Displaying publications 1 - 20 of 61 in total

Abstract:
Sort:
  1. A Karim SS, Takamura Y, Tue PT, Tung NT, Kazmi J, Dee CF, et al.
    Materials (Basel), 2020 Mar 04;13(5).
    PMID: 32143385 DOI: 10.3390/ma13051136
    Highly ordered vertically grown zinc oxide nanorods (ZnO NRs) were synthesized on ZnO-coated SiO2/Si substrate using zinc acetylacetonate hydrate as a precursor via a simple hydrothermal method at 85 °C. We used 0.05 M of ZnO solution to facilitate the growth of ZnO NRs and the immersion time was varied from 0.5 to 4 h. The atomic force microscopy revealed the surface roughness of ZnO seed layer used to grow the ZnO NRs. The morphology of vertically grown ZnO NRs was observed by field emission scanning electron microscopy. X-ray diffraction examination and transmission electron microscopy confirmed that the structure of highly ordered ZnO NRs was crystalline with a strong (002) peak corresponded to ZnO hexagonal wurtzite structure. The growth of highly ordered ZnO NRs was favorable due to the continuous supply of Zn2+ ions and chelating agents properties obtained from the acetylacetonate-derived precursor during the synthesis. Two-point probe current-voltage measurement and UV-vis spectroscopy of the ZnO NRs indicated a resistivity and optical bandgap value of 0.44 Ω.cm and 3.35 eV, respectively. The photoluminescence spectrum showed a broad peak centered at 623 nm in the visible region corresponded to the oxygen vacancies from the ZnO NRs. This study demonstrates that acetylacetonate-derived precursors can be used for the production of ZnO NRs-based devices with a potential application in biosensors.
    Matched MeSH terms: Hydroxybutyrates
  2. Al-Salihi KA, Samsudin AR
    Med J Malaysia, 2004 May;59 Suppl B:202-3.
    PMID: 15468888
    In this study the surface properties of two particulate coral and polyhydroxybutrate (PHB) were studied in order to characterize them prior to use in composite production. Coral powder and PHB particle were evaluated using scanning electron microscopy and confocal laser scanning microscopy, to measure surface porosity and pores size. The results showed that coral powder has multiple pleomorphic micropores cross each others give appearance of micro-interconnectivity. Some pore reached to 18 microm with an average porosity of 70%. PHB revealed multiple different size pores extended to the depth, with an average some times reach 25 microm and porosity 45%. These findings demonstrate that both coral and PHB have excellent pores size and porosity that facilitate bone in growth, vascular invasion and bone development. We believe that incorporation of coral powder into PHB will make an excellent composite scaffold for tissue engineering.
    Matched MeSH terms: Hydroxybutyrates*
  3. Ali AQ, Kannan TP, Ahmad A, Samsudin AR
    Toxicol In Vitro, 2008 Feb;22(1):57-67.
    PMID: 17892925
    The aims of this study are to determine the mutagenicity of a locally produced polyhydroxybutyrate (PHB) using Salmonella mutagenicity test and to find out if PHB altered the expression of p53 and c-myc proto-oncogenes and bcl-xl and bcl-xs anti-apoptotic genes in the human fibroblast cell line, MRC-5. Different concentrations of PHB were incubated with special genotypic variants of Salmonella strains (TA1535, TA1537, TA1538, TA98 and TA100) carrying mutations in several genes both with and without metabolic activation (S9) and the test was assessed based on the number of revertant colonies. The average number of revertant colonies per plate treated with PHB was less than double as compared to that of negative control. For the gene expression analyses, fibroblast cell lines were treated with PHB at different concentrations and incubated for 1, 12, 24 and 48 h separately. The total RNA was isolated and analysed for the expression of p53, c-myc, bcl-xl and bcl-xs genes. The PHB did not show over or under expression of the genes studied. The above tests indicate that the locally produced PHB is non-genotoxic and does not alter the expression of the proto-oncogenes and anti-apoptotic genes considered in this study.
    Matched MeSH terms: Hydroxybutyrates/administration & dosage; Hydroxybutyrates/toxicity*
  4. Alias Z, Tan IK
    Bioresour Technol, 2005 Jul;96(11):1229-34.
    PMID: 15734309
    In early attempts to isolate palm oil-utilising bacteria from palm oil mill effluent (POME), diluted liquid samples of POME were spread on agar containing POME as primary nutrient. 45 purified colonies were screened for intracellular lipids by staining with Sudan Black B. Of these, 10 isolates were positively stained. The latter were grown in a nitrogen-limiting medium with palm olein (a triglyceride) or saponified palm olein (salts of fatty acids) as carbon source. None of the isolates grew in the palm olein medium but all grew well in the saponified palm olein medium. Of the latter however, only one isolate was positively stained with Nile Blue A, indicating the presence of PHA. This method did not successfully generate bacterial isolates which could metabolise palm olein to produce PHA. An enrichment technique was therefore developed whereby a selective medium was designed. The latter comprised minerals and palm olein (1% w/v) as sole carbon source to which POME (2.5% v/v) was added as the source of bacteria. The culture was incubated with shaking at 30 degrees C for 4 weeks. Out of seven isolates obtained from the selective medium, two isolates, FLP1 and FLP2, could utilise palm olein for growth and production of the homopolyester, poly(3-hydroxybutyrate). FLP1 is gram-negative and is identified (BIOLOG) to have 80% similarity to Burkholderia cepacia. When grown with propionate or valerate, FLP1 produced a copolyester, poly(3-hydroxybutyrate-co-3-hydroxyvalerate).
    Matched MeSH terms: Hydroxybutyrates/metabolism*
  5. Amirul AA, Yahya AR, Sudesh K, Azizan MN, Majid MI
    Bioresour Technol, 2008 Jul;99(11):4903-9.
    PMID: 17981028
    Cupriavidus sp. USMAA1020 was isolated from Malaysian environment and able to synthesize poly(3-hydroxybutyrate-co-4-hydroxybutyrate), [P(3HB-co-4HB)] when grown on gamma-butyrolactone as the sole carbon source. The polyester was purified from freeze-dried cells and analyzed by nuclear magnetic resonance (NMR) spectroscopy. 1H and 13C NMR results confirmed the presence of 3HB and 4HB monomers. In a one-step cultivation process, P(3HB-co-4HB) accumulation by Cupriavidus sp. USMAA1020 was affected by carbon to nitrogen ratio (C/N). A two-step cultivation process accumulated P(3HB-co-4HB) copolyester with a higher 4HB fraction (53 mol%) in nitrogen-free mineral medium containing gamma-butyrolactone. The biosynthesis of P(3HB-co-4HB) was also achieved by using 4-hydroxybutyric acid and alkanediol as 1,4-butanediol. The composition of copolyesters varied from 32 to 51 mol% 4HB, depending on the carbon sources supplied. The copolyester produced by Cupriavidus sp. USMAA1020 has a random sequence distribution of 3-hydroxybutyrate (3HB) and 4-hydroxybutyrate (4HB) units when analyzed by nuclear magnetic resonance (NMR) spectroscopy. When gamma-butyrolactone was used as the sole carbon source, the 4HB fraction in copolyester increased from 25 to 60 mol% as the concentration of gamma-butyrolactone in the culture medium increased from 2.5 g/L to 20.0 g/L.
    Matched MeSH terms: Hydroxybutyrates/metabolism*
  6. Ansari NF, Amirul AA
    Appl Biochem Biotechnol, 2013 Jun;170(3):690-709.
    PMID: 23604967 DOI: 10.1007/s12010-013-0216-0
    Polyhydroxyalkanoates (PHAs) are hydrophobic biodegradable thermoplastics that have received considerable attention in biomedical applications due to their biocompatibility, mechanical properties, and biodegradability. In this study, the degradation rate was regulated by optimizing the interaction of parameters that influence the enzymatic degradation of P(3HB) film using response surface methodology (RSM). The RSM model was experimentally validated yielding a maximum 21 % weight loss, which represents onefold increment in percentage weight loss in comparison with the conventional method. By using the optimized condition, the enzymatic degradation by an extracellular PHA depolymerase from Acidovorax sp. DP5 was studied at 37 °C and pH 9.0 on different types of PHA films with various monomer compositions. Surface modification of scaffold was employed using enzymatic technique to create highly porous scaffold with a large surface to volume ratio, which makes them attractive as potential tissue scaffold in biomedical field. Scanning electron microscopy revealed that the surface of salt-leached films was more porous compared with the solvent-cast films, and hence, increased the degradation rate of salt-leached films. Apparently, enzymatic degradation behaviors of PHA films were determined by several factors such as monomer composition, crystallinity, molecular weight, porosity, and roughness of the surface. The hydrophilicity and water uptake of degraded salt-leached film of P(3HB-co-70%4HB) were enhanced by incorporating chitosan or alginate. Salt-leached technique followed by partial enzymatic degradation would enhance the cell attachment and suitable for biomedical as a scaffold.
    Matched MeSH terms: Hydroxybutyrates/chemistry
  7. Azura Azami N, Ira Aryani W, Aik-Hong T, Amirul AA
    Protein Expr Purif, 2019 03;155:35-42.
    PMID: 30352276 DOI: 10.1016/j.pep.2018.10.008
    Depolymerase is an enzyme that plays an important role in the hydrolysis of polyhydroxyalkanoates [PHAs]. In the current study, Burkholderia cepacia DP1 was obtained from Penang, Malaysia in which the enzyme was purified using ion exchange and gel filtration (Superdex-75) column chromatography. The molecular mass of the enzyme was estimated to be 53.3 kDa using SDS-PAGE. The enzyme activity was increased to 36.8 folds with the recovery of 16.3% after purification. The enzyme activity was detected between pH 6.0-10 and at 35-55 °C with pH 6.0 and 45 °C facilitating the maximum activity. Depolymerase was inactivated by Tween-20, Tween-80, SDS and PMSF, but insensitive to metal ions (Mg2+, Ca2+, K+, Na2+, Fe3+) and organic solvents (methanol, ethanol, and acetone). The apparent Km values of the purified P(3HB) depolymerase enzyme for P(3HB) and P(3HB-co-14%3HV) were 0.7 mg/ml and 0.8 mg/ml, respectively. The Vmax values of the purified enzyme were 10 mg/min and 8.89 mg/min for P(3HB) and P(3HB-co-14%3HV), respectively. The current study discovered a new extracellular poly(3-hydroxybutyrate) [P(3HB)] depolymerase enzyme from Burkholderia cepacia DP1 isolated and purified to homogeneity from the culture supernatant. To the best of our knowledge, this is the first report demonstrating the purification and biochemical characterization of P(3HB) depolymerase enzyme from genus Burkholderia.
    Matched MeSH terms: Hydroxybutyrates/metabolism*
  8. Biglari N, Orita I, Fukui T, Sudesh K
    J Biotechnol, 2020 Jan 10;307:77-86.
    PMID: 31669355 DOI: 10.1016/j.jbiotec.2019.10.013
    This study investigates the effect of strategies on poly(3-hydroxybutyrate) [P(3HB)] production in bioreactor. In the production of P(3HB), urea and glucose feeding streams were developed to characterize the fed-batch culture conditions for new Cupriavidus necator NSDG-GG mutant. Feeding urea in repeated fed-batch stage (RFB-I) at 6, and 12 h in cultivation led to insignificant kinetic effect on the cell dry mass (CDM) and P(3HB) accumulation. Feeding glucose in repeated fed-batch stage (RFB-II) demonstrated that the incremental feeding approach of glucose after urea in fill-and-draw (F/D) mode at 24, 30, 36, 42, and 48 h in fermentation increased CDM and P(3HB) concentration. In the 1st cycle in RFB-II, the cumulative CDM reached the value of 26.22 g/L and then it increased with the successive repeated fed-batches to attain biomass of 145 g/L at the end of 5th cycle of RFB-II. The final cumulative P(3HB) concentration at the end of 5th cycle of RFB-II reached 111 g/L with the overall yield of 0.50 g P(3HB) g gluc- 1; the CDM productivity from the RFB-II cycles was in the range of 0.84-1.3 g/(L·h). The RFB-II of glucose in an increment mode produced nearly 2.2 times more increase in CDM and P(3HB) productivities compared to the decrement RFB-II mode. Repeated cultivation had also the advantage of avoiding extra time required for innoculum preparation, and sterilization of bioreactor during batch, thereby it increased the overall industrial importance of the process.
    Matched MeSH terms: Hydroxybutyrates
  9. Biglari N, Ganjali Dashti M, Abdeshahian P, Orita I, Fukui T, Sudesh K
    3 Biotech, 2018 Aug;8(8):330.
    PMID: 30073115 DOI: 10.1007/s13205-018-1351-7
    This study aimed to enhance production of polyhydroxybutyrate P(3HB) by a newly engineered strain of Cupriavidus necator NSDG-GG by applying response surface methodology (RSM). From initial experiment of one-factor-at-a-time (OFAT), glucose and urea were found to be the most significant substrates as carbon and nitrogen sources, respectively, for the production of P(3HB). OFAT experiment results showed that the maximum biomass, P(3HB) content, and P(3HB) concentration of 8.95 g/L, 76 wt%, and 6.80 g/L were achieved at 25 g/L glucose and 0.54 g/L urea with an agitation rate of 200 rpm at 30 °C after 48 h. In this study, RSM was applied to optimize the three key variables (glucose concentration, urea concentration, and agitation speed) at a time to obtain optimal conditions in a multivariable system. Fermentation experiments were conducted in shaking flask by cultivation of C. necator NSDG-GG using various glucose concentrations (10-50 g/L), urea concentrations (0.27-0.73 g/L), and agitation speeds (150-250 rpm). The interaction between the variables studied was analyzed by ANOVA analysis. The RSM results indicated that the optimum cultivation conditions were 37.70 g/L glucose, 0.73 g/L urea, and 200 rpm agitation speed. The validation experiments under optimum conditions produced the highest biomass of 12.84 g/L, P(3HB) content of 92.16 wt%, and P(3HB) concentration of 11.83 g/L. RSM was found to be an efficient method in enhancing the production of biomass, P(3HB) content, and P(3HB) concentration by 43, 21, and 74%, respectively.
    Matched MeSH terms: Hydroxybutyrates
  10. Chai CJ, Amirul AA, Vigneswari S
    Data Brief, 2020 Feb;28:104777.
    PMID: 31871967 DOI: 10.1016/j.dib.2019.104777
    Electrospinning is a promising approach to fabricate desirable electropsun nanofibrous scaffold that could be applied in the medical fields. In this study, bacterial copolymer poly(3-hydroxybutyrate-co-68 mol% 4-hydroxybutyrate) [P(3HB-co-68mol% 4HB)] copolymer produced was fabricated into electrospun nanofibers using various combination of electrospinning parameters including the polymer solution, applied voltage and injection speed. The morphology of the fabricated scaffolds were observed using scanning electron microscope (SEM). The SEM images were analysed for the fibre diameter distribution of the scaffolds using Image Analyser. The results revealed that the 8 wt% of polymer solution, 25 kV/cm of the applied voltage and 1.5 mL/h of the injection speed was the most suitable combination. This electrospinning parameters combination fabricated nanofibrous P(3HB-co-4HB) scaffold with smooth, beadles and uniform nanofibers with small fibre diameter distribution.
    Matched MeSH terms: Hydroxybutyrates
  11. Chee JW, Amirul AA, Majid MI, Mansor SM
    Int J Pharm, 2008 Sep 1;361(1-2):1-6.
    PMID: 18584978 DOI: 10.1016/j.ijpharm.2008.05.007
    Copolyesters of 3-hydroxybutyrate (3HB) and 4-hydroxybutyrate (4HB) were produced by Cupriavidus sp. (USMAA2-4) (DSM 19379) from carbon sources of 1,4-butanediol and gamma-butyrolactone. The composition of copolyesters produced varied from 0 to 45 mol% 4HB, depending on the combination of carbon sources supplied. The P(3HB-co-4HB) films containing Mitragyna speciosa crude extract were prepared with the ratio varying from 10 to 40% (w/w). The in vitro crude extract release of the films was studied in 0.1M phosphate buffer (pH 7.4) at 37 degrees C. Although the release rate was slow, it was maintained at a constant rate. This suggests that the crude extract release was due to the polymer degradation because the amount of crude extract released was consistent. The amount of degradation was based on the films' dry weight loss, decrease in molecular weight and surface morphology changes. The degradation rate increased with the 4HB content. This showed that the polymer degradation is dependant on the molecular weight, crystallinity, thermal properties and water permeability. The different drug loading ratio which led to surface morphology changes also gave an effect on polymer degradation.
    Matched MeSH terms: Hydroxybutyrates/chemistry*
  12. Faisalina AF, Sonvico F, Colombo P, Amirul AA, Wahab HA, Majid MIA
    Nanomaterials (Basel), 2020 Oct 26;10(11).
    PMID: 33114572 DOI: 10.3390/nano10112123
    Polyhydroxyalkanoate (PHA) copolymers show a relatively higher in vivo degradation rate compared to other PHAs, thus, they receive a great deal of attention for a wide range of medical applications. Nanoparticles (NPs) loaded with poorly water-soluble anticancer drug docetaxel (DCX) were produced using poly(3-hydroxybutyrate-co-4-hydroxybutyrate), P(3HB-co-4HB), copolymers biosynthesised from Cupriavidus malaysiensis USMAA1020 isolated from the Malaysian environment. Three copolymers with different molar proportions of 4-hydroxybutirate (4HB) were used: 16% (PHB16), 30% (PHB30) and 70% (PHB70) 4HB-containing P(3HB-co-4HB). Blank and DCX-loaded nanoparticles were then characterized for their size and size distribution, surface charge, encapsulation efficiency and drug release. Preformulation studies showed that an optimised formulation could be achieved through the emulsification/solvent evaporation method using PHB70 with the addition of 1.0% PVA, as stabilizer and 0.03% VitE-TPGS, as surfactant. DCX-loaded PHB70 nanoparticles (DCX-PHB70) gave the desired particle size distribution in terms of average particle size around 150 nm and narrow particle size distribution (polydispersity index (PDI) below 0.100). The encapsulation efficiency result showed that at 30% w/w drug-to-polymer ratio: DCX- PHB16 NPs were able to encapsulate up to 42% of DCX; DCX-PHB30 NPs encapsulated up to 46% of DCX and DCX-PHB70 NPs encapsulated up to 50% of DCX within the nanoparticle system. Approximately 60% of DCX was released from the DCX-PHB70 NPs within 7 days for 5%, 10% and 20% of drug-to-polymer ratio while for the 30% and 40% drug-to-polymer ratios, an almost complete drug release (98%) after 7 days of incubation was observed.
    Matched MeSH terms: Hydroxybutyrates
  13. Farah Anis Jasni, Kuan, Yew Cheong, Lockman, Zainovia, Zainuriah Hassan
    MyJurnal
    Thin films of cerium oxide (CeO2) were prepared on silicon (Si) substrate by metal organic decomposition route. 0.25 M of cerium (III) acetylacetonate (acac) was used as starting materials with the addition of methanol and acetic acid as solvents. Oxide conversion of the film by thermal treatment was conducted at temperature ranging from 400 o C to 1000 o C for 15 min in argon ambient. X-ray diffraction (XRD) analysis utilizing Cukα radiation (Model Brukker’s Diffrac Plus ), Filmetrics system measurement, field emission scanning electron microscope (FE-SEM) (Model Zeiss Supra 35VP FE-SEM) and atomic force microscopy (AFM) (Model SII Nanonavi) were employed to characterize the phase formed and morphologies of the film produced.
    Matched MeSH terms: Hydroxybutyrates
  14. Foong CP, Lau NS, Deguchi S, Toyofuku T, Taylor TD, Sudesh K, et al.
    BMC Microbiol, 2014;14:318.
    PMID: 25539583 DOI: 10.1186/s12866-014-0318-z
    Special features of the Japanese ocean include its ranges of latitude and depth. This study is the first to examine the diversity of Class I and II PHA synthases (PhaC) in DNA samples from pelagic seawater taken from the Japan Trench and Nankai Trough from a range of depths from 24 m to 5373 m. PhaC is the key enzyme in microorganisms that determines the types of monomer units that are polymerized into polyhydroxyalkanoate (PHA) and thus affects the physicochemical properties of this thermoplastic polymer. Complete putative PhaC sequences were determined via genome walking, and the activities of newly discovered PhaCs were evaluated in a heterologous host.
    Matched MeSH terms: Hydroxybutyrates/metabolism
  15. Goh LK, Purama RK, Sudesh K
    Appl Biochem Biotechnol, 2014 Feb;172(3):1585-98.
    PMID: 24233544 DOI: 10.1007/s12010-013-0634-z
    Poly(3-hydroxybutyrate) [P(3HB)], a polymer belonging to the polyhydroxyalkanoate (PHA) family, is accumulated by numerous bacteria as carbon and energy storage material. The mobilization of accumulated P(3HB) is associated with increased stress and starvation tolerance. However, the potential function of accumulated copolymer such as poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] remained unknown. In this study, Delftia acidovorans DS 17 was used to evaluate the contributions of P(3HB) and P(3HB-co-3HV) granules during simulated exogenous carbon deprivation on cell survival by transferring cells with PHAs to carbon-free mineral salt medium supplemented with 1% (w/v) nitrogen source. By mobilizing the intracellular P(3HB) and P(3HB-co-3HV) at 11 and 40 mol% 3HV compositions, the cells survived starvation. Surprisingly, D. acidovorans containing P(3HB-co-94 mol% 3HV) also survived although the mobilization was not as effective. Similarly, recombinant Escherichia coli pGEM-T::phbCAB(Cn) (harboring the PHA biosynthesis genes of Cupriavidus necator) containing P(3HB) granules had a higher viable cell counts compared to those without P(3HB) granules but without any P(3HB) mobilization when exposed to oxidative stress by photoactivated titanium dioxide. This study provided strong evidence that enhancement of stress tolerance in PHA producers can be achieved without mobilization of the previously accumulated granules. Instead, PHA biosynthesis may improve bacterial survival via multiple mechanisms.
    Matched MeSH terms: Hydroxybutyrates/chemistry*
  16. Hosseini S, Azari P, Farahmand E, Gan SN, Rothan HA, Yusof R, et al.
    Biosens Bioelectron, 2015 Jul 15;69:257-64.
    PMID: 25765434 DOI: 10.1016/j.bios.2015.02.034
    Electrospun polyhydroxybutyrate (PHB) fibers were dip-coated by polymethyl methacrylate-co-methacrylic acid, poly(MMA-co-MAA), which was synthesized in different molar ratios of the monomers via free-radical polymerization. Fabricated platfrom was employed for immobilization of the dengue antibody and subsequent detection of dengue enveloped virus in enzyme-linked immunosorbent assay (ELISA). There is a major advantage for combination of electrospun fibers and copolymers. Fiber structre of electrospun PHB provides large specific surface area available for biomolecular interaction. In addition, polymer coated parts of the platform inherited the premanent presence of surface carboxyl (-COOH) groups from MAA segments of the copolymer which can be effectively used for covalent and physical protein immobilization. By tuning the concentration of MAA monomers in polymerization reaction the concentration of surface -COOH groups can be carefully controlled. Therefore two different techniques have been used for immobilization of the dengue antibody aimed for dengue detection: physical attachment of dengue antibodies to the surface and covalent immobilization of antibodies through carbodiimide chemistry. In that perspective, several different characterization techniques were employed to investigate the new polymeric fiber platform such as scanning electron microscopy (SEM), atomic force microscopy (AFM), water contact angle (WCA) measurement and UV-vis titration. Regardless of the immobilization techniques, substantially higher signal intensity was recorded from developed platform in comparison to the conventional ELISA assay.
    Matched MeSH terms: Hydroxybutyrates/chemistry*
  17. Huong KH, Kannusamy S, Lim SY, Amirul AA
    J Ind Microbiol Biotechnol, 2015 Sep;42(9):1291-7.
    PMID: 26233315 DOI: 10.1007/s10295-015-1657-y
    Two-stage fermentation was normally employed to achieve a high poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] productivity with higher 4HB molar fraction. Here, we demonstrated single-stage fermentation method which is more industrial feasible by implementing mixed-substrate cultivation strategy. Studies on bioreactor scale show a remarkably high PHA accumulation of 73 wt%, contributing to a high PHA concentration and product yield of 8.6 g/L and 2.7 g/g, respectively. This fermentation strategy has resulted in copolymers with wider range of 4HB monomer composition, which ranges from 12 to 55 mol%. These copolymers show a broad range of weight average molecular weight (M w ) from 119.5 to 407.0 kDa. The copolymer characteristics were found to be predominantly affected by the nature of the substrates and the mixture strategies, regardless of the 4HB monomer compositions. This was supported by the determination of copolymer randomness using (13)C-NMR analysis. The study warrants significantly in the copolymer scale-up and modeling at industrial level.
    Matched MeSH terms: Hydroxybutyrates/metabolism*; Hydroxybutyrates/chemistry
  18. Huong KH, Azuraini MJ, Aziz NA, Amirul AA
    J Biosci Bioeng, 2017 Jul;124(1):76-83.
    PMID: 28457658 DOI: 10.1016/j.jbiosc.2017.02.003
    Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [(P(3HB-co-4HB)] copolymer receives attention as next generation biomaterial in medical application. However, the exploitation of the copolymer is still constrained since such copolymer has not yet successfully been performed in industrial scale production. In this work, we intended to establish pilot production system of the copolymer retaining the copolymer quality which has recently discovered to have novel characteristic from lab scale fermentation. An increase of agitation speed has significantly improved the copolymer accumulation efficiency by minimizing the utilization of substrates towards cell growth components. This is evidenced by a drastic increase of PHA content from 28 wt% to 63 wt% and PHA concentration from 3.1 g/L to 6.5 g/L but accompanied by the reduction of residual biomass from 8.0 g/L to 3.8 g/L. Besides, fermentations at lower agitation and aeration have resulted in reduced molecular weight and mechanical strength of the copolymer, suggesting the role of sufficient oxygen supply efficiency in improving the properties of the resulting copolymers. The KLa-based scale-up fermentation was performed successfully in maintaining the yield and the quality of the copolymers produced without a drastic fluctuation. This suggests that the scale-up based on the KLa values supported the fermentation system of P(3HB-co-4HB) copolymer production in single-stage using mixed-substrate cultivation strategy.
    Matched MeSH terms: Hydroxybutyrates/metabolism*; Hydroxybutyrates/chemistry*
  19. Huong KH, Teh CH, Amirul AA
    Int J Biol Macromol, 2017 Aug;101:983-995.
    PMID: 28373050 DOI: 10.1016/j.ijbiomac.2017.03.179
    This study reports the production of P(3HB-co-4HB) [Poly(3-hydroxybutyrate-co-4-hydroxybutyrate)] in possession of high molecular weight and elastomeric properties by Cupriavidus sp. USMAA1020 in single-stage mixed-substrate cultivation system. 1,4-butanediol and 1,6-hexanediol are found to be efficient substrate mixture that has resulted in high copolymer yield, occupying a maximum of 70wt% of the total biomass and producing higher 4HB monomer composition ranging from 31mol% to 41mol%. In substrate mixtures involving 1,6-hexanediol, cleavage of the 6-hydroxyhexanoyl-CoA produces Acetyl-CoA and 4-hydroxybutyryl-CoA. Acetyl-CoA is instrumental in initiating the cell growth in the single-stage fermentation system, preventing 4-hydroxybutyryl-CoA from being utilized via β-oxidation and retained the 4HB monomer at higher ratios. Macroscopic kinetic models of the bioprocesses have revealed that the P(3HB-co-4HB) formation appears to be in the nature of mixed-growth associated with higher formation rate during exponential growth phase; evidenced by higher growth associated constants, α, from 0.0690g/g to 0.4615g/g compared to non-growth associated constants, β, from 0.0092g/g/h to 0.0459g/g/h. The P(3HB-co-31mol% 4HB) produced from the substrate mixture exhibited high weight-average molecular weight, Mwof 927kDa approaching a million Dalton, and possessed elongation at break of 1637% upon cultivation at 0.56wt% C. This is the first report on such properties for the P(3HB-co-4HB) copolymer. The copolymer is highly resistant to polymer deformation after being stretched.
    Matched MeSH terms: Hydroxybutyrates/metabolism*; Hydroxybutyrates/chemistry
  20. Huong KH, Elina KAR, Amirul AA
    Int J Biol Macromol, 2018 Sep;116:217-223.
    PMID: 29723627 DOI: 10.1016/j.ijbiomac.2018.04.148
    Long carbon chain alkanediols are used in the production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)], however these substrates possess high toxicity towards bacterial cells. This study demonstrated the effective utilisation of a long carbon chain alkanediol, namely 1,8-octanediol, to enhance the yield and production of a copolymer with a high molecular weight of over 1000 kDa, which is desirable for novel applications in medical and biopharmaceuticals. The increased PHA content (47-61 wt%) and concentration (1.7-4.5 g/L) was achieved by additional feeding of a combination of C4 substrates at C/N 10, with 1,8-octanediol + γ-butyrolactone producing P(3HB-co-22 mol% 4HB) with a high molecular weight (1060 kDa) and elongation at break of 970%. The DO-stat feeding strategy of C/N 10 has shown an increment of PHA concentration for both carbon combination, 0.45-4.27 g/L and 0.32-3.36 g/L for 1,8-octanediol + sodium 4-hydroxybutyrate (4HB-Na) and 1,8-octanediol + γ-butyrolactone, but with a slight reduction on molecular weight and mechanical strength. Nonetheless, further study revealed that a nitrogen-absence feeding strategy could retain the high molecular weight and elongation at break of the copolymer, and simultaneously improving the overall P(3HB-co-4HB) production.
    Matched MeSH terms: Hydroxybutyrates/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links