Displaying publications 1 - 20 of 59 in total

Abstract:
Sort:
  1. Mohammadi Arvanag F, Bayrami A, Habibi-Yangjeh A, Rahim Pouran S
    Mater Sci Eng C Mater Biol Appl, 2019 Apr;97:397-405.
    PMID: 30678925 DOI: 10.1016/j.msec.2018.12.058
    Green synthesis of ZnO nanoparticles (NPs) using the plants' extract and their potential application have driven a tremendous interest in recent years. This study reports a green microwave-assisted method for synthesis of ZnO NPs using Silybum marianum L. seed extract. Characteristics of the as-prepared sample was explored in terms of crystalline phase, morphology, composition, surface area, optical, and thermal properties. The particles of the biosynthesized sample (ZnO/extract) had smaller sizes than the chemically produced one (ZnO). The existence of biomolecules from Silybum marianum L seed extract linked to the ZnO/extract sample was approved by various analyses. The ZnO/extract sample was used for treating alloxan-induced diabetic rats and its efficiency was compared with ZnO, extract, and insulin treatments. For this purpose, the levels of blood glucose, insulin, total cholesterol, total triglyceride, and high-density lipoprotein were measured before and after treating with the studied treatment agents and compared with each other. Moreover, the antibacterial activities of both ZnO samples were investigated against E. coli to assess their potential antibacterial application. From the results, ZnO/extract NPs represented an outstanding performance in overcoming the diabetic disorders and good antibacterial activity against the studied bacteria.
    Matched MeSH terms: Diabetes Mellitus, Experimental/metabolism
  2. Armenia, Sattar MA, Abdullah NA, Khan MA, Johns EJ
    Auton Autacoid Pharmacol, 2008 Jan;28(1):1-10.
    PMID: 18257746 DOI: 10.1111/j.1474-8673.2007.00412.x
    1 The present study investigated the effect of streptozotocin-induced diabetes on alpha(1)-adrenoceptor subtypes in rat renal resistance vessels. 2 Studies on renal haemodynamics were carried out 7 days after the last streptozotocin. Changes in renal blood flow were recorded in response to electrical stimulation of the renal nerve (RNS) and a range of adrenergic agonists; noradrenaline (NA), phenylephrine (PE) and methoxamine (MTX), either in the absence or the presence of nitrendipine (Nit), 5-methylurapidil (MEU), chlorethylclonidine (CEC) or BMY 7378. 3 In non-diabetic animals, Nit, MEU and BMY 7378 significantly attenuated renal vasoconstriction induced by adrenergic agonists, while CEC showed a significant accentuation in RNS-induced responses without having a significant effect on responses to adrenergic agonists. In diabetic rats, renal vasoconstriction was also significantly reduced in Nit-, MEU- and BMY 7378-treated groups and CEC potentiated RNS-induced contractions caused a change similar to that observed in non-diabetic rats. BMY 7378 significantly (P < 0.05) attenuated the PE- and MTX-induced vasoconstrictions but did not cause any significant (P > 0.05) alteration in the RNS- and NA-induced responses. 4 The results showed functional co-existence of alpha(1A)- and alpha(1D)-adrenoceptors in the renal vasculature of SD rats irrespective of the presence of diabetes. A possible minor contribution of prejunctional alpha-adrenoceptor subtype has also been suggested in either experimental group, particularly possible functional involvement of alpha(1B)-adrenoceptor subtypes in non-diabetic SD rats.
    Matched MeSH terms: Diabetes Mellitus, Experimental/metabolism*
  3. Sharma JN, Kesavarao U, Yusof AP
    Immunopharmacology, 1999 Sep;43(2-3):129-32.
    PMID: 10596843 DOI: 10.1016/s0162-3109(99)00070-3
    The present investigation was aimed at evaluating the cardiac and total plasma kininogen levels, as well as LVWT in hypertensive and diabetic rats. STZ-induced diabetes produced a significant (P < 0.001) rise in mean arterial blood pressure (BP). The LVWT increased (P < 0.001) in SHR with and without diabetes) and diabetic WKYR. The cardiac tissue, as well as total plasma kininogen levels fell significantly (P < 0.001) in diabetic WKYR and SHR with and without diabetes compared to the control WKYR. These findings suggest that reduced kininogen levels may indicate a deficiency in kinin generation in the heart and in the peripheral circulation in diabetic and hypertensive rats. This effect may contribute to the development of LVH.
    Matched MeSH terms: Diabetes Mellitus, Experimental/metabolism*
  4. Arya A, Looi CY, Cheah SC, Mustafa MR, Mohd MA
    J Ethnopharmacol, 2012 Oct 31;144(1):22-32.
    PMID: 22954496 DOI: 10.1016/j.jep.2012.08.014
    Seeds of Centratherum anthelminticum (Asteraceae) have been popularly used in Ayurvedic medicine to treat diabetes and skin disorders. Folk medicine from Rayalaseema (Andhra Pradesh, India) reported wide spread usage in diabetes.
    Matched MeSH terms: Diabetes Mellitus, Experimental/metabolism
  5. Chaudhry SRY, Akram A, Aslam N, Wajid M, Iqbal Z, Nazir I, et al.
    Pak J Pharm Sci, 2019 Mar;32(2):505-514.
    PMID: 31081759
    Echinops echinatus is traditionally an important plant that finds its extensive use as a diuretic, anti-inflammatory, anti-pyretic, nerve tonic, abortifacient, aphrodisiac, antiasthmatic, and antidiabetic agent. The current study investigates protection against the hyperglycemia and dyslipidemia in alloxan-induced (type I diabetes) and fructose-fed insulin resistance (type II diabetes) models of diabetes treated with aqueous methanolic root extract of E. echinatus (Ee.Cr). Albino rats were treated orally with Ee.Cr at doses 100, 300 and 500mg/kg. The fasting blood glucose was measured by glucometer, while standard kits were used to determine the levels of serum total cholesterol, triglycerides and HDL. The administration of Ee.Cr significantly (P<0.001) reduced the FBG concentration in a dose-dependent pattern in alloxan-induced and fructose-fed diabetic rats. The Ee.Cr also corrected the dyslipidemia associated with fructose and alloxan-induced diabetes by significantly (P<0.001) decreasing the concentration of serum total cholesterol, triglycerides, and LDL and by increasing HDL concentration. Ee.Cr also significantly (P<0.001) improved the glucose tolerance in fructose-fed rats. We conclude that Ee.Cr has antidiabetic and antidyslipidemic effects in both insulin-dependent alloxan-induced diabetes and fructose-induced insulin resistance diabetes rat models.
    Matched MeSH terms: Diabetes Mellitus, Experimental/metabolism
  6. Hassan Z, Yam MF, Ahmad M, Yusof AP
    Molecules, 2010;15(12):9008-23.
    PMID: 21150821 DOI: 10.3390/molecules15129008
    Gynura procumbens (Lour.) Merr (family Compositae) is cultivated in Southeast Asia, especially Indonesia, Malaysia and Thailand, for medicinal purposes. This study evaluated the in vivo hypoglycemic properties of the water extract of G. procumbens following 14 days of treatment and in vitro in RIN-5F cells. Glucose absorption from the intestines and its glucose uptake in abdominal skeletal muscle were assessed. The antidiabetic effect of water extract of G. procumbens leaves was investigated in streptozotocin-induced diabetic rats. The intraperitoneal glucose tolerance test (IPGTT) was performed in diabetic rats treated with G. procumbens water extract for 14 days. In the IPGTT, blood was collected for insulin and blood glucose measurement. After the IPGTT, the pancreases were collected for immunohistochemical study of β-cells of the islets of Langerhans. The possible antidiabetic mechanisms of G. procumbens were assessed through in vitro RIN-5F cell study, intestinal glucose absorption and glucose uptake by muscle. The results showed that G. procumbens significantly decreased blood glucose levels after 14 days of treatment and improved outcome of the IPGTT. However, G. procumbens did not show a significant effect on insulin level either in the in vivo test or the in vitro RIN-5F cell culture study. G. procumbens also showed minimal effects on β-cells of the islets of Langerhans in the pancreas. However, G. procumbens only significantly increased glucose uptake by muscle tissues. From the findings we can conclude that G. procumbens water extract exerted its hypoglycemic effect by promoting glucose uptake by muscles.
    Matched MeSH terms: Diabetes Mellitus, Experimental/metabolism
  7. Mohamed EA, Yam MF, Ang LF, Mohamed AJ, Asmawi MZ
    J Acupunct Meridian Stud, 2013 Feb;6(1):31-40.
    PMID: 23433053 DOI: 10.1016/j.jams.2013.01.005
    Orthosiphon stamineus is a popular folk medicine widely used to treat many diseases including diabetes. Previous studies have shown that the sub-fraction of chloroform extract was able to inhibit the rise of blood glucose levels in a glucose tolerance test. This study was carried out to evaluate the chronic effect and possible mechanism of action of the bioactive chloroform sub-fraction of O. stamineus using streptozotocin-induced diabetic rats and in vitro methods. Administration of the chloroform extract sub-fraction 2 (Cƒ2-b) at a dose of 1 g/kg twice daily on diabetic rats for 14 days showed a significant lowering (p < 0.05) of the final blood glucose level compared to the pretreatment level. However, there were no significant differences in the plasma insulin levels post-treatment compared to the pretreatment levels for all doses of Cƒ2-b. Conversely, Cƒ2-b at a concentration of 2 mg/mL significantly increased (p < 0.001) the glucose uptake by the rat diaphragm muscle. The increase in glucose uptake was also shown when the muscle was incubated in a solution containing 1 IU/mL of insulin or 1 mg/mL of metformin. Furthermore, the effect of this sub-fraction on glucose absorption in the everted rat jejunum showed that Cƒ2-b at concentrations of 0.5 mg/mL, 1 mg/mL and, 2 mg/mL significantly reduced the glucose absorption of the jejunum (p < 0.05-0.001). Similarly, the absorption of glucose was also inhibited by 1 mg/mL and 2 mg/mL of metformin (p < 0.001). These results suggest that the effect of Cƒ2-b may be due to extra-pancreatic mechanisms. There was no evidence that the plant extract stimulated the release of insulin in order to lower the blood glucose level.
    Matched MeSH terms: Diabetes Mellitus, Experimental/metabolism
  8. Varatharajan R, Sattar MZ, Chung I, Abdulla MA, Kassim NM, Abdullah NA
    PMID: 24074026 DOI: 10.1186/1472-6882-13-242
    Catechins-rich oil palm (Elaeis guineensis) leaves extract (OPLE) is known to have antioxidant activity. Several polyphenolic compounds reported as antioxidants such as quercetin, catechins and gallic acid have been highlighted to have pro-oxidant activity at high doses. Therefore, the present study was conducted to investigate the antioxidant and pro-oxidant effects of chronically administering high dose of OPLE (1000 mg kg⁻¹) in an animal model of diabetic nephropathy (DN).
    Matched MeSH terms: Diabetes Mellitus, Experimental/metabolism
  9. Ali RB, Atangwho IJ, Kaur N, Abraika OS, Ahmad M, Mahmud R, et al.
    Molecules, 2012 Apr 30;17(5):4986-5002.
    PMID: 22547320 DOI: 10.3390/molecules17054986
    An earlier anti-hyperglycemic study with serial crude extracts of Phaleria macrocarpa (PM) fruit indicated methanol extract (ME) as the most effective. In the present investigation, the methanol extract was further fractionated to obtain chloroform (CF), ethyl acetate (EAF), n-butanol (NBF) and aqueous (AF) fractions, which were tested for antidiabetic activity. The NBF reduced blood glucose (p < 0.05) 15 min after administration, in an intraperitoneal glucose tolerance test (IPGTT) similar to metformin. Moreover, it lowered blood glucose in diabetic rats by 66.67% (p < 0.05), similar to metformin (51.11%), glibenclamide (66.67%) and insulin (71.43%) after a 12-day treatment, hence considered to be the most active fraction. Further fractionation of NBF yielded sub-fractions I (SFI) and II (SFII), and only SFI lowered blood glucose (p < 0.05), in IPGTT similar to glibenclamide. The ME, NBF, and SFI correspondingly lowered plasma insulin (p < 0.05) and dose-dependently inhibited glucose transport across isolated rat jejunum implying an extra-pancreatic mechanism. Phytochemical screening showed the presence of flavonoids, terpenes and tannins, in ME, NBF and SFI, and LC-MS analyses revealed 9.52%, 33.30% and 22.50% mangiferin respectively. PM fruit possesses anti-hyperglycemic effect, exerted probably through extra-pancreatic action. Magniferin, contained therein may be responsible for this reported activity.
    Matched MeSH terms: Diabetes Mellitus, Experimental/metabolism
  10. Lau YS, Tian XY, Huang Y, Murugan D, Achike FI, Mustafa MR
    Biochem Pharmacol, 2013 Feb 1;85(3):367-75.
    PMID: 23178655 DOI: 10.1016/j.bcp.2012.11.010
    Increased oxidative stress is involved in the pathogenesis and progression of diabetes. Antioxidants are therapeutically beneficial for oxidative stress-associated diseases. Boldine ([s]-2,9-dihydroxy-1,10-dimethoxyaporphine) is a major alkaloid present in the leaves and bark of the boldo tree (Peumus boldus Molina), with known an antioxidant activity. This study examined the protective effects of boldine against high glucose-induced oxidative stress in rat aortic endothelial cells (RAEC) and its mechanisms of vasoprotection related to diabetic endothelial dysfunction. In RAEC exposed to high glucose (30 mM) for 48 h, pre-treatment with boldine reduced the elevated ROS and nitrotyrosine formation, and preserved nitric oxide (NO) production. Pre-incubation with β-NAPDH reduced the acetylcholine-induced endothelium-dependent relaxation; this attenuation was reversed by boldine. Compared with control, endothelium-dependent relaxation in the aortas of streptozotocin (STZ)-treated diabetic rats was significantly improved by both acute (1 μM, 30 min) and chronic (20mg/kg/daily, i.p., 7 days) treatment with boldine. Intracellular superoxide and peroxynitrite formation measured by DHE fluorescence or chemiluminescence assay were higher in sections of aortic rings from diabetic rats compared with control. Chronic boldine treatment normalized ROS over-production in the diabetic group and this correlated with reduction of NAD(P)H oxidase subunits, NOX2 and p47(phox). The present study shows that boldine reversed the increased ROS formation in high glucose-treated endothelial cells and restored endothelial function in STZ-induced diabetes by inhibiting oxidative stress and thus increasing NO bioavailability.
    Matched MeSH terms: Diabetes Mellitus, Experimental/metabolism
  11. Bera H, Mothe S, Maiti S, Vanga S
    Int J Biol Macromol, 2018 Feb;107(Pt A):604-614.
    PMID: 28916379 DOI: 10.1016/j.ijbiomac.2017.09.027
    Novel carboxymethyl fenugreek galactomannan (CFG)-gellan gum (GG)-calcium silicate (CS) composite beads were developed for controlled glimepiride (GLI) delivery. CFG having degree of carboxymethylation of 0.71 was synthesized and characterized by FTIR, DSC and XRD analyses. Subsequently, GLI-loaded hybrids were accomplished by ionotropic gelation technique employing Ca+2/Zn+2/Al+3 ions as cross-linkers. All the formulations demonstrated excellent drug encapsulation efficiency (DEE, 48-97%) and sustained drug release behaviour (Q8h, 62-94%). These quality attributes were remarkably influenced by polymer-blend (GG:CFG) ratios, cross-linker types and CS inclusion. The drug release profile of the optimized formulation (F-6) was best fitted in zero-order model with anomalous diffusion driven mechanism. It also conferred excellent ex vivo mucoadhesive property and considerable hypoglycemic effect in streptozotocin-induced diabetic rats. Furthermore, the beads were characterized for drug-excipients compatibility, drug crystallinity, thermal behaviour and surface morphology. Thus, the developed hybrid matrices are appropriate for controlled delivery of GLI for Type 2 diabetes management.
    Matched MeSH terms: Diabetes Mellitus, Experimental/metabolism
  12. Sharma JN, Kesavarao U
    Immunopharmacology, 1996 Jun;33(1-3):341-3.
    PMID: 8856181 DOI: 10.1016/0162-3109(96)00104-x
    This study examined the effects of streptozotocin-induced diabetes on blood pressure and cardiac tissue kallikrein levels in WKYR and SHR. Streptozotocin-induced diabetes caused significant (p < 0.001) increase in SBP and DBP in WKYR and SHR as compared with their respective controls. We also observed that the active cardiac tissue kallikrein levels reduced greatly (p < 0.001) in diabetic WKYR and SHR than the normal rats. These findings suggest for the first time that the cardiac tissue kallikrein formation may have a greater role in the regulation of blood pressure and cardiac function.
    Matched MeSH terms: Diabetes Mellitus, Experimental/metabolism*
  13. Nurdiana S, Goh YM, Ahmad H, Dom SM, Syimal'ain Azmi N, Noor Mohamad Zin NS, et al.
    BMC Complement Altern Med, 2017 Jun 02;17(1):290.
    PMID: 28576138 DOI: 10.1186/s12906-017-1762-8
    BACKGROUND: The potential application of Ficus deltoidea and vitexin for the management of symptomatologies associated with diabetes mellitus (DM) has gained much attention. However, less firm evidence comes from data to augment our understanding of the role of F. deltoidea and vitexin in protecting pancreatic β-cells. The aim of this study was to assess histological and oxidative stress changes in the pancreas of streptozotocin (STZ)-induced diabetic rats following F. deltoidea extract and vitexin treatment.

    METHODS: F. deltoidea and vitexin was administrated orally to six-weeks STZ-induced diabetic rats over 8 weeks period. The glucose and insulin tolerances were assessed by intraperitoneal glucose (2 g/kg) tolerance test (IPGTT) and intraperitoneal insulin (0.65 U/kg) tolerance test (IPITT), respectively. Subsequently, insulin resistance was assessed by homeostasis assessment model of insulin resistance (HOMA-IR), quantitative insulin sensitivity check index (QUICKI) and the insulin/triglyceride-derived McAuley index. The histological changes in the pancreas were then observed by hematoxylin-eosin (H&E) staining. Further, the pattern of fatty acid composition and infrared (IR) spectra of the serum and pancreas were monitored by gas chromatography (GC) method and Fourier Transform Infrared (FT-IR) spectroscopy.

    RESULTS: F. deltoidea and vitexin increased pancreatic antioxidant enzymes and promoted islet regeneration. However, a significant increase in insulin secretion was observed only in rats treated with F. deltoidea. More importantly, reduction of fasting blood glucose is consistent with reduced FT-IR peaks at 1200-1000 cm-1.

    CONCLUSIONS: These results accentuate that F. deltoidea and vitexin could be a potential agent to attenuate pancreatic oxidative damage and advocate their therapeutic potential for treating DM.

    Matched MeSH terms: Diabetes Mellitus, Experimental/metabolism
  14. Subramaniam G, Achike FI, Mustafa MR
    J Cardiovasc Pharmacol, 2009 Apr;53(4):333-40.
    PMID: 19295443 DOI: 10.1097/FJC.0b013e31819fd4a7
    The mechanism by which insulin causes vasodilatation remains unclear, so we explored this in aortic rings from normal Wistar Kyoto and streptozotocin-induced diabetic rats. Insulin-induced relaxation of phenylephrine-contracted [endothelium (ED) intact or denuded] aortic rings was recorded in the presence or absence of various drug probes. Insulin relaxant effect was more in ED-intact than in-denuded tissues from normal or diabetic rats. l-NAME or methylene blue partially inhibited insulin effect in ED-intact but not the ED-denuded tissues, whereas indomethacin (cyclooxygenase inhibitor) had no effect on any of the tissues, indicating that insulin induces relaxation by ED-dependent and -independent mechanisms, the former via the NOS-cyclic guanosine monophosphate but not the cyclooxygenase pathway. The voltage-dependent K channel (KV) blocker (4-aminopyridine) inhibited insulin action in all the tissues (normal or diabetic, with or without ED), whereas the selective BKCa blocker, tetraethylammonium, inhibited it in normal (ED intact or denuded) but not in diabetic tissues, indicating that KV mediates insulin action in normal and diabetic tissues, whereas the BKCa mediates it only in normal tissues, with possible pathophysiologic absence in diabetic tissues. The inward rectifier K channel (Kir) blocker (barium chloride) significantly inhibited insulin effect only in ED-intact or -denuded diabetic tissues, whereas the KATP channel blocker, glibenclamide, inhibited it only in the ED-denuded diabetic tissues, suggesting that Kir channels mediate insulin-induced relaxation in ED-intact or -denuded diabetic tissues, whereas the KATP channel mediates it in ED-denuded diabetic tissues. All the agents combined did not abolish insulin action, suggestive of a direct vasodilatory effect. In conclusion, insulin causes vasodilatation in normal and diabetic tissues via ED-dependent and -independent mechanisms differentially modulated by K channels, some of which functions are altered in diabetes and thus are potential therapeutic targets.
    Matched MeSH terms: Diabetes Mellitus, Experimental/metabolism*
  15. Erejuwa OO, Sulaiman SA, Wahab MS, Sirajudeen KN, Salleh MS, Gurtu S
    Int J Mol Sci, 2011;12(3):1888-907.
    PMID: 21673929 DOI: 10.3390/ijms12031888
    Oxidative stress is implicated in the pathogenesis and/or complications of hypertension and/or diabetes mellitus. A combination of these disorders increases the risk of developing cardiovascular events. This study investigated the effects of streptozotocin (60 mg/kg; ip)-induced diabetes on blood pressure, oxidative stress and effects of honey on these parameters in the kidneys of streptozotocin-induced diabetic Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR). Diabetic WKY and SHR were randomized into four groups and received distilled water (0.5 mL) and honey (1.0 g/kg) orally once daily for three weeks. Control SHR had reduced malondialdehyde (MDA) and increased systolic blood pressure (SBP), catalase (CAT) activity, and total antioxidant status (TAS). SBP, activities of glutathione peroxidase (GPx) and glutathione reductase (GR) were elevated while TAS was reduced in diabetic WKY. In contrast, SBP, TAS, activities of GPx and GR were reduced in diabetic SHR. Antioxidant (honey) treatment further reduced SBP in diabetic SHR but not in diabetic WKY. It also increased TAS, GSH, reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio, activities of GPx and GR in diabetic SHR. These data suggest that differences in types, severity, and complications of diseases as well as strains may influence responses to blood pressure and oxidative stress.
    Matched MeSH terms: Diabetes Mellitus, Experimental/metabolism*
  16. Alsalahi A, Alshawsh MA, Chik Z, Mohamed Z
    Exp Anim, 2018 Nov 01;67(4):517-526.
    PMID: 29973470 DOI: 10.1538/expanim.18-0057
    People consume Catha edulis (khat) for its euphoric effect, and type 1 diabetics have claimed that khat could reduce elevated levels of blood sugar. However, khat has been suggested to provoke diabetes mellitus through destruction of pancreatic β-cells. This study investigated the effect of an ethanolic khat extract on pancreatic functions in type 1 diabetes (T1DM)-induced male Sprague-Dawley rats and to assess its in vitro cytotoxicity in rat pancreatic β-cells (RIN-14B). T1DM was induced in a total of 20 rats with a single intraperitoneal injection of 75 mg/kg of streptozotocin. The rats were distributed into four groups (n=5): the diabetic control, 8 IU insulin-treated, 200 mg/kg khat-treated, and 400 mg/kg khat-treated groups. Another 5 rats were included as a nondiabetic control. Body weight, fasting blood sugar, and caloric intake were recorded weekly. Four weeks after treatment, the rats were sacrificed, and blood was collected for insulin, lipid profile, total protein, amylase, and lipase analysis, while pancreases were harvested for histopathology. In vitro, khat exerted moderate cytotoxicity against RIN-14B cells after 24 and 48 h but demonstrated greater inhibition against RIN-14B cells after 72 h. Neither 200 mg/kg nor 400 mg/kg of khat produced any significant reduction in blood sugar; however, 200 mg/kg khat extract provoked more destruction of pancreatic β-cells as compared with the diabetic control. Ultimately, neither 200 mg/kg nor 400 mg/kg of khat extract could produce a hypoglycemic effect in T1DM-induced rats. However, 200 mg/kg of khat caused greater destruction of pancreatic β-cells, implying that khat may cause a direct cytotoxic effect on pancreatic β-cells in vitro.
    Matched MeSH terms: Diabetes Mellitus, Experimental/metabolism*
  17. Abu Bakar Sajak A, Mediani A, Maulidiani, Mohd Dom NS, Machap C, Hamid M, et al.
    Phytomedicine, 2017 Dec 01;36:201-209.
    PMID: 29157816 DOI: 10.1016/j.phymed.2017.10.011
    BACKGROUND: Ipomoea aquatica (locally known as "kangkung") has previously been reported to have hypoglycemic activities on glucose level in diabetes patients. However, the effect of I. aquatica ethanolic extract on the metabolites in the body has remained unknown.

    PURPOSE: This study provides new insights on the changes of endogenous metabolites caused by I. aquatica ethanolic extract and improves the understanding on the therapeutic efficacy and mechanism of I. aquatica ethanolic extract.

    METHODS: By using a combination of 1H nuclear magnetic resonance (NMR) with multivariate analysis (MVDA), the changes of metabolites due to I. aquatica ethanolic extract administration in obese diabetic-induced Sprague Dawley rats (OB+STZ+IA) were identified.

    RESULTS: The results suggested 19 potential biomarkers with variable importance projections (VIP) above 0.5, which include creatine/creatinine, glucose, creatinine, citrate, carnitine, 2-oxoglutarate, succinate, hippurate, leucine, 1-methylnicotinamice (MNA), taurine, 3-hydroxybutyrate (3-HB), tryptophan, lysine, trigonelline, allantoin, formiate, acetoacetate (AcAc) and dimethylamine. From the changes in the metabolites, the affected pathways and aspects of metabolism were identified.

    CONCLUSION: I. aquatica ethanolic extract increases metabolite levels such as creatinine/creatine, carnitine, MNA, trigonelline, leucine, lysine, 3-HB and decreases metabolite levels, including glucose and tricarboxylic acid (TCA) intermediates. This implies capabilities of I. aquatica ethanolic extract promoting glycolysis, gut microbiota and nicotinate/nicotinamide metabolism, improving the glomerular filtration rate (GFR) and reducing the β-oxidation rate. However, the administration of I. aquatica ethanolic extract has several drawbacks, such as unimproved changes in amino acid metabolism, especially in reducing branched chain amino acid (BCAA) synthesis pathways and lipid metabolism.

    Matched MeSH terms: Diabetes Mellitus, Experimental/metabolism*
  18. Dharmani M, Mustafa MR, Achike FI, Sim MK
    Regul. Pept., 2005 Jul 15;129(1-3):213-9.
    PMID: 15927718
    The present study investigated the action of des-aspartate-angiotensin I (DAA-I) on the pressor action of angiotensin II in the renal and mesenteric vasculature of WKY, SHR and streptozotocin (STZ)-induced diabetic rats. Angiotensin II-induced a dose-dependent pressor response in the renal vasculature. Compared to the WKY, the pressor response was enhanced in the SHR and reduced in the STZ-induced diabetic rat. DAA-I attenuated the angiotensin II pressor action in renal vasculature of WKY and SHR. The attenuation was observed for DAA-I concentration as low as 10(-18) M and was more prominent in SHR. However, the ability of DAA-I to reduce angiotensin II response was lost in the STZ-induced diabetic kidney. Instead, enhancement of angiotensin II pressor response was seen at the lower doses of the octapeptide. The effect of DAA-I was not inhibited by PD123319, an AT2 receptor antagonist, and indomethacin, a cyclo-oxygenase inhibitor in both WKY and SHR, indicating that its action was not mediated by angiotensin AT2 receptor and prostaglandins. The pressor responses to angiotensin II in mesenteric vascular bed were also dose-dependent but smaller in magnitude compared to the renal vasculature. The responses were significantly smaller in SHR but no significant difference was observed between STZ-induced diabetic and WKY rat. Similarly, PD123319 and indomethacin had no effect on the action of DAA-I. The findings reiterate a regulatory role for DAA-I in vascular bed of the kidney and mesentery. By being active at circulating level, DAA-I subserves a physiological role. This function appears to be present in animals with diseased state of hypertension and diabetes. It is likely that DAA-I functions are modified to accommodate the ongoing vascular remodeling.
    Matched MeSH terms: Diabetes Mellitus, Experimental/metabolism*
  19. Sani NF, Belani LK, Sin CP, Rahman SN, Das S, Chi TZ, et al.
    Biomed Res Int, 2014;2014:160695.
    PMID: 24822178 DOI: 10.1155/2014/160695
    Diabetic complications occur as a result of increased reactive oxygen species (ROS) due to long term hyperglycaemia. Honey and ginger have been shown to exhibit antioxidant activity which can scavenge ROS. The main aim of this study was to evaluate the antioxidant and antidiabetic effects of gelam honey, ginger, and their combination. Sprague-Dawley rats were divided into 2 major groups which consisted of diabetic and nondiabetic rats. Diabetes was induced with streptozotocin intramuscularly (55 mg/kg body weight). Each group was further divided into 4 smaller groups according to the supplements administered: distilled water, honey (2 g/kg body weight), ginger (60 mg/kg body weight), and honey + ginger. Body weight and glucose levels were recorded weekly, while blood from the orbital sinus was obtained after 3 weeks of supplementation for the estimation of metabolic profile: glucose, triglyceride (TG), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH): oxidized glutathione (GSSG), and malondialdehyde (MDA). The combination of gelam honey and ginger did not show hypoglycaemic potential; however, the combination treatment reduced significantly (P < 0.05) SOD and CAT activities as well as MDA level, while GSH level and GSH/GSSG ratio were significantly elevated (P < 0.05) in STZ-induced diabetic rats compared to diabetic control rats.
    Matched MeSH terms: Diabetes Mellitus, Experimental/metabolism*
  20. Musalmah M, Fairuz AH, Gapor MT, Ngah WZ
    Asia Pac J Clin Nutr, 2002;11 Suppl 7:S448-51.
    PMID: 12492633
    Vitamin E is composed of various subfamilies that include tocopherols and tocotrienols. These compounds have antioxidant properties but differ in structure, dietary source and potency. In this study we evaluated the efficacy of alpha-tocopherol as an antioxidant and its role in wound closure in normal and streptozotocin-induced diabetic rats. The healing of 6 cm linear incisions created on the back of each male Sprague-Dawley rat (250-300 g) was monitored by measuring the length of the wounds daily. The rats were divided into two categories; normal and streptozotocin-induced diabetic rats. For each category, the animals were further divided into two groups; those untreated and those receiving 200 mg/kg bodyweight alpha-tocopherols daily by oral gavage. All rats were fed standard food and water ad libitum. Blood samples were taken at 0, 5 and 10 days after the wounds were created for the determination of malondialdehyde levels and red cell superoxide dismutase, catalase and glutathione peroxidase activities. The results showed that alpha-tocopherol reduced plasma malondialdehyde levels, increased glutathione peroxidase activity and accelerated the rate of wound closure in treated rats.
    Matched MeSH terms: Diabetes Mellitus, Experimental/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links