Displaying publications 1 - 20 of 33 in total

Abstract:
Sort:
  1. Shafie AA, Yeo HY, Coudeville L, Steinberg L, Gill BS, Jahis R, et al.
    Pharmacoeconomics, 2017 May;35(5):575-589.
    PMID: 28205150 DOI: 10.1007/s40273-017-0487-3
    BACKGROUND: Dengue disease poses a great economic burden in Malaysia.

    METHODS: This study evaluated the cost effectiveness and impact of dengue vaccination in Malaysia from both provider and societal perspectives using a dynamic transmission mathematical model. The model incorporated sensitivity analyses, Malaysia-specific data, evidence from recent phase III studies and pooled efficacy and long-term safety data to refine the estimates from previous published studies. Unit costs were valued in $US, year 2013 values.

    RESULTS: Six vaccination programmes employing a three-dose schedule were identified as the most likely programmes to be implemented. In all programmes, vaccination produced positive benefits expressed as reductions in dengue cases, dengue-related deaths, life-years lost, disability-adjusted life-years and dengue treatment costs. Instead of incremental cost-effectiveness ratios (ICERs), we evaluated the cost effectiveness of the programmes by calculating the threshold prices for a highly cost-effective strategy [ICER <1 × gross domestic product (GDP) per capita] and a cost-effective strategy (ICER between 1 and 3 × GDP per capita). We found that vaccination may be cost effective up to a price of $US32.39 for programme 6 (highly cost effective up to $US14.15) and up to a price of $US100.59 for programme 1 (highly cost effective up to $US47.96) from the provider perspective. The cost-effectiveness analysis is sensitive to under-reporting, vaccine protection duration and model time horizon.

    CONCLUSION: Routine vaccination for a population aged 13 years with a catch-up cohort aged 14-30 years in targeted hotspot areas appears to be the best-value strategy among those investigated. Dengue vaccination is a potentially good investment if the purchaser can negotiate a price at or below the cost-effective threshold price.

    Matched MeSH terms: Dengue Vaccines/administration & dosage*; Dengue Vaccines/economics
  2. Pang T, Gubler D, Goh DYT, Ismail Z, Asia Dengue Vaccine Advocacy Group
    Lancet, 2018 02 17;391(10121):654.
    PMID: 29617262 DOI: 10.1016/S0140-6736(18)30245-9
    Matched MeSH terms: Dengue Vaccines/adverse effects*; Dengue Vaccines/therapeutic use
  3. Nealon J, Taurel AF, Yoksan S, Moureau A, Bonaparte M, Quang LC, et al.
    J Infect Dis, 2019 Jan 09;219(3):375-381.
    PMID: 30165664 DOI: 10.1093/infdis/jiy513
    Background: Japanese encephalitis virus (JEV) is a zoonotic, mosquito-borne flavivirus, distributed across Asia. Infections are mostly mild or asymptomatic, but symptoms include neurological disorders, sequelae, and fatalities. Data to inform control strategies are limited due to incomplete case reporting.

    Methods: We used JEV serological data from a multicountry Asian dengue vaccine study in children aged 2-14 years to describe JEV endemicity, measuring antibodies by plaque reduction neutralization test (PRNT50).

    Results: A total 1479 unvaccinated subjects were included. A minimal estimate of pediatric JEV seroprevalence in dengue-naive individuals was 8.1% in Indonesia, 5.8% in Malaysia, 10.8% in the Philippines, and 30.7% in Vietnam, translating to annual infection risks varying from 0.8% (in Malaysia) to 5.2% (in Vietnam). JEV seroprevalence and annual infection estimates were much higher in children with history of dengue infection, indicating cross-neutralization within the JEV PRNT50 assay.

    Conclusions: These data confirm JEV transmission across predominantly urban areas and support a greater emphasis on JEV case finding, diagnosis, and prevention.

    Matched MeSH terms: Dengue Vaccines
  4. Hadinegoro SR, Arredondo-García JL, Capeding MR, Deseda C, Chotpitayasunondh T, Dietze R, et al.
    N Engl J Med, 2015 Sep 24;373(13):1195-206.
    PMID: 26214039 DOI: 10.1056/NEJMoa1506223
    BACKGROUND: A candidate tetravalent dengue vaccine is being assessed in three clinical trials involving more than 35,000 children between the ages of 2 and 16 years in Asian-Pacific and Latin American countries. We report the results of long-term follow-up interim analyses and integrated efficacy analyses.
    METHODS: We are assessing the incidence of hospitalization for virologically confirmed dengue as a surrogate safety end point during follow-up in years 3 to 6 of two phase 3 trials, CYD14 and CYD15, and a phase 2b trial, CYD23/57. We estimated vaccine efficacy using pooled data from the first 25 months of CYD14 and CYD15.
    RESULTS: Follow-up data were available for 10,165 of 10,275 participants (99%) in CYD14 and 19,898 of 20,869 participants (95%) in CYD15. Data were available for 3203 of the 4002 participants (80%) in the CYD23 trial included in CYD57. During year 3 in the CYD14, CYD15, and CYD57 trials combined, hospitalization for virologically confirmed dengue occurred in 65 of 22,177 participants in the vaccine group and 39 of 11,089 participants in the control group. Pooled relative risks of hospitalization for dengue were 0.84 (95% confidence interval [CI], 0.56 to 1.24) among all participants, 1.58 (95% CI, 0.83 to 3.02) among those under the age of 9 years, and 0.50 (95% CI, 0.29 to 0.86) among those 9 years of age or older. During year 3, hospitalization for severe dengue, as defined by the independent data monitoring committee criteria, occurred in 18 of 22,177 participants in the vaccine group and 6 of 11,089 participants in the control group. Pooled rates of efficacy for symptomatic dengue during the first 25 months were 60.3% (95% CI, 55.7 to 64.5) for all participants, 65.6% (95% CI, 60.7 to 69.9) for those 9 years of age or older, and 44.6% (95% CI, 31.6 to 55.0) for those younger than 9 years of age.
    CONCLUSIONS: Although the unexplained higher incidence of hospitalization for dengue in year 3 among children younger than 9 years of age needs to be carefully monitored during long-term follow-up, the risk among children 2 to 16 years of age was lower in the vaccine group than in the control group. (Funded by Sanofi Pasteur; ClinicalTrials.gov numbers, NCT00842530, NCT01983553, NCT01373281, and NCT01374516.).
    Matched MeSH terms: Dengue Vaccines/adverse effects; Dengue Vaccines/immunology*
  5. Capeding MR, Tran NH, Hadinegoro SR, Ismail HI, Chotpitayasunondh T, Chua MN, et al.
    Lancet, 2014 Oct 11;384(9951):1358-65.
    PMID: 25018116 DOI: 10.1016/S0140-6736(14)61060-6
    An estimated 100 million people have symptomatic dengue infection every year. This is the first report of a phase 3 vaccine efficacy trial of a candidate dengue vaccine. We aimed to assess the efficacy of the CYD dengue vaccine against symptomatic, virologically confirmed dengue in children.
    Matched MeSH terms: Dengue Vaccines/administration & dosage*; Dengue Vaccines/adverse effects
  6. L'Azou M, Moureau A, Sarti E, Nealon J, Zambrano B, Wartel TA, et al.
    N Engl J Med, 2016 Mar 24;374(12):1155-66.
    PMID: 27007959 DOI: 10.1056/NEJMoa1503877
    BACKGROUND: The control groups in two phase 3 trials of dengue vaccine efficacy included two large regional cohorts that were followed up for dengue infection. These cohorts provided a sample for epidemiologic analyses of symptomatic dengue in children across 10 countries in Southeast Asia and Latin America in which dengue is endemic.
    METHODS: We monitored acute febrile illness and virologically confirmed dengue (VCD) in 3424 healthy children, 2 to 16 years of age, in Asia (Indonesia, Malaysia, the Philippines, Thailand, and Vietnam) from June 2011 through December 2013 and in 6939 children, 9 to 18 years of age, in Latin America (Brazil, Colombia, Honduras, Mexico, and Puerto Rico) from June 2011 through April 2014. Acute febrile episodes were determined to be VCD by means of a nonstructural protein 1 antigen immunoassay and reverse-transcriptase-polymerase-chain-reaction assays. Dengue hemorrhagic fever was defined according to 1997 World Health Organization criteria.
    RESULTS: Approximately 10% of the febrile episodes in each cohort were confirmed to be VCD, with 319 VCD episodes (4.6 episodes per 100 person-years) occurring in the Asian cohort and 389 VCD episodes (2.9 episodes per 100 person-years) occurring in the Latin American cohort; no trend according to age group was observed. The incidence of dengue hemorrhagic fever was less than 0.3 episodes per 100 person-years in each cohort. The percentage of VCD episodes requiring hospitalization was 19.1% in the Asian cohort and 11.1% in the Latin American cohort. In comparable age groups (9 to 12 years and 13 to 16 years), the burden of dengue was higher in Asia than in Latin America.
    CONCLUSIONS: The burdens of dengue were substantial in the two regions and in all age groups. Burdens varied widely according to country, but the rates were generally higher and the disease more frequently severe in Asian countries than in Latin American countries. (Funded by Sanofi Pasteur; CYD14 and CYD15 ClinicalTrials.gov numbers, NCT01373281 and NCT01374516.).
    Note: Malaysia is a study site (CYD14 Primary Study Group authors: HIHJMI, Pediatric Institute, Kuala Lumpur Hospital, Kuala Lumpur; RN, Department of Paediatrics, Hospital Pulau Pinang, Pulau Pinang, Malaysia)
    Matched MeSH terms: Dengue Vaccines*
  7. Jelitha R, Nirmalatiban P, Nyanamalar S, Cabriz MG
    Med J Malaysia, 2015 Apr;70(2):67-75.
    PMID: 26162380
    Dengue vaccine development has been one of the strategies to reduce dengue incidence in the world alongside with other horizontal interventions such as vector control and the transgenic mosquito programmes. The objective of this paper is to evaluate the safety, reactogenicity and immunogenicity of dengue vaccine clinical trials for the last ten years systematically through a descriptive review. This paper discusses safety issues like adverse events, systemic adverse reactions, injection site reactions, viraemia, morbidity and mortality as well as immunogenicity which measures effectiveness through mean geometric titre and seropositive rates. Adverse events were seen to range from 0% to 28.3%. Immunogenicity was noted to increase post 1st and 2nd dose and decrease post 3rd dose. The seropositivity at baseline ranged between 53.1% and 97.8% at post 3rd dose, and it was 88.5% for at least four serotypes. The dengue vaccine studies that were reviewed were shown to be relatively safe with low reactogenicity, however the immunogenicity was unequal and waning. The immunogenicity waned post 3rd dose showing a decrease in all serotypes of varying degrees although the seropositivity, on average, at post 3rd dose was 97.8%. It can be concluded that dengue vaccine development would require further studies on its unequal and waning immunogenicity, which could result in a more severe form of dengue following wild infection, during re-immunisation, especially if there is variation in the circulating virus.
    Matched MeSH terms: Dengue Vaccines
  8. Chen RE, Smith BK, Errico JM, Gordon DN, Winkler ES, VanBlargan LA, et al.
    Cell Host Microbe, 2021 Nov 10;29(11):1634-1648.e5.
    PMID: 34610295 DOI: 10.1016/j.chom.2021.09.006
    Although divergent dengue viruses (DENVs) have been isolated in insects, nonhuman primates, and humans, their relationships to the four canonical serotypes (DENV 1-4) are poorly understood. One virus isolated from a dengue patient, DKE-121, falls between genotype and serotype levels of sequence divergence to DENV-4. To examine its antigenic relationship to DENV-4, we assessed serum neutralizing and protective activity. Whereas DENV-4-immune mouse sera neutralize DKE-121 infection, DKE-121-immune sera inhibit DENV-4 less efficiently. Passive transfer of DENV-4 or DKE-121-immune sera protects mice against homologous, but not heterologous, DENV-4 or DKE-121 challenge. Antigenic cartography suggests that DENV-4 and DKE-121 are related but antigenically distinct. However, DENV-4 vaccination confers protection against DKE-121 in nonhuman primates, and serum from humans immunized with a tetravalent vaccine neutralize DENV-4 and DKE-121 infection equivalently. As divergent DENV strains, such as DKE-121, may meet criteria for serotype distinction, monitoring their capacity to impact dengue disease and vaccine efficacy appears warranted.
    Matched MeSH terms: Dengue Vaccines/immunology*
  9. Ramanathan B, Poh CL, Kirk K, McBride WJ, Aaskov J, Grollo L
    PLoS One, 2016;11(5):e0155900.
    PMID: 27223692 DOI: 10.1371/journal.pone.0155900
    Dengue virus (DENV) is a major public health threat worldwide. A key element in protection from dengue fever is the neutralising antibody response. Anti-dengue IgG purified from DENV-2 infected human sera showed reactivity against several peptides when evaluated by ELISA and epitope extraction techniques. A multi-step computational approach predicted six antigenic regions within the E protein of DENV-2 that concur with the 6 epitopes identified by the combined ELISA and epitope extraction approach. The selected peptides representing B-cell epitopes were attached to a known dengue T-helper epitope and evaluated for their vaccine potency. Immunization of mice revealed two novel synthetic vaccine constructs that elicited good humoral immune responses and produced cross-reactive neutralising antibodies against DENV-1, 2 and 3. The findings indicate new directions for epitope mapping and contribute towards the future development of multi-epitope based synthetic peptide vaccine.
    Matched MeSH terms: Dengue Vaccines/immunology*; Dengue Vaccines/chemistry
  10. Tomashek KM, Wills B, See Lum LC, Thomas L, Durbin A, Leo YS, et al.
    PLoS Negl Trop Dis, 2018 10;12(10):e0006497.
    PMID: 30286085 DOI: 10.1371/journal.pntd.0006497
    Dengue is a major public health problem worldwide. Although several drug candidates have been evaluated in randomized controlled trials, none has been effective and at present, early recognition of severe dengue and timely supportive care are used to reduce mortality. While the first dengue vaccine was recently licensed, and several other candidates are in late stage clinical trials, future decisions regarding widespread deployment of vaccines and/or therapeutics will require evidence of product safety, efficacy and effectiveness. Standard, quantifiable clinical endpoints are needed to ensure reproducibility and comparability of research findings. To address this need, we established a working group of dengue researchers and public health specialists to develop standardized endpoints and work towards consensus opinion on those endpoints. After discussion at two working group meetings and presentations at international conferences, a Delphi methodology-based query was used to finalize and operationalize the clinical endpoints. Participants were asked to select the best endpoints from proposed definitions or offer revised/new definitions, and to indicate whether contributing items should be designated as optional or required. After the third round of inquiry, 70% or greater agreement was reached on moderate and severe plasma leakage, moderate and severe bleeding, acute hepatitis and acute liver failure, and moderate and severe neurologic disease. There was less agreement regarding moderate and severe thrombocytopenia and moderate and severe myocarditis. Notably, 68% of participants agreed that a 50,000 to 20,000 mm3 platelet range be used to define moderate thrombocytopenia; however, they remained divided on whether a rapid decreasing trend or one platelet count should be case defining. While at least 70% agreement was reached on most endpoints, the process identified areas for further evaluation and standardization within the context of ongoing clinical studies. These endpoints can be used to harmonize data collection and improve comparability between dengue clinical trials.
    Matched MeSH terms: Dengue Vaccines/immunology
  11. Coudeville L, Baurin N, L'Azou M, Guy B
    Vaccine, 2016 12 07;34(50):6426-6435.
    PMID: 27601343 DOI: 10.1016/j.vaccine.2016.08.050
    BACKGROUND: A tetravalent dengue vaccine demonstrated its protective efficacy in two phase III efficacy studies. Results from these studies were used to derive vaccination impact in the five Asian (Indonesia, Malaysia, Philippines, Thailand, Vietnam) and the five Latin American countries (Brazil, Colombia, Honduras, Mexico and Puerto Rico) participating in these trials.

    METHODS: Vaccination impact was investigated with an age-structured, host-vector, serotype-specific compartmental model. Parameters related to vaccine efficacy and levels of dengue transmission were estimated using data collected during the phase III efficacy studies. Several vaccination programs, including routine vaccination at different ages with and without large catch-up campaigns, were investigated.

    RESULTS: All vaccination programs explored translated into significant reductions in dengue cases at the population level over the first 10years following vaccine introduction and beyond. The most efficient age for vaccination varied according to transmission intensity and 9years was close to the most efficient age across all settings. The combination of routine vaccination and large catch-up campaigns was found to enable a rapid reduction of dengue burden after vaccine introduction.

    CONCLUSION: Our analysis suggests that dengue vaccination can significantly reduce the public health impact of dengue in countries where the disease is endemic.

    Matched MeSH terms: Dengue Vaccines/administration & dosage*; Dengue Vaccines/immunology*
  12. Nealon J, Lim WY, Moureau A, Linus Lojikip S, Junus S, Kumar S, et al.
    Vaccine, 2019 09 16;37(39):5891-5898.
    PMID: 31445770 DOI: 10.1016/j.vaccine.2019.07.083
    BACKGROUND: The world's first dengue vaccine [Dengvaxia; Sanofi Pasteur] was licensed in 2015 and others are in development. Real-world evaluations of dengue vaccines will therefore soon be needed. We assessed feasibility of case control (CC) and test-negative (TN) design studies for dengue vaccine effectiveness by measuring associations between socio-demographic risk factors, and hospitalized dengue outcomes, in Malaysia.

    METHODS: Following ethical approval, we conducted hospital-based dengue surveillance for one year in three referral hospitals. Suspected cases aged 9-25 years underwent dengue virological confirmation by RT-PCR and/or NS1 Ag ELISA at a central laboratory. Two age- and geography-matched hospitalized non-dengue case-controls were recruited for a traditional CC study. Suspected cases testing negative were test-negative controls. Socio-demographic, risk factor and routine laboratory data were collected. Logistic regression models were used to estimate associations between confirmed dengue and risk factors.

    RESULTS: We recruited 327 subjects; 155 were suspected of dengue. The planned sample size was not met. 124 (80%) of suspected cases were dengue-confirmed; seven were assessed as severe. Three had missing RT-PCR results; the study recruited 28 test-negative controls. Only 172 matched controls could be recruited; 90 cases were matched with ≥1 controls. Characteristics of cases and controls were mostly similar. By CC design, two variables were significant risk factors for hospitalized dengue: recent household dengue contact (OR: 54, 95% CI: 7.3-397) and recent neighbourhood insecticidal fogging (OR: 2.1; 95% CI: 1.3-3.6). In the TN design, no risk factors were identified. In comparison with gold-standard diagnostics, routine tests performed poorly.

    CONCLUSIONS: The CC design may be more appropriate than the TN design for hospitalized dengue vaccine effectiveness studies. Selection bias in case control selection could be minimized by protocol changes more easily than increasing TN design control numbers, because early-stage dengue diagnosis in endemic countries is highly specific. MREC study approval: (39)KKM/NIHSEC/P16-1334.

    Matched MeSH terms: Dengue Vaccines/immunology*
  13. Hss AS, Koh MT, Tan KK, Chan LG, Zhou L, Bouckenooghe A, et al.
    Vaccine, 2013 Dec 2;31(49):5814-21.
    PMID: 24135573 DOI: 10.1016/j.vaccine.2013.10.013
    Dengue disease is a major public health problem across the Asia-Pacific region for which there is no licensed vaccine or treatment. We evaluated the safety and immunogenicity of Phase III lots of a candidate vaccine (CYD-TDV) in children in Malaysia.
    Matched MeSH terms: Dengue Vaccines/adverse effects; Dengue Vaccines/therapeutic use*
  14. Tan WL, Lee YK, Ho YF, Yusof R, Abdul Rahman N, Karsani SA
    PeerJ, 2018;5:e3939.
    PMID: 29404200 DOI: 10.7717/peerj.3939
    Dengue is endemic throughout tropical and subtropical regions of the world. Currently, there is no clinically approved therapeutic drug available for this acute viral infection. Although the first dengue vaccine Dengvaxia has been approved for use in certain countries, it is limited to those without a previous dengue infection while the safety and efficacy of the vaccine in those elderly and younger children still need to be identified. Therefore, it is becoming increasingly important to develop therapeutics/drugs to combat dengue virus (DENV) infection. YK51 is a synthetic analogue of 4-Hydroxypandurantin A (a compound found in the crude extract of the rhizomes of Boesenbergia rotunda) that has been extensively studied by our research group. It has been shown to possess outstanding antiviral activity due to its inhibitory activity against NS2B/NS3 DENV2 protease. However, it is not known how YK51 affects the proteome of DENV infected cells. Therefore, we performed a comparative proteomics analysis to identify changes in protein expression in DENV infected HepG2 cells treated with YK51. Classical two-dimensional gel electrophoresis followed by protein identification using tandem mass spectrometry was employed in this study. Thirty proteins were found to be down-regulated with YK51 treatment. In silico analysis predicted that the down-regulation of eight of these proteins may inhibit viral infection. Our results suggested that apart from inhibiting the NS2B/NS3 DENV2 protease, YK51 may also be causing the down-regulation of a number of proteins that may be responsible in, and/or essential to virus infection. However, functional characterization of these proteins will be necessary before we can conclusively determine their roles in DENV infection.
    Matched MeSH terms: Dengue Vaccines
  15. Chong LC, Khan AM
    BMC Genomics, 2019 Dec 24;20(Suppl 9):921.
    PMID: 31874646 DOI: 10.1186/s12864-019-6311-z
    BACKGROUND: The sequence diversity of dengue virus (DENV) is one of the challenges in developing an effective vaccine against the virus. Highly conserved, serotype-specific (HCSS), immune-relevant DENV sequences are attractive candidates for vaccine design, and represent an alternative to the approach of selecting pan-DENV conserved sequences. The former aims to limit the number of possible cross-reactive epitope variants in the population, while the latter aims to limit the cross-reactivity between the serotypes to favour a serotype-specific response. Herein, we performed a large-scale systematic study to map and characterise HCSS sequences in the DENV proteome.

    METHODS: All reported DENV protein sequence data for each serotype was retrieved from the NCBI Entrez Protein (nr) Database (txid: 12637). The downloaded sequences were then separated according to the individual serotype proteins by use of BLASTp search, and subsequently removed for duplicates and co-aligned across the serotypes. Shannon's entropy and mutual information (MI) analyses, by use of AVANA, were performed to measure the diversity within and between the serotype proteins to identify HCSS nonamers. The sequences were evaluated for the presence of promiscuous T-cell epitopes by use of NetCTLpan 1.1 and NetMHCIIpan 3.2 server for human leukocyte antigen (HLA) class I and class II supertypes, respectively. The predicted epitopes were matched to reported epitopes in the Immune Epitope Database.

    RESULTS: A total of 2321 nonamers met the HCSS selection criteria of entropy  0.8. Concatenating these resulted in a total of 337 HCSS sequences. DENV4 had the most number of HCSS nonamers; NS5, NS3 and E proteins had among the highest, with none in the C and only one in prM. The HCSS sequences were immune-relevant; 87 HCSS sequences were both reported T-cell epitopes/ligands in human and predicted epitopes, supporting the accuracy of the predictions. A number of the HCSS clustered as immunological hotspots and exhibited putative promiscuity beyond a single HLA supertype. The HCSS sequences represented, on average, ~ 40% of the proteome length for each serotype; more than double of pan-DENV sequences (conserved across the four serotypes), and thus offer a larger choice of sequences for vaccine target selection. HCSS sequences of a given serotype showed significant amino acid difference to all the variants of the other serotypes, supporting the notion of serotype-specificity.

    CONCLUSION: This work provides a catalogue of HCSS sequences in the DENV proteome, as candidates for vaccine target selection. The methodology described herein provides a framework for similar application to other pathogens.

    Matched MeSH terms: Dengue Vaccines/immunology
  16. Lam SK
    Expert Rev Vaccines, 2013 Sep;12(9):995-1010.
    PMID: 24053394 DOI: 10.1586/14760584.2013.824712
    Dengue is a major public health concern worldwide, with the number of infections increasing globally. The illness imposes the greatest economic and human burden on developing countries that have limited resources to deal with the scale of the problem. No cure for dengue exists; treatment is limited to rehydration therapy, and with vector control strategies proving to be relatively ineffective, a vaccine is an urgent priority. Despite the numerous challenges encountered in the development of a dengue vaccine, several vaccine candidates have shown promise in clinical development and it is believed that a vaccination program would be at least as cost-effective as current vector control programs. The lead candidate vaccine is a tetravalent, live attenuated, recombinant vaccine, which is currently in Phase III clinical trials. Vaccine introduction is a complex process that requires consideration and is discussed here. This review discusses the epidemiology, burden and pathogenesis of dengue, as well as the vaccine candidates currently in clinical development.
    Matched MeSH terms: Dengue Vaccines/administration & dosage*; Dengue Vaccines/immunology*
  17. Kok BH, Lim HT, Lim CP, Lai NS, Leow CY, Leow CH
    Virus Res, 2023 Jan 15;324:199018.
    PMID: 36493993 DOI: 10.1016/j.virusres.2022.199018
    The transmission of dengue virus (DENV) from an infected Aedes mosquito to a human, causes illness ranging from mild dengue fever to fatal dengue shock syndrome. The similar conserved structure and sequence among distinct DENV serotypes or different flaviviruses has resulted in the occurrence of cross reaction followed by antibody-dependent enhancement (ADE). Thus far, the vaccine which can provide effective protection against infection by different DENV serotypes remains the biggest hurdle to overcome. Therefore, deep investigation is crucial for the potent and effective therapeutic drugs development. In addition, the cross-reactivity of flaviviruses that leads to false diagnosis in clinical settings could result to delay proper intervention management. Thus, the accurate diagnostic with high specificity and sensitivity is highly required to provide prompt diagnosis in respect to render early treatment for DENV infected individuals. In this review, the recent development of neutralizing antibodies, antiviral agents, and vaccine candidates in therapeutic platform for DENV infection will be discussed. Moreover, the discovery of antigenic cryptic epitopes, principle of molecular mimicry, and application of single-chain or single-domain antibodies towards DENV will also be presented.
    Matched MeSH terms: Dengue Vaccines*
  18. Chew CH, Goh PP, Lim TO
    N Engl J Med, 2016 04 07;374(14):1388.
    PMID: 27050221 DOI: 10.1056/NEJMc1514451
    Matched MeSH terms: Dengue Vaccines/immunology*
  19. Pang EL, Loh HS
    Asian Pac J Trop Med, 2017 Mar;10(3):220-228.
    PMID: 28442105 DOI: 10.1016/j.apjtm.2017.03.003
    Dengue has been ranked as one of the top emerging diseases in Asia and Latin America. Current epidemiological data may not even reflect the true burden of disease due to under-reported figures. Vector control programmes have failed to contain the disease and worst of all, no specific treatment is available at the moment. Thereby, this pushes the demand for a dengue vaccine as a long-term protective approach. Despite there are numerous vaccine candidates ahead, they could be held back by different aspects in promoting vaccine implementation. Particularly for developing nations, logistics and cost are the major hurdles that need to be addressed in order to provide a quick yet affordable medical relief. As an alternative, plant-based vaccine production system is able to offer an attractive prospect given to its advantages of biocontainment warranty, low operation cost, rapid scalability and logistics flexibility. Researches that have embarked on this scope are laid out and reviewed in terms of the feasibility of plant system to serve as a biofactory for dengue vaccine.
    Matched MeSH terms: Dengue Vaccines
  20. Hassan J, Toh TH, Sivapunniam SK, Hasim R, Ghazali NF, Sulaiman S, et al.
    Pediatr Infect Dis J, 2021 08 01;40(8):774-781.
    PMID: 34250977 DOI: 10.1097/INF.0000000000003164
    BACKGROUND: Incorporating dengue vaccination within existing vaccination programs could help improve dengue vaccine coverage. We assessed the immunogenicity and safety of a quadrivalent human papillomavirus (HPV) vaccine administered concomitantly or sequentially with a tetravalent dengue vaccine (CYD-TDV) in healthy children 9-13 years of age in Malaysia.

    METHODS: In this phase IIIb, open-label, multicenter study (NCT02993757), participants were randomized 1:1 to receive 3 CYD-TDV doses 6 months apart and 2 doses of quadrivalent HPV vaccine concomitantly with, or 1 month before (sequentially), the first 2 CYD-TDV doses. Only baseline dengue-seropositive participants received the 3 doses. Antibody levels were measured at baseline and 28 days after each injection using an enzyme-linked immunosorbent assay for HPV-6, -9, -16 and -18, and the 50% plaque reduction neutralization test for the 4 dengue serotypes; immunogenicity results are presented for baseline dengue-seropositive participants. Safety was assessed throughout the study for all participants.

    RESULTS: At baseline, 197 of 528 (37.3%) randomized participants were dengue-seropositive [n = 109 (concomitant group) and n = 88 (sequential group)]. After the last HPV vaccine dose, antibody titers for HPV among baseline dengue-seropositive participants were similar between treatment groups, with between-group titer ratios close to 1 for HPV-6 and 0.8 for HPV-11, -16, and -18. After CYD-TDV dose 3, dengue antibody titers were similar between treatment groups for all serotypes [between-group ratios ranged from 0.783 (serotype 2) to 1.07 (serotype 4)]. No safety concerns were identified.

    CONCLUSIONS: The immunogenicity and safety profiles of CYD-TDV and quadrivalent HPV vaccines were unaffected when administered concomitantly or sequentially in dengue-seropositive children.

    Matched MeSH terms: Dengue Vaccines/administration & dosage*; Dengue Vaccines/immunology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links