Displaying publications 1 - 20 of 79 in total

Abstract:
Sort:
  1. Feng Z, Lim HN, Ibrahim I, Gowthaman NSK
    J Mater Chem B, 2023 Oct 06;11(38):9099-9127.
    PMID: 37650588 DOI: 10.1039/d3tb01221b
    Small biomolecules play a critical role in the fundamental processes that sustain life and are essential for the proper functioning of the human body. The detection of small biomolecules has garnered significant interest in various fields, including disease diagnosis and medicine. Electrochemical techniques are commonly employed in the detection of critical biomolecules through the principle of redox reactions. It is also a very convenient, cheap, simple, fast, and accurate measurement method in analytical chemistry. Zeolitic imidazolate frameworks (ZIFs) are a unique type of metal-organic framework (MOF) composed of porous crystals with extended three-dimensional structures. These frameworks are made up of metal ions and imidazolate linkers, which form a highly porous and stable structure. In addition to their many advantages in other applications, ZIFs have emerged as promising candidates for electrochemical sensors. Their large surface area, pore diameter, and stability make them ideal for use in sensing applications, particularly in the detection of small molecules and ions. This review summarizes the critical role of small biomolecules in the human body, the standard features of electrochemical analysis, and the utilization of various types of ZIF materials (including carbon composites, metal-based composites, ZIF polymer materials, and ZIF-derived materials) for the detection of important small biomolecules in human body fluids. Lastly, we provide an overview of the current status, challenges, and future outlook for research on ZIF materials.
    Matched MeSH terms: Human Body
  2. Huntley J, Taçon PSC, Jalandoni A, Petchey F, Dotte-Sarout E, William MSS
    PLoS One, 2023;18(8):e0288902.
    PMID: 37610982 DOI: 10.1371/journal.pone.0288902
    Gua Sireh, located in western Sarawak (Malaysian Borneo), is known for its rock art. The cave houses hundreds of charcoal drawings depicting people, often with headdresses, knives and other accoutrements. Here, we present direct radiocarbon dates and pigment characterizations from charcoal drawings of two large (>75 cm), unique Gua Sireh human figures (anthropomorphs). To our knowledge, these are the first chronometric ages generated for Malaysian rock art, providing insights into the social contexts of art production, as well as the opportunities and challenges of dating rock art associated with the Malay/Austronesian diasporas in Southeast Asia more generally. Previous archaeological excavations revealed that people occupied Gua Sireh from around 20,000 years ago to as recently as AD 1900. The site is within Bidayuh territory, and these local Indigenous peoples recall the cave's use as a refuge during territorial violence in the early 1800s. The age of the drawings, dated between 280 and 120 cal BP (AD 1670 to 1830), corresponds with a period of increasing conflict when the Malay elites controlling the region exacted heavy tolls on the local hill tribes. We discuss rock art production at Gua Sireh in this context of frontier conflict and Bidayuh resistance.
    Matched MeSH terms: Human Body*
  3. Alathari MJA, Al Mashhadany Y, Mokhtar MHH, Burham N, Bin Zan MSD, A Bakar AA, et al.
    Sensors (Basel), 2021 Dec 15;21(24).
    PMID: 34960456 DOI: 10.3390/s21248362
    Life was once normal before the first announcement of COVID-19's first case in Wuhan, China, and what was slowly spreading became an overnight worldwide pandemic. Ever since the virus spread at the end of 2019, it has been morphing and rapidly adapting to human nature changes which cause difficult conundrums in the efforts of fighting it. Thus, researchers were steered to investigate the virus in order to contain the outbreak considering its novelty and there being no known cure. In contribution to that, this paper extensively reviewed, compared, and analyzed two main points; SARS-CoV-2 virus transmission in humans and detection methods of COVID-19 in the human body. SARS-CoV-2 human exchange transmission methods reviewed four modes of transmission which are Respiratory Transmission, Fecal-Oral Transmission, Ocular transmission, and Vertical Transmission. The latter point particularly sheds light on the latest discoveries and advancements in the aim of COVID-19 diagnosis and detection of SARS-CoV-2 virus associated with this disease in the human body. The methods in this review paper were classified into two categories which are RNA-based detection including RT-PCR, LAMP, CRISPR, and NGS and secondly, biosensors detection including, electrochemical biosensors, electronic biosensors, piezoelectric biosensors, and optical biosensors.
    Matched MeSH terms: Human Body
  4. Abu Bakar YI, Hassan A, Yusoff MSB, Kasim F, Abdul Manan Sulong H, Hadie SNH
    Anat Sci Educ, 2021 Mar 01.
    PMID: 33650315 DOI: 10.1002/ase.2067
    To become skilled physicians, medical students must master surface anatomy. However, the study of surface anatomy is less emphasized in medical and allied health science curricula, and the time devoted to direct engagement with the human body is limited. This scoping review was designed to answer one research question: "What are the elements and strategies that are effective in teaching surface anatomy?" The review was performed using a five-stage scoping review framework, including research question identification, relevant study identification, study selection, data charting, and result collating and reporting. Three databases were searched using two search terms combined with a Boolean operator: "teaching" and "surface anatomy." The initial pool of 3,294 sources was assessed for duplication, and study eligibility was evaluated using inclusion and exclusion criteria. Data were abstracted from 26 original articles by one researcher and verified by two other researchers. A thematic analysis was performed, and several elements of effective teaching strategies for surface anatomy were identified, namely contextualized teaching, embracing experiential learning, and learning facilitation. This review revealed that a multimodal approach was most commonly used in surface anatomy instruction. Hence, future research should explore the effectiveness of multimodal teaching strategies that adopt the three aforementioned primary elements of effective teaching in an authentic learning environment. It is pertinent to clarify the effectiveness of these teaching strategies by evaluating their impact on student learning, organizational changes, and benefits to other stakeholders.
    Matched MeSH terms: Human Body
  5. Lo S, Fauzi MB
    Pharmaceutics, 2021 Feb 28;13(3).
    PMID: 33670973 DOI: 10.3390/pharmaceutics13030316
    Tissue engineering technology is a promising alternative approach for improvement in health management. Biomaterials play a major role, acting as a provisional bioscaffold for tissue repair and regeneration. Collagen a widely studied natural component largely present in the extracellular matrix (ECM) of the human body. It provides mechanical stability with suitable elasticity and strength to various tissues, including skin, bone, tendon, cornea and others. Even though exogenous collagen is commonly used in bioscaffolds, largely in the medical and pharmaceutical fields, nano collagen is a relatively new material involved in nanotechnology with a plethora of unexplored potential. Nano collagen is a form of collagen reduced to a nanoparticulate size, which has its advantages over the common three-dimensional (3D) collagen design, primarily due to its nano-size contributing to a higher surface area-to-volume ratio, aiding in withstanding large loads with minimal tension. It can be produced through different approaches including the electrospinning technique to produce nano collagen fibres resembling natural ECM. Nano collagen can be applied in various medical fields involving bioscaffold insertion or fillers for wound healing improvement; skin, bone, vascular grafting, nerve tissue and articular cartilage regeneration as well as aiding in drug delivery and incorporation for cosmetic purposes.
    Matched MeSH terms: Human Body
  6. Tanwar G, Chauhan R, Yafi E
    Sensors (Basel), 2021 Feb 22;21(4).
    PMID: 33671822 DOI: 10.3390/s21041527
    We present ARTYCUL (ARTifact popularitY for CULtural heritage), a machine learning(ML)-based framework that graphically represents the footfall around an artifact on display at a museum or a heritage site. The driving factor of this framework was the fact that the presence of security cameras has become universal, including at sites of cultural heritage. ARTYCUL used the video streams of closed-circuit televisions (CCTV) cameras installed in such premises to detect human figures, and their coordinates with respect to the camera frames were used to visualize the density of visitors around the specific display items. Such a framework that can display the popularity of artifacts would aid the curators towards a more optimal organization. Moreover, it could also help to gauge if a certain display item were neglected due to incorrect placement. While items of similar interest can be placed in vicinity of each other, an online recommendation system may also use the reputation of an artifact to catch the eye of the visitors. Artificial intelligence-based solutions are well suited for analysis of internet of things (IoT) traffic due to the inherent veracity and volatile nature of the transmissions. The work done for the development of ARTYCUL provided a deeper insight into the avenues for applications of IoT technology to the cultural heritage domain, and suitability of ML to process real-time data at a fast pace. While we also observed common issues that hinder the utilization of IoT in the cultural domain, the proposed framework was designed keeping in mind the same obstacles and a preference for backward compatibility.
    Matched MeSH terms: Human Body
  7. El-Sheikh MA, Hadibarata T, Yuniarto A, Sathishkumar P, Abdel-Salam EM, Alatar AA
    Chemosphere, 2020 Nov 04.
    PMID: 33220978 DOI: 10.1016/j.chemosphere.2020.128873
    Since a few centuries ago, organochlorine compounds (OCs) become one of the threatened contaminants in the world. Due to the lipophilic and hydrophobic properties, OCs always discover in fat or lipid layers through bioaccumulation and biomagnification. The OCs are able to retain in soil, sediment and water for long time as it is volatile, OCs will evaporate from soil and condense in water easily and frequently, which pollute the shelter of aquatic life and it affects the function of organs and damage system in human body. Photocatalysis that employs the usage of semiconductor nanophotocatalyst and solar energy can be the possible alternative for current conventional water remediation technologies. With the benefits of utilizing renewable energy, no production of harmful by-products and easy operation, degradation of organic pollutants in rural water bodies can be established. Besides, nanophotocatalyst that is synthesized with nanotechnology outnumbered conventional catalyst with larger surface area to volume ratio, thus higher photocatalytic activity is observed. In contrast, disadvantages particularly no residual effect in water distribution network, requirement of post-treatment and easily affected by various factors accompanied with photocatalysis method cannot be ignored. These various factors constrained the photocatalytic efficiency via nanocatalysts which causes the full capacity of solar photocatalysis has yet to be put into practice. Therefore, further modifications and research are still required in nanophotocatalysts' synthesis to overcome limitations such as large band gaps and photodecontamination.
    Matched MeSH terms: Human Body
  8. Fuloria S, Subramaniyan V, Karupiah S, Kumari U, Sathasivam K, Meenakshi DU, et al.
    Antioxidants (Basel), 2020 Nov 02;9(11).
    PMID: 33147856 DOI: 10.3390/antiox9111075
    Continuous oxidation of carbohydrates, lipids, and amino acids generate extremely reactive carbonyl species (RCS). Human body comprises some important RCS namely hexanal, acrolein, 4-hydroxy-2-nonenal, methylglyoxal, malondialdehyde, isolevuglandins, and 4-oxo-2- nonenal etc. These RCS damage important cellular components including proteins, nucleic acids, and lipids, which manifests cytotoxicity, mutagenicity, multitude of adducts and crosslinks that are connected to ageing and various chronic diseases like inflammatory disease, atherosclerosis, cerebral ischemia, diabetes, cancer, neurodegenerative diseases and cardiovascular disease. The constant prevalence of RCS in living cells suggests their importance in signal transduction and gene expression. Extensive knowledge of RCS properties, metabolism and relation with metabolic diseases would assist in development of effective approach to prevent numerous chronic diseases. Treatment approaches for RCS associated diseases involve endogenous RCS metabolizers, carbonyl metabolizing enzyme inducers, and RCS scavengers. Limited bioavailability and bio efficacy of RCS sequesters suggest importance of nanoparticles and nanocarriers. Identification of RCS and screening of compounds ability to sequester RCS employ several bioassays and analytical techniques. Present review describes in-depth study of RCS sources, types, properties, identification techniques, therapeutic approaches, nanocarriers, and their role in various diseases. This study will give an idea for therapeutic development to combat the RCS associated chronic diseases.
    Matched MeSH terms: Human Body
  9. Khana R, Mahinderjit Singh M, Damanhoori F, Mustaffa N
    JMIR Med Inform, 2020 Sep 23;8(9):e21584.
    PMID: 32965225 DOI: 10.2196/21584
    BACKGROUND: Breast cancer is the leading cause of mortality among women worldwide. However, female patients often feel reluctant and embarrassed about meeting physicians in person to discuss their intimate body parts, and prefer to use social media for such interactions. Indeed, the number of patients and physicians interacting and seeking information related to breast cancer on social media has been growing. However, a physician may behave inappropriately on social media by sharing a patient's personal medical data excessively with colleagues or the public. Such an act would reduce the physician's trustworthiness from the patient's perspective. The multifaceted trust model is currently most commonly used for investigating social media interactions, which facilitates its enhanced adoption in the context of breast self-examination. The characteristics of the multifaceted trust model go beyond being personalized, context-dependent, and transitive. This model is more user-centric, which allows any user to evaluate the interaction process. Thus, in this study, we explored and evaluated use of the multifaceted trust model for breast self-examination as a more suitable trust model for patient-physician social media interactions in breast cancer screening.

    OBJECTIVE: The objectives of this study were: (1) to identify the trustworthiness indicators that are suitable for a breast self-examination system, (2) design and propose a breast self-examination system, and (3) evaluate the multifaceted trustworthiness interaction between patients and physicians.

    METHODS: We used a qualitative study design based on open-ended interviews with 32 participants (16 outpatients and 16 physicians). The interview started with an introduction to the research objective and an explanation of the steps on how to use the proposed breast self-examination system. The breast self-examination system was then evaluated by asking the patient to rate their trustworthiness with the physician after the consultation. The evaluation was also based on monitoring the activity in the chat room (interactions between physicians and patients) during daily meetings, weekly meetings, and the articles posted by the physician in the forum.

    RESULTS: Based on the interview sessions with 16 physicians and 16 patients on using the breast self-examination system, honesty had a strong positive correlation (r=0.91) with trustworthiness, followed by credibility (r=0.85), confidence (r=0.79), and faith (r=0.79). In addition, belief (r=0.75), competency (r=0.73), and reliability (r=0.73) were strongly correlated with trustworthiness, with the lowest correlation found for reputation (r=0.72). The correlation among trustworthiness indicators was significant (P

    Matched MeSH terms: Human Body
  10. Pathan RK, Biswas M, Khandaker MU
    Chaos Solitons Fractals, 2020 Sep;138:110018.
    PMID: 32565626 DOI: 10.1016/j.chaos.2020.110018
    SARS-CoV-2, a novel coronavirus mostly known as COVID-19 has created a global pandemic. The world is now immobilized by this infectious RNA virus. As of June 15, already more than 7.9 million people have been infected and 432k people died. This RNA virus has the ability to do the mutation in the human body. Accurate determination of mutation rates is essential to comprehend the evolution of this virus and to determine the risk of emergent infectious disease. This study explores the mutation rate of the whole genomic sequence gathered from the patient's dataset of different countries. The collected dataset is processed to determine the nucleotide mutation and codon mutation separately. Furthermore, based on the size of the dataset, the determined mutation rate is categorized for four different regions: China, Australia, the United States, and the rest of the World. It has been found that a huge amount of Thymine (T) and Adenine (A) are mutated to other nucleotides for all regions, but codons are not frequently mutating like nucleotides. A recurrent neural network-based Long Short Term Memory (LSTM) model has been applied to predict the future mutation rate of this virus. The LSTM model gives Root Mean Square Error (RMSE) of 0.06 in testing and 0.04 in training, which is an optimized value. Using this train and testing process, the nucleotide mutation rate of 400th patient in future time has been predicted. About 0.1% increment in mutation rate is found for mutating of nucleotides from T to C and G, C to G and G to T. While a decrement of 0.1% is seen for mutating of T to A, and A to C. It is found that this model can be used to predict day basis mutation rates if more patient data is available in updated time.
    Matched MeSH terms: Human Body
  11. Mansor AF, Azmi AI, Zain MZM, Jamaluddin R
    Heliyon, 2020 Aug;6(8):e04812.
    PMID: 32913911 DOI: 10.1016/j.heliyon.2020.e04812
    Nickel-titanium shape memory alloy (NiTi) has a unique capacity to restore its initial shape after deformation, which is highly applicable to orthopaedic implantations, especially for the minimization of invasive surgeries. The high nickel content of this alloy can lead to unfavourable effects on the human body upon dissolution; thus, a reliable barrier of coatings on the NiTi surface is required to alleviate the nickel migration and increase its biocompatibility. In this paper, analyses of a titanium oxide layer development on NiTi surface using electrical discharge coating (EDC) process is presented. The recast layer thickness, crater sizes, and surface roughness were characterized based on five parameters; polarity, discharge duration, pulse interval, peak current, and gap voltage. The results show that the discharge duration is the most significant parameter to influence all responses, followed by peak current. The surface characteristics of the EDC substrate is depending on the crater formations and is highly correlated with the discharge energy intensity. As a result, appropriate parametric conditions of the electrical discharge coating process can enhance the NiTi surface for future medical applications, without compromising the shape memory effect.
    Matched MeSH terms: Human Body
  12. Amjad M, Badshah S, Rafique AF, Adil Khattak M, Khan RU, Abdullah Harasani WI
    Materials (Basel), 2020 May 16;13(10).
    PMID: 32429420 DOI: 10.3390/ma13102299
    Implants are widely used in the human body for the replacement of affected bones. Fatigue failure is one of the serious concerns for implants. Therefore, understanding of the underlying mechanism leading to fatigue failure is important for the longevity of biomaterial implants. In this paper, the fracture toughness and fatigue crack growth of titanium alloy biomaterial Ti-27Nb has been experimentally investigated. The Ti-27Nb material is tested for fatigue crack growth in different environmental conditions representing the ambient and in vitro environments for 504 hours and 816 hours, respectively. Fractography of the tested specimen is conducted using Scanning Electron Microscope (SEM). The results of the fatigue crack growth propagation of the ambient and in vitro samples are similar in the Paris crack growth region. However, in the threshold region, the crack growth rate is higher for the Simulated Body Fluid (SBF) treated specimen. The fracture surface morphology of in vitro samples shows brittle fracture as compared to ambient specimens with significant plasticity and striations marks. It is proposed that a similar investigation may be conducted with specimens treated in SBF for prolonged periods to further ascertain the findings of this study.
    Matched MeSH terms: Human Body
  13. Mohd Ariffin NH, Hasham R
    Heliyon, 2020 May;6(5):e03955.
    PMID: 32478187 DOI: 10.1016/j.heliyon.2020.e03955
    Skin is the largest external organ of the human body. It acts as a barrier to protect the human body from environmental pollution, mechanical stress, and excessive water loss. The defensive function resides primarily on top of the epidermis layer commonly known as stratum corneum (SC). Human SC consists of three major lipids, namely ceramide, free fatty acid, and cholesterol that comprise approximately 50%, 25%, and 25% of the total lipid mass, respectively. The optimal composition of SC lipids is the vital epidermal barrier function of the skin. On the other hand, skin barrier serves to limit passive water loss from the body, reduces chemical absorption from the environment, and prevents microbial infection. In contrast, epidermal lipids are important to maintain the cell structure, growth and differentiation, cohesion and desquamation as well as formation of a permeability barrier. Multiple non-invasive in vivo approaches were implemented on a regular basis to monitor skin physiological and intercellular lipid properties. The measurement of different parameters such as transepidermal water loss (TEWL), hydration level, skin elasticity, collagen intensity, melanin content, sebum, pH, and tape stripping is essential to evaluate the epidermal barrier function. Novel non-invasive techniques such as tape stripping, ultrasound imaging, and laser confocal microscopy offer higher possibility of accurate and detailed characterisation of skin barrier. To date, these techniques have also been widely used to determine the effects of herbal plants in dermatology. Herbal plants have been traditionally used for ages to treat a variety of skin diseases, as reported by the World Health Organisation (WHO). Their availability, lower cost, and minimal or no side effects have created awareness among society, thus increase the demand for natural sources as the remedy to treat various skin diseases. This paper reviews several non-invasive techniques and evaluations of herbal-based product in dermatology.
    Matched MeSH terms: Human Body
  14. Taufik M, Amin-Safwan A, Mohd Nordin AR, Shahrul I, Abol-Munafi AB, Ikhwanuddin M
    Data Brief, 2020 Apr;29:105232.
    PMID: 32099875 DOI: 10.1016/j.dib.2020.105232
    The present datasets were conducted to investigate glucose concentration in hemolymph, energy levels at selected body parts (hepatopancreas, muscle, gonad), and feces among different sexes of crabs cultured at four different water velocities (0, 20, 40, and 60 cm/s) during a 60-day culture period. A total of 102 immature crabs (51 males, and 51 females) were sampled from Kuala Muda, Kedah coastal water, Peninsular Malaysia (5°39'N 100°19'E) from April to November of 2018. Results indicated that glucose concentration was the highest at water velocity of 60 cm/s for both male and female crabs (♂: 3.76 ± 0.08 mmol/L; ♀: 3.63 ± 0.06 mmol/L), whereas at 0 cm/s, the lowest levels of glucose concentration (♂: 0.13 ± 0.08 mmol/L; ♀: 0.19 ± 0.06 mmol/L) were recorded. As for energy analysis in hepatopancreas, results showed that both male and female crabs recorded the highest levels at 0 cm/s (no flow) with 37.919 ± 0.07 KJ/g and 34.636 ± 0.50 KJ/g, respectively. Energy for locomotion (muscle) of male crabs recorded the highest at 0 cm/s (♂: 26.823 ± 0.06 KJ/g), meanwhile for females, the highest was recorded at 20 cm/s (26.607 ± 0.34 KJ/g). Energy for reproduction of males could not be compared due to an insufficient available amount of testes/vas deferens, whereas female crabs recorded the highest energy usage at 20 cm/s water velocity (♀: 37.895 ± 0.08 KJ/g). For feces, both male and female crabs recorded the lowest energy at 60 cm/s (♂: 5.841 ± 0.03 KJ/g; ♀: 5.393 ± 0.01 KJ/g). Glucose assessment showed a direct relationship between increased velocity and glucose secretion in hemolymph at high velocity of 60 cm/s (stress condition) compared to other treatments. Regarding energy analysis, this research improved the mechanism of hepatopancreas, gonad, muscle and feces functions in development and reproduction, while it shed light on the influence of velocity on energy metabolism of S. olivacea.
    Matched MeSH terms: Human Body
  15. Sayfaldeen Kashmoola, Tengku Fazrina Tengku Mohd Ariff, Hazmyr Abdul Wahab
    ESTEEM Academic Journal, 2020;16(1):27-37.
    MyJurnal
    Anthropometry is defined as the scientific study of the measurements and proportions of the human body. To date, the most used methods for the acquisition of facial anthropometric parameters are direct method employing calipers and protractors tools, which are time-consuming, or indirect methods employing three-dimensional (3D) imaging systems, which are expensive. Despite the possible advantages of two-dimensional (2D) photography, it is not widely explored due to complications such as resolution and distortion of digital photos. The objective of this study is to
    assess the accuracy of the Digital Single-Lens Reflector (DSLR) camera as an indirect method against direct method at different aperture and distance to subject. Adults aged 20-45 years were voluntarily recruited in this study (n=24). Twelve facial anthropometric parameters were measured for each participant using direct anthropometry (sliding caliper), and indirect anthropometry (DSLR camera). When placing the DSLR camera at 2.0 meters from subjects with f/6.3 aperture, nine facial anthropometric parameters were obtained accurately (p> .05). The findings suggested that
    the accuracy of the DSLR camera as an indirect method for the acquisition of facial anthropometric parameters was established at the aperture setting of f/6.3 and the object distance at 2.0 meters. Therefore, it can be recommended as a facial anthropometry acquisition technique.
    Matched MeSH terms: Human Body
  16. Estrada A, Garber PA, Chaudhary A
    PeerJ, 2020;8:e9816.
    PMID: 32884865 DOI: 10.7717/peerj.9816
    Currently, ~65% of extant primate species (ca 512 species) distributed in 91 countries in the Neotropics, mainland Africa, Madagascar, South Asia and Southeast Asia are threatened with extinction and 75% have declining populations as a result of deforestation and habitat loss resulting from increasing global market demands, and land conversion for industrial agriculture, cattle production and natural resource extraction. Other pressures that negatively impact primates are unsustainable bushmeat hunting, the illegal trade of primates as pets and as body parts, expanding road networks in previously isolated areas, zoonotic disease transmission and climate change. Here we examine current and future trends in several socio-economic factors directly or indirectly affecting primates to further our understanding of the interdependent relationship between human well-being, sustainable development, and primate population persistence. We found that between 2001 and 2018 ca 191 Mha of tropical forest (30% canopy cover) were lost as a result of human activities in the five primate range regions. Forty-six percent of this loss was in the Neotropics (Mexico, Central and South America), 30% in Southeast Asia, 21% in mainland Africa, 2% in Madagascar and 1% in South Asia. Countries with the greatest losses (ca 57% of total tree cover loss) were Brazil, Indonesia, DRC, China, and Malaysia. Together these countries harbor almost 50% of all extant primate species. In 2018, the world human population was estimated at ca 8bn people, ca 60% of which were found in primate range countries. Projections to 2050 and to 2100 indicate continued rapid growth of the human populations in these five primate range regions, with Africa surpassing all the other regions and totaling ca 4bn people by the year 2100. Socioeconomic indicators show that, compared to developed nations, most primate range countries are characterized by high levels of poverty and income inequality, low human development, low food security, high levels of corruption and weak governance. Models of Shared Socioeconomic Pathway scenarios (SSPs) projected to 2050 and 2100 showed that whereas practices of increasing inequality (SSP4) or unconstrained growth in economic output and energy use (SSP5) are projected to have dire consequences for human well-being and primate survivorship, practices of sustainability-focused growth and equality (SSP1) are expected to have a positive effect on maintaining biodiversity, protecting environments, and improving the human condition. These results stress that improving the well-being, health, and security of the current and future human populations in primate range countries are of paramount importance if we are to move forward with effective policies to protect the world's primate species and promote biodiversity conservation.
    Matched MeSH terms: Human Body
  17. A. N. Azahari, N. D.M Yusob, H.A. Saidun, N.K.Y Ali, R. Abdullah, R. Hashim, et al.
    MyJurnal
    Introduction: Various phantom with varied materials has been proposed to replace the human body. Besides, there is always a demand to use the local material as a phantom material, which is readily available and inexpensive. Wood is usually preferred because it is multifunction, environmentally friendly, low in toxic, inexpensive, as well as easy to use and prepare. Previous studies have found that Rhizophora spp. is a suitable natural source material and has been suggested due to its comparable dosimetric properties to commercial phantom. Methods: In this study, fabricated Rhizophora spp. particleboards phantom was opted as a solid-equivalent phantom medium at low energy photon beams using Gafchromic film x-ray quality assurance 2 (XRQA2). Additionally, the characteristics of XRQA2 film in the diagnostic energy range were generated. Results: Interestingly, the density of the fabricated Rhizophora spp particleboards was observed to have the same density with the water equivalent material (ρ= 1.00 g.cm-3) and has shown to have loosened agreement with PDD of water phantom at approximately 25% of the dose error. Also, further analysis using XRQA 2 film showed that energy was independent at different ranges. Conclusion: The analysis of fabricated Rhizophora spp particleboards undertaken here has extended our knowledge of the possibility of man- ufacturing cost-effective water equivalent phantom by using binder-less particleboard from Rhizophora spp. There- fore, a definite need for smaller interspacing particles should be considered to elevate the potential of Rhizophora spp particle boards as water equivalent materials.
    Matched MeSH terms: Human Body
  18. Akbar, I., Jaswir, I., Jamal, P.
    MyJurnal
    Gelatine obtained from fish skin has become a potential source of preparing nanoparticles and
    encapsulation of bioactive compounds. Within these fish skin, gelatine nanoparticles show
    potent benefits for application in pharmaceutical and cosmetic industry. The encapsulated
    bioactive ingredients within nanoparticles have improved bioavailability, delivery properties,
    and solubility of the nutraceuticals within the human body and blood stream. Many of such
    bioactive peptides (biopeptides) are potent antioxidants; and as oxidative stress is the main
    cause of the onset of various chronic diseases, encapsulation of antioxidant biopeptides within
    fish gelatine nanoparticles could be a potential remedy to prevent or delay the onset of such
    diseases and for better health prospects. The purpose of the present work was to prepare a
    simple, safe, and reproducible novel food delivery nanoparticle system encapsulating a desirable antioxidant biopeptide. An optimisation study was conducted to produce a desirable size
    of gelatine nanoparticles which showed a higher encapsulation efficiency of an antioxidant
    biopeptide. Sunflower biopeptide was chosen as the antioxidant biopeptide, as the activity of
    this protein hydrolysate is quite high at DPPH of 89% and FRAP assay of 968 µm/L. Tilapia
    fish was used as gelatine source at an average yield of the process at 10% wt/wt. Effects of
    parameters such as pH, biopeptide concentration, and cross-linking agent ‘glutaraldehyde’ on
    the size, stability, and encapsulation efficiency on the nanoparticles were studied. The average
    diameter of the biopeptide loaded gelatine nanoparticle was between 228.3 and 1,305 nm.
    Encapsulation efficiency was 76% at an optimal pH of 2, glutaraldehyde concentration of 2
    mL, and biopeptide concentration of 0.1 mg/mL exhibited DPPH at 92% and FRAP assay of
    978 µm/L. To understand the absorption of sunflower biopeptide in stomach, blood stream,
    and biopeptide release of the gelatine nanoparticles, biopeptide loaded gelatine nanoparticles
    were subjected to simulated gastrointestinal conditions mimicking human stomach and
    intestine; and showed peptide release of 0.1464 and 0.277 mg/mL upon pepsin and pancreatin
    digestion, respectively.
    Matched MeSH terms: Human Body
  19. SUWATYRA LETCHUMANAN, RUWAIDIAH IDRIS
    MyJurnal
    The Greek letter φ (Phi) represents one of the most mysterious numbers (1.618…) known to humankind. Historical approbation for φhas led to the monikers “The Golden Number” or “The Divine Proportion”. This simple, but inscrutable number, is inseparably linked to the recursive mathematical sequence which produces Fibonacci numbers. The study of the Fibonacci sequence exists in most aspects of life starting from the leaves of a non-flowering plant, design, paintings, animals, and even human body. Despite its wide-spread prevalence and existence, the Fibonacci series and also the Rule of Golden Proportions have not been widely documented within the human body. The main objective of this study is to prove that the length of the human hand bone is in step with the Fibonacci series to spot the degree of movement and variation for every finger. Victimization of the sample z test with 95% confidence interval, this analysis shows that just one of the four bone length ratios contained the ratio phi φ within the 95% confidence interval and follow the Fibonacci series, that of the little finger metacarpal and proximal phalanx in both hands. The largest variability was seen within the little finger phalangeal relationships and other fingers will follow mathematical relative series. Due to the relationship with the golden number, it will facilitate in monitoring the individual with an injured hand, especially if injured in small fingers throughout a medical aid, or to identify the cause of the problem of physical functioning of the hands or individual fingers. Hence, it should be helpful for the length of the clenched fist to perform in reconstruction or placement of the prosthesis.
    Matched MeSH terms: Human Body
  20. Manah Chandra Changmai, Kastury Gohain, Akma Asyira Binti Zulkarnaie
    MyJurnal
    Introduction: Anatomy continues to be an important basic subject in medicine and other related health sciences which is delivered by method of either through lectures or demonstration. Thus, having a gross anatomy practi- cal with cadaver is a crucial phase for the students to have a deep understanding about anatomy of human body. The objective of this study is to explore the attitude and perception of medical and health science students in the importance of cadaver dissection in learning anatomy. Methods: A cross-sectional study was conducted by distrib- uting closed structured questionnaires to 270 respondents consisting of socio-demographic in part one, frequency on practical with dissected cadaver in part two, the attitude of student towards the dissected cadaver in part three, suggestion for improvement during practical with cadaver in part four and the value of cadavers during practical in part five. The collected data were processed by using Statistical Package for Social Sciences (SPSS) version 23.0. Result: Descriptive statistical evaluation shows majority of the students perform practical with cadavers. They find cadaveric dissection exciting with no feeling of stress and anxiety. Many of them never had an emotional shock when exposing themselves to the cadavers for the first time accepting the cadaveric dissection ethically. The students recommended keeping cadaveric dissection in the health science curriculum. Conclusion: The cadaveric dissection helps in grounded understanding of anatomy. It promotes and develops psychomotor skills in students. The findings of the study discovered dissection to be a motivating tool in learning anatomy.
    Matched MeSH terms: Human Body
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links