Displaying publications 1 - 20 of 115 in total

Abstract:
Sort:
  1. Zulkeflee Z, Aris AZ, Shamsuddin ZH, Yusoff MK
    ScientificWorldJournal, 2012;2012:495659.
    PMID: 22997497
    A bioflocculant-producing bacterial strain with highly mucoid and ropy colony morphological characteristics identified as Bacillus spp. UPMB13 was found to be a potential bioflocculant-producing bacterium. The effect of cation dependency, pH tolerance and dosage requirement on flocculating ability of the strain was determined by flocculation assay with kaolin as the suspended particle. The flocculating activity was measured as optical density and by flocs formation. A synergistic effect was observed with the addition of monovalent and divalent cations, namely, Na⁺, Ca²⁺, and Mg²⁺, while Fe²⁺ and Al³⁺ produced inhibiting effects on flocculating activity. Divalent cations were conclusively demonstrated as the best cation source to enhance flocculation. The bioflocculant works in a wide pH range, from 4.0 to 8.0 with significantly different performances (P < 0.05), respectively. It best performs at pH 5.0 and pH 6.0 with flocculating performance of above 90%. A much lower or higher pH would inhibit flocculation. Low dosage requirements were needed for both the cation and bioflocculant, with only an input of 50 mL/L for 0.1% (w/v) CaCl₂ and 5 mL/L for culture broth, respectively. These results are comparable to other bioflocculants produced by various microorganisms with higher dosage requirements.
    Matched MeSH terms: Drug Synergism
  2. Yusof KM, Makpol S, Jamal R, Harun R, Mokhtar N, Ngah WZ
    Molecules, 2015 Jun 03;20(6):10280-97.
    PMID: 26046324 DOI: 10.3390/molecules200610280
    Numerous bioactive compounds have cytotoxic properties towards cancer cells. However, most studies have used single compounds when bioactives may target different pathways and exert greater cytotoxic effects when used in combination. Therefore, the objective of this study was to determine the anti-proliferative effect of γ-tocotrienol (γ-T3) and 6-gingerol (6G) in combination by evaluating apoptosis and active caspase-3 in HT-29 and SW837 colorectal cancer cells. MTS assays were performed to determine the anti-proliferative and cytotoxicity effect of γ-T3 (0-150 µg/mL) and 6G (0-300 µg/mL) on the cells. The half maximal inhibitory concentration (IC50) value of 6G+ γ-T3 for HT-29 was 105 + 67 µg/mL and for SW837 it was 70 + 20 µg/mL. Apoptosis, active caspase-3 and annexin V FITC assays were performed after 24 h of treatment using flow cytometry. These bioactives in combination showed synergistic effect on HT-29 (CI: 0.89 ± 0.02,) and SW837 (CI: 0.79 ± 0.10) apoptosis was increased by 21.2% in HT-29 and 55.4% in SW837 (p < 0.05) after 24 h treatment, while normal hepatic WRL-68 cells were unaffected. Increased apoptosis by the combined treatments was also observed morphologically, with effects like cell shrinkage and pyknosis. In conclusion, although further studies need to be done, γ-T3 and 6G when used in combination act synergistically increasing cytotoxicity and apoptosis in cancer cells.
    Matched MeSH terms: Drug Synergism
  3. Yunos NM, Mutalip SS, Jauri MH, Yu JQ, Huq F
    Anticancer Res, 2013 Oct;33(10):4365-71.
    PMID: 24123004
    Andrographolide (Andro) is a diterpenoid that is isolated from Andrographis paniculata and reported to be active against several cancer cell lines. However, few in-depth studies have been carried out on its effects on ovarian cancer cell lines alone or in combination with cisplatin (Cis), which is commonly used to treat ovarian cancer. The aim of this study was to determine the anti-proliferative and apoptotic effects of Andro administered alone and in combination with Cis in the ovarian A2780 and A2780(cisR) cancer cell lines using five different sequences of administration (Cis/Andro h): 0/0h, 4/0 h, 0/4 h, 24/0 h and 0/24 h. The results were evaluated in terms of medium-effect dose (Dm) and combination indices (CI) using the CalcuSyn software. Unlike Cis, whose activity was lower in the resistant A2780(cisR) cell line than in the parent A2780 cell line, Andro was found to be three times more active in the A2780(cisR) cell line as compared to that in A2780 cell line. Synergism was observed when Cis and Andro were administered using the sequences 0/4 h and 4/0 h. The percentage of apoptotic cell death was found to be greater for the 0/4 h combination of Andro and Cis as compared to those values from single-drug treatments. The results may be clinically significant if confirmed in vivo.
    Matched MeSH terms: Drug Synergism
  4. Yee PS, Zainal NS, Gan CP, Lee BKB, Mun KS, Abraham MT, et al.
    Target Oncol, 2019 04;14(2):223-235.
    PMID: 30806895 DOI: 10.1007/s11523-019-00626-8
    BACKGROUND: Given that aberrant activation of epidermal growth factor receptor family receptors (ErbB) is a common event in oral squamous cell carcinoma, and that high expression of these receptor proteins is often associated with poor prognosis, this rationalizes the approach of targeting ErbB signaling pathways to improve the survival of patients with oral squamous cell carcinoma. However, monotherapy with the ErbB blocker afatinib has shown limited survival benefits.

    OBJECTIVES: This study was performed to identify mechanisms of afatinib resistance and to explore potential afatinib-based combination treatments with other targeted inhibitors in oral squamous cell carcinoma.

    METHODS: We determined the anti-proliferative effects of afatinib on a panel of oral squamous cell carcinoma cell lines using a crystal violet-growth inhibition assay, click-iT 5-ethynyl-2'-deoxyuridine staining, and cell-cycle analysis. Biochemical assays were performed to study the underlying mechanism of drug treatment as a single agent or in combination with the MEK inhibitor trametinib. We further evaluated and compared the anti-tumor effects of single agent and combined treatment by using oral squamous cell carcinoma xenograft models.

    RESULTS: In this study, we showed that afatinib inhibited oral squamous cell carcinoma cell proliferation via cell-cycle arrest at the G0/G1 phase, and inhibited tumor growth in xenograft mouse models. Interestingly, we demonstrated reactivation of the mitogen-activated protein kinase (ERK1/2) pathway in vitro, which possibly reduced the effects of ErbB inhibition. Concomitant treatment of oral squamous cell carcinoma cells with afatinib and trametinib synergized the anti-tumor effects in oral squamous cell carcinoma-bearing mouse models.

    CONCLUSIONS: Our findings provide insight into the molecular mechanism of resistance to afatinib and support further clinical evaluation into the combination of afatinib and MEK inhibition in the treatment of oral squamous cell carcinoma.

    Matched MeSH terms: Drug Synergism*
  5. Yap PS, Krishnan T, Chan KG, Lim SH
    J Microbiol Biotechnol, 2015 Aug;25(8):1299-306.
    PMID: 25381741 DOI: 10.4014/jmb.1407.07054
    This study aimed to investigate the mechanism of action of the cinnamon bark essential oil (CB), when used singly and also in combination with piperacillin, for its antimicrobial and synergistic activity against beta-lactamase TEM-1 plasmid-conferred Escherichia coli J53 R1. Viable count of this combination showed a complete killing profile at 20 h and further confirmed its synergistic effect by reducing the bacteria cell numbers. Analysis on the stability of treated cultures for cell membrane permeability by CB when tested against sodium dodecyl sulfate revealed that the bacterial cell membrane was disrupted by the essential oils. Scanning electron microscopy observation and bacterial surface charge measurement also revealed that CB causes irreversible membrane damage and reduces the bacterial surface charge. In addition, bioluminescence expression of Escherichia coli [pSB1075] and E. coli [pSB401] by CB showed reduction, indicating the possibility of the presence of quorum sensing (QS) inhibitors. Gas-chromatography and mass spectrometry of the essential oil of Cinnamomum verum showed that trans-cinnamaldehyde (72.81%), benzyl alcohol (12.5%), and eugenol (6.57%) were the major components in the essential oil. From this study, CB has the potential to reverse E. coli J53 R1 resistance to piperacillin through two pathways; modification in the permeability of the outer membrane or bacterial QS inhibition.
    Matched MeSH terms: Drug Synergism*
  6. Yap PS, Krishnan T, Yiap BC, Hu CP, Chan KG, Lim SH
    J Appl Microbiol, 2014 May;116(5):1119-28.
    PMID: 24779580 DOI: 10.1111/jam.12444
    The aim of this study was to investigate the mode of action of the lavender essential oil (LV) on antimicrobial activity against multi-drug-resistant Escherichia coli J53 R1 when used singly and in combination with piperacillin.
    Matched MeSH terms: Drug Synergism
  7. Yap PS, Lim SH, Hu CP, Yiap BC
    Phytomedicine, 2013 Jun 15;20(8-9):710-3.
    PMID: 23537749 DOI: 10.1016/j.phymed.2013.02.013
    In this study we investigated the relationship between several selected commercially available essential oils and beta-lactam antibiotics on their antibacterial effect against multidrug resistant bacteria. The antibacterial activity of essential oils and antibiotics was assessed using broth microdilution. The combined effects between essential oils of cinnamon bark, lavender, marjoram, tea tree, peppermint and ampicillin, piperacillin, cefazolin, cefuroxime, carbenicillin, ceftazidime, meropenem, were evaluated by means of the checkerboard method against beta-lactamase-producing Escherichia coli. In the latter assays, fractional inhibitory concentration (FIC) values were calculated to characterize interaction between the combinations. Substantial susceptibility of the bacteria toward natural antibiotics and a considerable reduction in the minimum inhibitory concentrations (MIC) of the antibiotics were noted in some paired combinations of antibiotics and essential oils. Out of 35 antibiotic-essential oil pairs tested, four of them showed synergistic effect (FIC≤0.5) and 31 pairs showed no interaction (FIC>0.5-4.0). The preliminary results obtained highlighted the occurrence of a pronounced synergistic relationship between piperacillin/cinnamon bark oil, piperacillin/lavender oil, piperacillin/peppermint oil as well as meropenem/peppermint oil against two of the three bacteria under study with a FIC index in the range 0.26-0.5. The finding highlighted the potential of peppermint, cinnamon bark and lavender essential oils being as antibiotic resistance modifying agent. Reduced usage of antibiotics could be employed as a treatment strategy to decrease the adverse effects and possibly to reverse the beta-lactam antibiotic resistance.
    Matched MeSH terms: Drug Synergism
  8. Yap JKY, Tan SYY, Tang SQ, Thien VK, Chan EWL
    Microb Drug Resist, 2021 Feb;27(2):234-240.
    PMID: 32589487 DOI: 10.1089/mdr.2020.0178
    Aims: Currently, limited antibiotics are available to treat methicillin-resistant Staphylococcus aureus (MRSA) infections. One approach is the use of adjuvants in antibiotic therapy. 1,4-Naphthoquinones are naturally occurring alkaloids shown to have antibacterial properties. The objective of this study is to investigate the synergy between 1,4-naphthoquinone and selected β-lactam antibiotics and to evaluate the potential use of 1,4-naphthoquinone as an adjuvant in antibiotic treatment against MRSA infections. Methods: The antibacterial activity of 1,4-naphthoquinone and plumbagin was tested against nine pathogenic bacterial strains using the microdilution broth method. The interactions between 1,4-naphthoquinone and three antibiotics (cefuroxime, cefotaxime, and imipenem) were estimated by calculating the fractional inhibitory concentration of the combination. Results: The compounds 1,4-naphthoquinone and plumbagin exhibited a broad range of bacteriostatic and bactericidal effects against both Gram-positive and Gram-negative bacteria. The interaction between 1,4-naphthoquinone and imipenem, cefuroxime, and cefotaxime was synergistic against methicillin-sensitive Staphylococcus aureus and MRSA clinical strains. Against ATCC-cultured MRSA, a synergistic effect was observed between 1,4-naphthoquinone and cefotaxime. However, combination with imipenem only produced an additive effect, and an antagonistic action was observed between 1,4-naphthoquinone and cefuroxime. Conclusions: Although individually less potent than common antibiotics, 1,4-naphthoquinone acts synergistically with imipenem, cefuroxime, and cefotaxime against MRSA clinical strains and could potentially be used in adjuvant-antibiotic therapy against multidrug resistant bacteria.
    Matched MeSH terms: Drug Synergism
  9. Yang SK, Yusoff K, Thomas W, Akseer R, Alhosani MS, Abushelaibi A, et al.
    Sci Rep, 2020 01 21;10(1):819.
    PMID: 31964900 DOI: 10.1038/s41598-019-55601-0
    Misuse of antibiotics in the clinical and agricultural sectors has caused the emergence of multidrug-resistant (MDR) Klebsiella pneumoniae which contributes a threat to human health. In this study, we assessed the feasibility of lavender essential oil (LVO) as an antimicrobial agent in combinatory therapy with meropenem in suppressing the growth of carbapenemase-producing K. pneumoniae (KPC-KP). Synergistic interactions between LVO and meropenem were detected, which significantly reduce the inhibitory concentration of both LVO and meropenem by 15 and 4-fold respectively. Comparative proteomic profiling identified a disruption in the bacterial membrane via oxidative stress that was indicated by loss of membrane and cytoplasmic proteins and the upregulation of oxidative regulators. As a proof of concept, zeta potential measurements showed a change in cell surface charge while outer membrane permeability measurement indicated an increase in membrane permeability following exposure to LVO. This was indicative of a disrupted outer membrane. Ethidium bromide influx/efflux assays demonstrated no significant efflux pump inhibition by LVO, and scanning electron microscopy revealed irregularities on the cell surface after exposure to LVO. Oxidative stress was also detected with increased level of ROS and lipid peroxidation in LVO-treated cells. In conclusion, our data suggest that LVO induced oxidative stress in K. pneumoniae which oxidizes the outer membrane, enabling the influx of generated ROS, LVO and meropenem into the bacterial cells, causing damage to the cells and eventually death.
    Matched MeSH terms: Drug Synergism
  10. Yang SK, Yusoff K, Mai CW, Lim WM, Yap WS, Lim SE, et al.
    Molecules, 2017 Nov 04;22(11).
    PMID: 29113046 DOI: 10.3390/molecules22111733
    Combinatory therapies have been commonly applied in the clinical setting to tackle multi-drug resistant bacterial infections and these have frequently proven to be effective. Specifically, combinatory therapies resulting in synergistic interactions between antibiotics and adjuvant have been the main focus due to their effectiveness, sidelining the effects of additivity, which also lowers the minimal effective dosage of either antimicrobial agent. Thus, this study was undertaken to look at the effects of additivity between essential oils and antibiotic, via the use of cinnamon bark essential oil (CBO) and meropenem as a model for additivity. Comparisons between synergistic and additive interaction of CBO were performed in terms of the ability of CBO to disrupt bacterial membrane, via zeta potential measurement, outer membrane permeability assay and scanning electron microscopy. It has been found that the additivity interaction between CBO and meropenem showed similar membrane disruption ability when compared to those synergistic combinations which was previously reported. Hence, results based on our studies strongly suggest that additive interaction acts on a par with synergistic interaction. Therefore, further investigation in additive interaction between antibiotics and adjuvant should be performed for a more in depth understanding of the mechanism and the impacts of such interaction.
    Matched MeSH terms: Drug Synergism
  11. Yahya MFZR, Alias Z, Karsani SA
    Folia Microbiol (Praha), 2018 Jan;63(1):23-30.
    PMID: 28540585 DOI: 10.1007/s12223-017-0532-9
    Biofilms are complex microbial communities that tend to attach to either biotic or abiotic surface. Enclosed in a self-produced extracellular polymeric substance (EPS) matrix, the biofilms often cause persistent infections. The objective of this study was to investigate the antibiofilm activity of dimethyl sulfoxide (DMSO) and afatinib against Gram-negative pathogens. Test microorganisms used in this study were Escherichia coli ATCC 1299, Pseudomonas aeruginosa ATCC 10145, and Salmonella typhimurium ATCC 14028. Biofilms were developed in 96-well microplate at 37°C for 24 h. Following removal of non-adherent cells, analysis of biofilm viability, biofilm biomass, and extracellular polymeric substances (EPS) matrix were performed using resazurin assay, crystal violet assay, and attenuated total reflectance fourier transform infrared (ATR-FTIR) spectroscopy, respectively. Bradford protein assay was conducted to determine the total amount of EPS proteins. The results demonstrated that both 32% DMSO alone and its combination with 3.2 μg/mL afatinib were effective in killing biofilm cells and reducing biofilm biomass. IR spectral variations of EPS matrix of biofilms in the range between 1700 and 900 cm-1 were also observed. Reduction in EPS proteins verified the chemical modifications of EPS matrix. In conclusion, 32% DMSO alone and its combination with 3.2 μg/mL afatinib showed remarkable antibiofilm activities against Gram-negative pathogens. It was suggested that the biofilm inhibition was mediated by the chemical modification of EPS matrix.
    Matched MeSH terms: Drug Synergism
  12. Yaacob NS, Kamal NN, Norazmi MN
    PMID: 25034326 DOI: 10.1186/1472-6882-14-252
    Development of tumour resistance to chemotherapeutic drugs and concerns over their toxic effects has led to the increased use of medicinal herbs or natural products by cancer patients. Strobilanthes crispus is a traditional remedy for many ailments including cancer. Its purported anticancer effects have led to the commercialization of the plant leaves as medicinal herbal tea, although the scientific basis for its use has not been established. We previously reported that a bioactive subfraction of Strobilanthes crispus leaves (SCS) exhibit potent cytotoxic activity against human breast cancer cell lines. The current study investigates the effect of this subfraction on cell death activities induced by the antiestrogen drug, tamoxifen, in estrogen receptor-responsive and nonresponsive breast cancer cells.
    Matched MeSH terms: Drug Synergism
  13. Yaacob NS, Nasir R, Norazmi MN
    Asian Pac J Cancer Prev, 2013;14(11):6761-7.
    PMID: 24377602
    The nuclear receptor, peroxisome proliferator-activated receptor gamma (PPARγ), is expressed in various cancer cells including breast, prostate, colorectal and cervical examples. An endogenous ligand of PPARγ, 15-deoxy-Δ12,14 prostaglandin J2 (PGJ2), is emerging as a potent anticancer agent but the exact mechanism has not been fully elucidated, especially in breast cancer. The present study compared the anticancer effects of PGJ2 on estrogen receptor alpha (ERα)-positive (MCF-7) and ERα-negative (MDA-MB-231) human breast cancer cells. Based on the reported signalling cross-talk between PPARγ and ERα, the effect of the ERα ligand, 17β-estradiol (E2) on the anticancer activities of PGJ2 in both types of cells was also explored. Here we report that PGJ2 inhibited proliferation of both MCF-7 and MDA-MB-231 cells by inducing apoptotic cell death with active involvement of mitochondria. The presence of E2 potentiated PGJ2-induced apoptosis in MCF-7, but not in MDA-MB-231 cells. The PPARγ antagonist, GW9662, failed to block PGJ2-induced activities but potentiated its effects in MCF-7 cells, instead. Interestingly, GW9662 also proved capable of inducing apoptotic cell death. It can be concluded that E2 enhances PPARγ-independent anticancer effects of PGJ2 in the presence of its receptor.
    Matched MeSH terms: Drug Synergism
  14. Woon LS, Tee CK, Gan LLY, Deang KT, Chan LF
    J Psychiatr Pract, 2018 Mar;24(2):121-124.
    PMID: 29509183 DOI: 10.1097/PRA.0000000000000292
    Leukopenia is a known hematological side effect of atypical antipsychotics. We report a case of an antipsychotic-naive patient with schizophrenia who developed leukopenia after a single dose of olanzapine, which worsened during subsequent treatment with risperidone. Normalization of the white blood cell counts occurred within 24 hours of risperidone discontinuation. Possible synergistic mechanisms underlying olanzapine-induced and risperidone-induced leukopenia are discussed. This case highlights the challenges in identifying and managing nonclozapine antipsychotic-induced leukopenia in a susceptible patient.
    Matched MeSH terms: Drug Synergism
  15. Wong SW, Tiong KH, Kong WY, Yue YC, Chua CH, Lim JY, et al.
    Breast Cancer Res Treat, 2011 Jul;128(2):301-13.
    PMID: 20686837 DOI: 10.1007/s10549-010-1055-0
    Recent gene expression profiling studies have identified five breast cancer subtypes, of which the basal-like subtype is the most aggressive. Basal-like breast cancer poses serious clinical challenges as there are currently no targeted therapies available to treat it. Although there is increasing evidence that these tumors possess specific sensitivity to cisplatin, its success is often compromised due to its dose-limiting nephrotoxicity and the development of drug resistance. To overcome this limitation, our goal was to maximize the benefits associated with cisplatin therapy through drug combination strategies. Using a validated kinase inhibitor library, we showed that inhibition of the mTOR, TGFβRI, NFκB, PI3K/AKT, and MAPK pathways sensitized basal-like MDA-MB-468 cells to cisplatin treatment. Further analysis demonstrated that the combination of the mTOR inhibitor rapamycin and cisplatin generated significant drug synergism in basal-like MDA-MB-468, MDA-MB-231, and HCC1937 cells but not in luminal-like T47D or MCF-7 cells. We further showed that the synergistic effect of rapamycin plus cisplatin on basal-like breast cancer cells was mediated through the induction of p73. Depletion of endogenous p73 in basal-like cells abolished these synergistic effects. In conclusion, combination therapy with mTOR inhibitors and cisplatin may be a useful therapeutic strategy in the treatment of basal-like breast cancers.
    Matched MeSH terms: Drug Synergism
  16. Wong SF, Reimann K, Lai LC
    Pathology, 2001 Nov;33(4):454-9.
    PMID: 11827412
    Oestrogens play an important role in the development of breast cancer. Oestrone sulphate (E1S) acts as a huge reservoir of oestrogens in the breast and is converted to oestrone (E1) by oestrone sulphatase (E1STS). E1 is then reversibly converted to the potent oestrogen, oestradiol (E2) by oestradiol-17beta hydroxysteroid dehydrogenase (E2DH). The aim of this study was to assess the effects of transforming growth factor-beta1 (TGFbeta1), insulin-like growth factor-I (IGF-I) and insulin-like growth factor-II (IGF-II) on cell growth, E1STS and E2DH activities in the MCF-7 and MDA-MB-231 human breast cancer cell lines. TGFbeta1, IGF-I and IGF-II alone or in combination inhibited cell growth of both cell lines but no additive or synergistic effects were observed. The treatments significantly stimulated E1STS activity in the MCF-7 cell line, except for TGFbeta1 alone and TGFbeta1 and IGF-I in combination, where no effects were seen. Only TGFbeta1 and IGF-II acted synergistically to stimulate E1STS activity in the MCF-7 cells. There was no significant effect on E1STS activity in the MDA-MB-231 cells with any of the treatments. In the MCF-7 cells, TGFbeta1 and IGF-I, IGF-I and IGF-II, and TGFbeta1, IGF-I and IGF-II acted synergistically to stimulate the reductive E2DH activity, while only TGFbeta1, IGF-I and IGF-II synergistically stimulated the oxidative E2DH activity. There were no additive or synergistic effects on both oxidative and reductive E2DH activities in the MDA-MB-231 cells. In conclusion, TGFbeta1, IGF-I and IGF-II may have effects on oestrogen metabolism, especially in the MCF-7 cell line where they stimulated the conversion of E1S to E1 and E1 to E2 and, thus, may have roles to play in the development of breast cancer.
    Matched MeSH terms: Drug Synergism
  17. Vattam KK, Raghavendran H, Murali MR, Savatey H, Kamarul T
    Hum Exp Toxicol, 2016 Aug;35(8):893-901.
    PMID: 26429928 DOI: 10.1177/0960327115608246
    In the present study, thirty six male Sprague Dawley rats were randomly divided into six groups and were injected with varying doses of alloxan (Ax) and nicotinamide (NA). The serum levels of glucose, insulin, and adiponectin were measured weekly up to 4 weeks.
    Matched MeSH terms: Drug Synergism
  18. Umar MI, Asmawi MZ, Sadikun A, Abdul Majid AM, Atangwho IJ, Khadeer Ahamed MB, et al.
    Pharm Biol, 2014 Nov;52(11):1411-22.
    PMID: 25026347 DOI: 10.3109/13880209.2014.895017
    Azadirachta indica A. Juss. (Meliaceaes) leaves have been used traditionally to treat swelling and rheumatism in Indian cultures.
    Matched MeSH terms: Drug Synergism
  19. Ullah A, Ashraf M, Javeed A, Anjum AA, Attiq A, Ali S
    Environ Toxicol Pharmacol, 2016 Jul;45:227-34.
    PMID: 27327526 DOI: 10.1016/j.etap.2016.05.017
    Pathophysiological changes in diabetes like hyperglycemia, oxidative stress, insulin resistance and compensatory hyperinsulinemia predispose cells to malignant transformation and damage DNA repair mechanism. This study was designed to explore the potential synergistic toxic effects of anti-diabetic drug (Metformin), and an analgesic drug (Celecoxib) at cellular level. MTT assay run on Vero cell line revealed that the combinations of Metformin and Celecoxib augment the anti-proliferative effects, whereas Single cell gel electrophoresis spotlighted that Metformin produce non-significant DNA damage with the threshold concentration of 400μg/ml in peripheral blood mononuclear cells (lymphocytes and monocytes), while Celecoxib produced significant (P<0.05) DNA damage (class III comets) above the concentration of 75μg/ml, however the DNA damage or DNA tail protrusions by combinations of both drugs were less than what was observed with Celecoxib alone. Metformin or Celecoxib did not appear mutagenic against any mutant strains (TA 100 and TA 98) but their combination exhibited slight mutagenicity at much higher concentration. The results obtained at concentrations higher than the therapeutic level of drugs and reflect that Metformin in combination with Celecoxib synergistically inhibits the cell proliferation in a concentration dependent pattern. Since, this increase in cytotoxicity did not confer an increase in DNA damage; this combination could be adopted to inhibit the growth of malignant cell without producing any genotoxic or mutagenic effects at cellular level.
    Matched MeSH terms: Drug Synergism
  20. Topkaya D, Ng SY, Bretonnière Y, Lafont D, Chung LY, Lee HB, et al.
    Photodiagnosis Photodyn Ther, 2016 Dec;16:12-14.
    PMID: 27475243 DOI: 10.1016/j.pdpdt.2016.07.008
    Matched MeSH terms: Drug Synergism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links