20%). The molar mass (M¯c) between the crosslinks of these NCs was declined with temperature. The composite architecture of these scaffolds was confirmed by XRD, FTIR, TGA, DSC and SEM analyses. The corresponding ERL-loaded matrices (F-1-F-3) portrayed outstanding drug encapsulation efficiency (DEE, 93-100%) with zeta potential between -8 and -16 mV and diameter between 615 and 1258 nm. These formulations demonstrated sustained ERL elution profiles (Q8h, 62-98%) with an initial burst release of drug. The drug dissolution pattern of the optimized matrices (F-3) obeyed first-order kinetic model and was driven by Fickian diffusion. The mucin adsorption behavior of F-3 was best fitted to Freudlich isotherms. The ERL-loaded formulation suppressed A549 cell proliferation and promoted apoptosis to a greater extent than the pristine drug, as detected by cellular uptake analysis, MTT cytotoxicity test and AO/EB staining assay.
    Matched MeSH terms: Delayed-Action Preparations/chemistry
  8. Hussein MZ, Nasir NM, Yahaya AH
    J Nanosci Nanotechnol, 2008 Nov;8(11):5921-8.
    PMID: 19198327
    Metanilate-layered double hydroxide nanohybrid compound was synthesized for controlled release purposes through co-precipitation method of the metal cations and organic anion. The effect of various divalent metal cations (M2+), namely Zn2+, Mg2+ and Ca2+ on the formation of metanilate-LDH nanohybrids, in which metanilate anion was intercalated into three different layered double hydroxide (LDH) systems; Zn-Al, Mg-Al and Ca-Al were investigated. The syntheses were carried out with M2+ to Al3+ initial molar ratio, R of 4. The pH of the mother liquor was maintained at pH 7.5 and 10 during the synthesis, and the resulting mixture was aged at around 70 degrees C for about 18 h. The intercalation of metanilate anion into the host was found to be strongly influenced by the M2+ that formed the inorganic metal hydroxide layers. Under our experimental condition, the formation of the nanohybrid materials was found to be more feasible for the Zn-Al than for the other two systems, in which the former showed well-ordered layered organic-inorganic nanohybrid structure with good crystallinity. Intercalation is confirmed by the expansion of the interlayer spacing to about 15-17 A when metanilate was introduced into the interlamellae of Zn-Al LDHs. In addition, CHNS and FTIR analyses also support that metanilate anion has been successfully intercalated into the interlamellae of the inorganic LDH. Apart from M2+, this study also shows that the initial pH of the mother liquor plays an important role in determining the physicochemical properties of the resulting nanohybrids, especially the mole fraction of the Zn2+ substituted by the Al3+ ion in the LDH inorganic sheets which in turn controlled the loading percentage of the organic anion, surface properties and the true density. Preliminary study shows that LDH can be used to host beneficial guests, active agent with controlled release capability of the guests. Generally the overall process is governed by pseudo second order kinetic but for the first 180 min, the release process can be slightly better described by parabolic diffusion than the other models.
    Matched MeSH terms: Delayed-Action Preparations/chemistry*
  9. Low LE, Tan LT, Goh BH, Tey BT, Ong BH, Tang SY
    Int J Biol Macromol, 2019 Apr 15;127:76-84.
    PMID: 30639596 DOI: 10.1016/j.ijbiomac.2019.01.037
    Stimuli-responsive drug release and controlled delivery play crucial roles in enhancing the therapeutic efficacy and lowering over-dosage induced side effects. In this paper, we report magnetically-triggered drug release and in-vitro anti-colon cancer efficacy of Fe3O4@cellulose nanocrystal (MCNC)-stabilized Pickering emulsions containing curcumin (CUR). The loading efficiency of CUR in the micron-sized (≈7 μm) MCNC-stabilized Pickering emulsions (MCNC-PE) template was found to be 99.35%. The drug release profiles showed that the exposure of MCNC-PE to external magnetic field (EMF) (0.7 T) stimulated the release of bioactive from MCNC-PE achieving 53.30 ± 5.08% of the initial loading over a 4-day period. The MTT assay demonstrated that the CUR-loaded MCNC-PE can effectively inhibits the human colon cancer cells growth down to 18% in the presence of EMF. The formulation also resulted in 2-fold reduction on the volume of the 3-D multicellular spheroids of HCT116 as compared to the control sample. The MCNC particle was found to be non-toxic to brine shrimp up to a concentration of 100 μg/mL. Our findings suggested that the palm-based MCNC-PE could be a promising yet effective colloidal drug delivery system for magnetic-triggered release of bioactive and therapeutics.
    Matched MeSH terms: Delayed-Action Preparations/chemistry
  10. Mohd MR, Ariff TM, Mohamad N, Abdul Latif AZ, Wan Nik WMN, Mohamed A, et al.
    Pak J Pharm Sci, 2019 Sep;32(5):2155-2162.
    PMID: 31813882
    The "noni" species of Morinda citrifolia L., is using in traditional medicine in the tropical country for over 2000 years. Noni fruit has come from the Morinda citrifolia tree which is called Rubiaceae, and it is from the coffee family. It is a perennial herb whose ripe fruit has a robust butyric acid smell and flavor. Recently scientists have proven that this fruit has antioxidant and antibiotic properties in vitro. An anthraquinone, damnacanthal, is one of the constituents of Morinda citrifolia. It has been demonstrated to have anti-cancer properties. Damnacanthal has low water solubility and low bioavailability. Formulating of damnacanthal into the biodegradable nanocapsule drug delivery system may increase its bioavailability. Various formulations of damnacanthal would be developed to enable the selection of a dosage form that could offer the provision of the anti-cancer bioactive substance with suitable sustained- or controlled release properties. The efficiency of extraction of damnacanthal will be compared using both conventional and traditional method. Both the damnacanthal and an anthraquinone active compounds extracted from noni roots, are currently being studied in the context of anti-cancer study. Soon, the medical values, bioactivities and nutritional of this fruit can be assessed, especially its anti-cancer activity, this fruit extract could play an outstanding economic role in Malaysia and other tropical countries.
    Matched MeSH terms: Delayed-Action Preparations/chemistry*
  11. Sheshala R, Quah SY, Tan GC, Meka VS, Jnanendrappa N, Sahu PS
    Drug Deliv Transl Res, 2019 04;9(2):434-443.
    PMID: 29392681 DOI: 10.1007/s13346-018-0488-6
    The objectives of present research were to develop and characterize thermosensitive and mucoadhesive polymer-based sustained release moxifloxacin in situ gels for the treatment of periodontal diseases. Poloxamer- and chitosan-based in situ gels are in liquid form at room temperature and transform into gel once administered into periodontal pocket due to raise in temperature to 37 °C. Besides solution-to-gel characteristic of polymers, their mucoadhesive nature aids the gel to adhere to mucosa in periodontal pocket for prolonged time and releases the drug in sustained manner. These formulations were prepared using cold method and evaluated for pH, solution-gel temperature, syringeability and viscosity. In vitro drug release studies were conducted using dialysis membrane at 37 °C and 50 rpm. Antimicrobial studies carried out against Aggregatibacter actinomycetemcomitans (A.A.) and Streptococcus mutans (S. Mutans) using agar cup-plate method. The prepared formulations were clear and pH was at 7.01-7.40. The viscosity of formulations was found to be satisfactory. Among the all, formulations comprising of 21% poloxamer 407 and 2% poloxamer 188 (P5) and in combination with 0.5% HPMC (P6) as well as 2% chitosan and 70% β-glycerophosphate (C6) demonstrated an ideal gelation temperature (33-37 °C) and sustained the drug release for 8 h. Formulations P6 and C6 showed promising antimicrobial efficacy with zone of inhibition of 27 mm for A.A. and 55 mm for S. Mutans. The developed sustained release in situ gel formulations could enhance patient's compliance by reducing the dosing frequency and also act as an alternative treatment to curb periodontitis.
    Matched MeSH terms: Delayed-Action Preparations/chemistry
  12. Wong CF, Yuen KH, Peh KK
    Int J Pharm, 1999 Feb 01;178(1):11-22.
    PMID: 10205621
    Controlled release buccal patches were fabricated using Eudragit NE40D and studied. Various bioadhesive polymers, namely hydroxypropylmethyl cellulose, sodium carboxymethyl cellulose and Carbopol of different grades, were incorporated into the patches, to modify their bioadhesive properties as well as the rate of drug release, using metoprolol tartrate as the model drug. The in-vitro drug release was determined using the USP 23 dissolution test apparatus 5 with slight modification, while the bioadhesive properties were evaluated using texture analyzer equipment with chicken pouch as the model tissue. The incorporation of hydrophilic polymers was found to affect the drug release as well as enhance the bioadhesiveness. Although high viscosity polymers can enhance the bioadhesiveness of the patches, they also tend to cause non-homogeneous distribution of the polymers and drug, resulting in non-predictable drug-release rates. Of the various bioadhesive polymers studied, Cekol 700 appeared to be most satisfactory in terms of modifying the drug release and enhancement of the bioadhesive properties.
    Matched MeSH terms: Delayed-Action Preparations/chemistry
  13. Kamath SM, Sridhar K, Jaison D, Gopinath V, Ibrahim BKM, Gupta N, et al.
    Sci Rep, 2020 10 23;10(1):18179.
    PMID: 33097770 DOI: 10.1038/s41598-020-74885-1
    Modulation of initial burst and long term release from electrospun fibrous mats can be achieved by sandwiching the drug loaded mats between hydrophobic layers of fibrous polycaprolactone (PCL). Ibuprofen (IBU) loaded PCL fibrous mats (12% PCL-IBU) were sandwiched between fibrous polycaprolactone layers during the process of electrospinning, by varying the polymer concentrations (10% (w/v), 12% (w/v)) and volume of coat (1 ml, 2 ml) in flanking layers. Consequently, 12% PCL-IBU (without sandwich layer) showed burst release of 66.43% on day 1 and cumulative release (%) of 86.08% at the end of 62 days. Whereas, sandwich groups, especially 12% PCLSW-1 & 2 (sandwich layers-1 ml and 2 ml of 12% PCL) showed controlled initial burst and cumulative (%) release compared to 12% PCL-IBU. Moreover, crystallinity (%) and hydrophobicity of the sandwich models imparted control on ibuprofen release from fibrous mats. Further, assay for cytotoxicity and scanning electron microscopic images of cell seeded mats after 5 days showed the mats were not cytotoxic. Nuclear Magnetic Resonance spectroscopic analysis revealed weak interaction between ibuprofen and PCL in nanofibers which favors the release of ibuprofen. These data imply that concentration and volume of coat in flanking layer imparts tighter control on initial burst and long term release of ibuprofen.
    Matched MeSH terms: Delayed-Action Preparations/chemistry
  14. Razavi M, Nyamathulla S, Karimian H, Moghadamtousi SZ, Noordin MI
    Molecules, 2014;19(9):13909-31.
    PMID: 25197930 DOI: 10.3390/molecules190913909
    The gastroretentive dosage form of famotidine was modified using tamarind seed powders to prolong the gastric retention time. Tamarind seeds were used in two different forms having different swelling and gelling properties: with husk (TSP) or without husk (TKP). TKP (TKP1 to TKP 6) and TSP (TSP1 to TSP 6) series were prepared using tamarind powder:xanthan in the ratios of 5:0, 4:1, 3:2, 2:3, 1:4, 0:5, respectively. The matrix tablets were prepared by the wet granulation method and evaluated for pharmacopoeial requirements. TKP2 was the optimum formulation as it had a short floating lag time (FLT<30 s) and more than 98.5% drug release in 12 h. The dissolution data were fitted to popular mathematical models to assess the mechanism of drug release, and the optimum formulation showed a predominant first order release and diffusion mechanism. It was concluded that the TKP2 prepared using tamarind kernel powder:xanthan (4:1) was the optimum formulation with shortest floating lag time and more than 90% release in the determined period of time.
    Matched MeSH terms: Delayed-Action Preparations/chemistry
  15. Kadivar A, Kamalidehghan B, Javar HA, Davoudi ET, Zaharuddin ND, Sabeti B, et al.
    PLoS One, 2015;10(6):e0126874.
    PMID: 26035710 DOI: 10.1371/journal.pone.0126874
    Imatinib mesylate is an antineoplastic agent which has high absorption in the upper part of the gastrointestinal tract (GIT). Conventional imatinib mesylate (Gleevec) tablets produce rapid and relatively high peak blood levels and requires frequent administration to keep the plasma drug level at an effective range. This might cause side effects, reduced effectiveness and poor therapeutic management. Therefore, floating sustained-release Imatinib tablets were developed to allow the tablets to be released in the upper part of the GIT and overcome the inadequacy of conventional tablets.
    Matched MeSH terms: Delayed-Action Preparations/chemistry
  16. Othman R, Vladisavljević GT, Thomas NL, Nagy ZK
    Colloids Surf B Biointerfaces, 2016 May 01;141:187-195.
    PMID: 26852102 DOI: 10.1016/j.colsurfb.2016.01.042
    Paracetamol (PCM)-loaded composite nanoparticles (NPs) composed of a biodegradable poly(d,l-lactide) (PLA) polymer matrix filled with organically modified montmorillonite (MMT) nanoparticles were fabricated by antisolvent nanoprecipitation in a microfluidic co-flow glass capillary device. The incorporation of MMT in the polymer improved both the drug encapsulation efficiency and the drug loading, and extended the rate of drug release in simulated intestinal fluid (pH 7.4). The particle size increased on increasing both the drug loading and the concentration of MMT in the polymer matrix, and decreased on increasing the aqueous to organic flow rate ratio. The drug encapsulation efficiency in the NPs was higher at higher aqueous to organic flow rate ratio due to faster formation of the NPs. The PCM-loaded PLA NPs containing 2 wt% MMT in PLA prepared at an aqueous to organic flow rate ratio of 10 with an orifice size of 200 μm exhibited a spherical shape with a mean size of 296 nm, a drug encapsulation efficiency of 38.5% and a drug loading of 5.4%. The encapsulation of MMT and PCM in the NPs was confirmed by transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis and attenuated total reflection-Fourier transform infrared spectroscopy.
    Matched MeSH terms: Delayed-Action Preparations/chemistry
  17. Meka VS, Murthy Kolapalli VR
    Curr Drug Deliv, 2016;13(6):971-81.
    PMID: 26452534
    A central composite design was applied to design a novel gastric floating drug delivery system comprising propranolol HCl in Terminalia catappa gum and to evaluate the buoyancy, in vitro drug release behavior, and pharmacokinetic parameters. All formulations exhibited good buoyancy properties in vitro reflected by floating lag time of 1-110 sec, total floating time of 9-16 h and prolonged release behaviour (upto 12 h). Statistically optimised formulation (PBGRso) was orally administered to human volunteers under both fasted and fed conditions to evaluate gastric floating behavior under different food conditions by X-ray evaluation. In vivo studies of optimised formulations revealed that the gastric residence time of floating tablets was enhanced in the fed but not in the fasted state. Pharmacokinetic studies of the optimised Terminalia catappa formulation and a commercial product (Ciplar LA 80) carried out on healthy human volunteers showed a significant improvement in the bioavailability (132%) of propranolol HCl released from from the experimental Terminalia catappa formulations compared with Ciplar LA 80.
    Matched MeSH terms: Delayed-Action Preparations/chemistry*
  18. Hezaveh H, Muhamad II
    Int J Biol Macromol, 2012 Jun 1;50(5):1334-40.
    PMID: 22484730 DOI: 10.1016/j.ijbiomac.2012.03.017
    In this article, modified κ-carrageenan hydrogel nanocomposites were synthesized to increase the release ability of carrageenan hydrogels under gastrointestinal conditions. The effect of MgO nanoparticle loading in a model drug (methylene blue) release is investigated. Characterization of hydrogels were carried out using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM) and Differential Scanning Calorimetry (DSC). Genipin was used to increase the delivery performance in gastrointestinal tract delivery by decreasing release in simulated stomach conditions and increasing release in simulated intestine conditions. It is shown that the amount of methylene blue released from genipin-cross-linked nanocomposites can be 67.5% higher in intestine medium and 56% lower in the stomach compared to κ-carrageenan hydrogel. It was found that by changing the nanoparticle loading and genipin concentration in the composite, the amount of drug released can be monitored. Therefore, applying nanoparticles appears to be a potential strategy to develop controlled drug delivery especially in gastrointestinal tract studies.
    Matched MeSH terms: Delayed-Action Preparations/chemistry
  19. Shah SA, Sohail M, Minhas MU, Nisar-Ur-Rehman, Khan S, Hussain Z, et al.
    Drug Deliv Transl Res, 2019 Apr;9(2):555-577.
    PMID: 29450805 DOI: 10.1007/s13346-018-0486-8
    Cellulose acetate phthalate-based pH-responsive hydrogel was synthesized for fabrication of polymeric matrix tablets for gastro-protective delivery of loxoprofen sodium. Cellulose acetate phthalate (CAP) was cross-linked with methacrylic acid (MAA) using free radical polymerization technique. Fourier transform infrared (FTIR) spectra confirmed the formation of cross-linked structure of CAP-co-poly(methacrylic acid). Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) confirmed the thermal stability of polymeric networks, and scanning electron microscopy (SEM) and energy-dispersive X-ray spectrum (EDS) images unveiled that the prepared formulations were porous in nature and thus the developed formulations had shown better diffusibility. Swelling and in vitro drug release was performed at various pHs and maximum swelling and release was obtained at pH 7.4, while swelling and release rate was very low at pH 1.2 which confirmed the pH-responsive behavior of CAP-co-poly(MAA). CAP-co-poly(MAA) copolymer prevents the release of loxoprofen sodium into the stomach due to reduced swelling at gastric pH while showing significant swelling and drug release in the colon. Cytotoxicity studies revealed higher biocompatibility of fabricated hydrogel. Acute oral toxicity studies were performed for the evaluation and preliminary screening of safety profile of the developed hydrogels. Matrix tablets were evaluated for release behavior at simulated body pH. The investigations performed for analysis of hydrogels and fabricated matrix tablets indicated the controlled drug release and gastro-protective drug delivery of CAP-co-poly(MAA) hydrogels and pH-sensitive matrix tablets for targeted delivery of gastro-sensitive/irritative agents. Graphical abstract.
    Matched MeSH terms: Delayed-Action Preparations/chemistry
  20. Gaaz TS, Sulong AB, Kadhum AAH, Al-Amiery AA, Nassir MH, Jaaz AH
    Molecules, 2017 May 20;22(5).
    PMID: 28531126 DOI: 10.3390/molecules22050838
    Nanotubular clay minerals, composed of aluminosilicate naturally structured in layers known as halloysite nanotubes (HNTs), have a significant reinforcing impact on polymer matrixes. HNTs have broad applications in biomedical applications, the medicine sector, implant alloys with corrosion protection and manipulated transportation of medicines. In polymer engineering, different research studies utilize HNTs that exhibit a beneficial enhancement in the properties of polymer-based nanocomposites. The dispersion of HNTs is improved as a result of pre-treating HNTs with acids. The HNTs' percentage additive up to 7% shows the highest improvement of tensile strength. The degradation of the polymer can be also significantly improved by doping a low percentage of HNTs. Both the mechanical and thermal properties of polymers were remarkably improved when mixed with HNTs. The effects of HNTs on the mechanical and thermal properties of polymers, such as ultimate strength, elastic modulus, impact strength and thermal stability, are emphasized in this study.
    Matched MeSH terms: Delayed-Action Preparations/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links