Displaying publications 1 - 20 of 85 in total

Abstract:
Sort:
  1. Subach OM, Vlaskina AV, Agapova YK, Korzhenevskiy DA, Nikolaeva AY, Varizhuk AM, et al.
    Int J Mol Sci, 2022 Nov 23;23(23).
    PMID: 36498942 DOI: 10.3390/ijms232314614
    NTnC-like green fluorescent genetically encoded calcium indicators (GECIs) with two calcium ion binding sites were constructed using the insertion of truncated troponin C (TnC) from Opsanus tau into green fluorescent proteins (GFPs). These GECIs are small proteins containing the N- and C-termini of GFP; they exert a limited effect on the cellular free calcium ion concentration; and in contrast to calmodulin-based calcium indicators they lack undesired interactions with intracellular proteins in neurons. The available TnC-based NTnC or YTnC GECIs had either an inverted response and high brightness but a limited dynamic range or a positive response and fast kinetics in neurons but lower brightness and an enhanced but still limited dF/F dynamic range. Here, we solved the crystal structure of NTnC at 2.5 Å resolution. Based on this structure, we developed positive NTnC2 and inverted iNTnC2 GECIs with a large dF/F dynamic range in vitro but very slow rise and decay kinetics in neurons. To overcome their slow responsiveness, we swapped TnC from O. tau in NTnC2 with truncated troponin C proteins from the muscles of fast animals, namely, the falcon, hummingbird, cheetah, bat, rattlesnake, and ant, and then optimized the resulting constructs using directed molecular evolution. Characterization of the engineered variants using purified proteins, mammalian cells, and neuronal cultures revealed cNTnC GECI with truncated TnC from Calypte anna (hummingbird) to have the largest dF/F fluorescence response and fast dissociation kinetics in neuronal cultures. In addition, based on the insertion of truncated TnCs from fast animals into YTnC2, we developed fYTnC2 GECI with TnC from Falco peregrinus (falcon). The purified proteins cNTnC and fYTnC2 had 8- and 6-fold higher molecular brightness and 7- and 6-fold larger dF/F responses to the increase in Ca2+ ion concentration than YTnC, respectively. cNTnC GECI was also 4-fold more photostable than YTnC and fYTnC2 GECIs. Finally, we assessed the developed GECIs in primary mouse neuronal cultures stimulated with an external electric field; in these conditions, cNTnC had a 2.4-fold higher dF/F fluorescence response than YTnC and fYTnC2 and was the same or slightly slower (1.4-fold) than fYTnC2 and YTnC in the rise and decay half-times, respectively.
    Matched MeSH terms: Indicators and Reagents
  2. Azman AR, Mahat NA, Abdul Wahab R, Ahmad WA, Ismail D
    Sci Rep, 2022 08 30;12(1):14780.
    PMID: 36042359 DOI: 10.1038/s41598-022-18929-8
    The discovery of forensic evidence (e.g. weapons) during forensic underwater investigations has seen an increasing trend. To date, small particle reagent (SPR) has been one of the routinely used methods for visualising fingerprints on wet, non-porous substrates. However, the long term use of SPR is detrimental to humans and environment due to the use of toxic chemicals. Although previously we have successfully developed and optimised a greener nanobio-based reagent (NBR), its suitable practical use in a more realistic scene (e.g. outdoor pond) was not evaluated. Therefore, this present research is aimed at (1) investigating the performance of NBR against the benchmark SPR in visualising fingerprints immersed in a natural outdoor pond and (2) evaluating the greenness of NBR against the analytical Eco-Scale. Results showed that the performance of the optimised NBR was mostly comparable (University of Canberra (UC) comparative scale: 0) with SPR at visualising fingerprints on three different non-porous substrates immersed in a natural outdoor pond. Observably, the NBR had higher preference towards aged fingerprints (up to 4 weeks of immersion). In addition, its greenness assessment revealed 76 points, indicating 'excellent green analysis'. The findings gathered here further supported the practical use of the NBR in forensic investigations.
    Matched MeSH terms: Indicators and Reagents
  3. Appaturi JN, Ratti R, Phoon BL, Batagarawa SM, Din IU, Selvaraj M, et al.
    Dalton Trans, 2021 Apr 07;50(13):4445-4469.
    PMID: 33720238 DOI: 10.1039/d1dt00456e
    One of the most crucial attributes of synthetic organic chemistry is to design organic reactions under the facets of green chemistry for the sustainable production of chemicals. Thus, due to the intensified environmental and safety concern, the need for new technologies for conducting chemical transformation has grown. In this regard, there is enormous interest in the use of heterogeneous catalysts as they generally avoid the generation of waste, require fewer toxic reagents, as well as entail easier separation and recycling of the catalyst. α,β-Unsaturated acids have been widely used in various industrial applications and have been identified as one of the most promising chemicals obtained via the Knoevenagel condensation reaction. This review aims to discuss the most pertinent heterogeneous catalytic systems such as zeolites, mesoporous silica, ionic liquids, metal oxides, and graphitic carbon nitride-based catalysts in the Knoevenagel reaction. Ultimately, this review focuses not only on the catalyst but also provides an overall idea and guide for the preparation of new catalysts with outstanding properties by looking at the chemical and engineering aspects such as the reaction conditions and the mechanisms.
    Matched MeSH terms: Indicators and Reagents
  4. Samsudin MFR, Ullah H, Tahir AA, Li X, Ng YH, Sufian S
    J Colloid Interface Sci, 2021 Mar 15;586:785-796.
    PMID: 33198982 DOI: 10.1016/j.jcis.2020.11.003
    Herein, we performed an encyclopedic analysis on the photoelectrocatalytic hydrogen production of BiVO4/g-C3N4 decorated with reduced graphene oxide (RGO) or graphene quantum dots (GQDs). The differences between RGO and GQDs as an electron mediator was revealed for the first time in the perspective of theoretical DFT analysis and experimental validation. It was found that the incorporation of GQDs as an electron mediator promotes better photoelectrocatalytic hydrogen performance in comparison to the RGO. The addition of GQD can significantly improve the activity by 25.2 and 75.7% in comparison to the BiVO4/RGO/g-C3N4 and binary composite samples, respectively. Correspondingly, the BiVO4/GQD/g-C3N4 attained the highest photocurrent density of 19.2 mA/cm2 with an ABPE of 0.57% without the presence of any sacrificial reagents. This enhancement is stemming from the low photocharge carrier transfer resistance which was further verified via DFT study. The DFT analysis revealed that the BiVO4/GQD/g-C3N4 sample shared their electronic cloud density through orbital hybridization while the BiVO4/RGO/g-C3N4 sample show less mutual sharing. Additionally, the charge redistribution of the GQDs-composite at the heterostructure interface articulates a more stable and stronger heterojunction than the RGO-composite. Notably, this study provides new insights on the effect of different carbonaceous materials (RGO and GQDs) which are often used as an electron mediator to enhance photocatalytic activity.
    Matched MeSH terms: Indicators and Reagents
  5. Baig MA, Swamy KB
    Indian J Pathol Microbiol, 2021 1 13;64(1):123-127.
    PMID: 33433421 DOI: 10.4103/IJPM.IJPM_900_19
    Background: In the laboratory, factor VIII can be measured by three different methodologies, such as one-stage clotting assay, two-stage clotting assay, and chromogenic assay. These assays differ in ease of use, variety of reagents available, sensitivity to mild hemophilia A, and interference from lupus anticoagulants (LACs). Certain factor VIII gene mutations can cause discrepancy in results between one-stage activated partial thromboplastin time (APTT) and chromogenic assays.

    Materials and Methods: The coagulometer for factor VIII assay is Sysmex CS-5100. All data were expressed as mean ± standard deviation (SD).

    Results: A total of 135 cases were studied. Of these, 100 cases were of mild hemophilia A diagnosed by molecular genetics and, 15 cases were positive for LAC, which were confirmed by dilute Russell Viper venom test. Clot-based one-stage APTT assay showed 65% sensitivity and 80% specificity in diagnosing mild hemophilia A cases and out of 15 LAC cases, it showed false positivity in five cases. Chromogenic assay showed 85% sensitivity and 90% specificity in diagnosing mild hemophilia cases and was 100% specific in excluding LAC cases.

    Conclusions: One-stage APTT assay is the most commonly used test for determining factor VIII levels but chromogenic assay are considered as the gold standard and recommended as the reference method by European Pharmacopoeia and ISTH subcommittee. Mild hemophilia A patients with missense mutations show discrepancy between the one-stage clot-based APTT assay and chromogenic assays for determination of factor VIII level and this can lead to misdiagnosis or misclassification of mild hemophilia A. Therefore, it is recommended that both the assays should be used in the evaluation of mild hemophilia cases.

    Matched MeSH terms: Indicators and Reagents
  6. Shettima A, Ishak IH, Abdul Rais SH, Abu Hasan H, Othman N
    PeerJ, 2021;9:e10863.
    PMID: 33717682 DOI: 10.7717/peerj.10863
    Background: Proteomic analyses have broadened the horizons of vector control measures by identifying proteins associated with different biological and physiological processes and give further insight into the mosquitoes' biology, mechanism of insecticide resistance and pathogens-mosquitoes interaction. Female Ae. aegypti ingests human blood to acquire the requisite nutrients to make eggs. During blood ingestion, female mosquitoes transmit different pathogens. Therefore, this study aimed to determine the best protein extraction method for mass spectrometry analysis which will allow a better proteome profiling for female mosquitoes.

    Methods: In this present study, two protein extractions methods were performed to analyze female Ae. aegyti proteome, via TCA acetone precipitation extraction method and a commercial protein extraction reagent CytoBusterTM. Then, protein identification was performed by LC-ESI-MS/MS and followed by functional protein annotation analysis.

    Results: The CytoBusterTM reagent gave the highest protein yield with a mean of 475.90 µg compared to TCA acetone precipitation extraction showed 283.15 µg mean of protein. LC-ESI-MS/MS identified 1,290 and 890 proteins from the CytoBusterTM reagent and TCA acetone precipitation, respectively. When comparing the protein class categories in both methods, there were three additional categories for proteins identified using CytoBusterTM reagent. The proteins were related to scaffold/adaptor protein (PC00226), protein binding activity modulator (PC00095) and intercellular signal molecule (PC00207). In conclusion, the CytoBusterTM protein extraction reagent showed a better performance for the extraction of proteins in term of the protein yield, proteome coverage and extraction speed.

    Matched MeSH terms: Indicators and Reagents
  7. Nur Syamimi Zainudin, Nur Aqilah Abdul Rahman
    MyJurnal
    Dyes are aromatic organic compound which have an affinity towards the substrate to which they are being applied to. The presence of dyes in wastewater samples is not safe for human even at low level. The presence of dyes in wastewater which are discharged from textile industry must be analysed. Hence, a precise, fast, accurate, simple and inexpensive analytical method with low detection limit is needed for the determination of dyes in wastewaters. The differential pulse anodic stripping voltammetric (DPASV) technique using bare glassy carbon electrode (GCE) as a working electrode and phosphate buffer at pH 4.2 as a supporting electrolyte has been proposed for Reactive Black 5 (RB5) determination. Several experimental voltammetric parameters were being optimized for obtaining a maximum response before analytical validation of the proposed technique being carried out. The optimum parameters were initial potential (Ei) = +0.3 V, end potential (Ef) = +1.0 V, scan rate (v) = 0.04 V/s, accumulation time (tacc) = 50 s, accumulation potential (Eacc) = 0.4 V and pulse amplitude = 0.075 V. The well-defined anodic peak appeared at 0.77972 V. The response was linear from 0.5 to 1.25 mg/L (R2=0.9986) with LOD of 0.050 mg/L. The relative standard deviation (RSD) achieved were 0.08 %, 0.62 % and 0.50 %, respectively for three consecutive days. The % recovery range achieved was from 89.71 % to 111.15 %. It can be concluded that the proposed technique is precise, accurate, inexpensive, fast and has a potential to be an alternative analytical technique for RB5 analysis. The proposed method will in the future be tested for the amount of RB5 in the wastewater samples from textile industry.
    Matched MeSH terms: Indicators and Reagents
  8. Adryana Izzati Adnan, noorhidayah977@uitm.edu.my, Nur Ain Nabilah Ash’ari
    MyJurnal
    A series of ten 5-arylidene Meldrum’s acid derivatives had been synthesised in excellent yield via Knoevenagel condensation. This method does not require catalyst, or any further purification. Isopropylidene malonate (2,2-dimethyl-1,3-dioxane-4,6-dione), also known as Meldrum’s acid, is utilised as a core skeleton for various kind of reactions. Meldrum’s acid has features of a peculiar ring- opening sequences based on nucleophile-sensitive carbonyl functional groups at C-4 and C-6, which has made it possible for useful synthetic transformations, as well as its high acidity of methylene hydrogen at carbon position C-5. Hence, it allows the compound to be a flexible reagent for further reaction to prepare other derivatives. Therefore, Meldrum’s acid derivatives showed high potential of biological functions, such as antibacterial, antimalarial and antioxidant activities due to the olefinic linkage which played an important role in the enhancement of antimalarial activity. Furthermore, when arylidene Meldrum’s acid transformed to epoxide, the compound showed losses of antimalarial behaviour. Additionally, this compound has unique molecules due to the high acidity of methylene hydrogen at the carbon-5 position to initiate various reactions with different functional groups. In this research, Meldrum’s acid, 3 and ten its 5-arylidene derivatives (4a-e) and (5a-e) were synthesised by using two short and efficient reaction steps. The first step involved the condensation of malonic acid, 1 with acetone, 2 in acetic anhydride and acid via one-pot reaction to give Meldrum’s acid, 3 in 50% overall yield. Having Meldrum’s acid in hand, the reaction was proceeded with the Knoevenagel condensation reaction by using various functional groups, such as aryl aldehydes and aryl amines. All the synthesised compounds were characterised by using 1H and 13C spectroscopy.
    Matched MeSH terms: Indicators and Reagents
  9. Alkadi KAA, Ashraf K, Adam A, Shah SAA, Taha M, Hasan MH, et al.
    J Pharm Bioallied Sci, 2020 12 21;13(1):116-122.
    PMID: 34084057 DOI: 10.4103/jpbs.JPBS_279_19
    Objectives: The aim of the present study was to isolate and evaluate cytotoxicity and anti-inflammatory activities of new novel compounds isolated from Prismatomeris glabra.

    Materials and Methods: Dried root of P. glabra was extracted under reflux with methyl alcohol, fractionated through the vacuum liquid chromatography technique, and evaporated and then purified the compounds using column chromatography and preparative thin-layer chromatography. THP-1 cells were treated with amentoflavone, 5,7,4'-hydroxyflavonoid, and stigmasterol with various concentrations (0-30 µg/mL) and then incubated with MTS reagent for 2h. Treatment was done for 24, 48, and 72h. Then, effects of these compounds were also tested on PGE2, TNF-α, and IL-6 expression in human THP-1-derived macrophage cells for 24h.

    Results: Three new compounds such as amentoflavone, 5,7,4'-hydroxyflavonoid, and stigmasterol were isolated. After 24h of incubation, a significant decrease in cell viability was reported with IC50 values of amentoflavone, 5,7,4'- hydroxyflavonoid, and stigmasterol (21 µg/mL ≡ 38 M), (18 µg/mL ≡ 66 M) and (20 µg/mL ≡ 48.5 M), respectively. Whereas for 48 and 72h treatment showed a less decreased cell viability compared with 24h treatment. These compounds also showed a significant reduction in the production of TNF-α, IL-6, and PGE2 in a dose-dependent manner.

    Conclusions: The isolated new compounds showed significant cytotoxicity and anti-inflammatory effects.

    Matched MeSH terms: Indicators and Reagents
  10. Sarih NM, Romero-Perez D, Bastani B, Rauytanapanit M, Boisdon C, Praneenararat T, et al.
    Sci Rep, 2020 12 09;10(1):21504.
    PMID: 33299034 DOI: 10.1038/s41598-020-78133-4
    Paper spray ionization (PSI) mass spectrometry (MS) is an emerging tool for ambient reaction monitoring via microdroplet reaction acceleration. PSI-MS was used to accelerate and monitor the time course of the reaction of dansyl chloride with aniline, in acetonitrile, to produce dansyl aniline. Three distinct PSI arrangements were explored in this study representing alternative approaches for sample loading and interaction; conventional single tip as well as two novel setups, a dual-tip and a co-axial arrangement were designed so as to limit any on-paper interaction between reagents. The effect on product abundance was investigated using these different paper configurations as it relates to the time course and distance of microdroplet travel. It was observed that product yield increases at a given distance and then decreases thereafter for all PSI configurations. The fluorescent property of the product (dansyl aniline) was used to visually inspect the reaction progress on the paper substrate during the spraying process. Amongst the variety of sample loading methods the novel dual-tip arrangement showed an increased product yield and microdroplet density, whilst avoiding any on-paper interaction between the reagents.
    Matched MeSH terms: Indicators and Reagents
  11. Ahmed Z, Aziz S, Hanif M, Mohiuddin SG, Ali Khan SH, Ahmed R, et al.
    J Pharm Bioallied Sci, 2020 04 10;12(2):192-200.
    PMID: 32742119 DOI: 10.4103/jpbs.JPBS_222_19
    Background: This study aimed to evaluate the phytochemicals screening of Erythrina suberosa (Roxb) bark and to analyze the enzymatic activities of its various organic fractions.

    Materials and Methods: Crude methanolic fraction of E. suberosa (Roxb) bark and its respective fractions were screened for the presence of different phytochemicals with different reagents. On the basis of increasing order of polarity, different organic solvents were used to obtain different fractions. Enzymatic studies were performed on crude methanolic extract of the plant. All the assays were performed under standard in vitro conditions.

    Results: The phytochemical analysis shows the presence of alkaloids, phenols, triterpenoids, phytosterols, and flavonoids. Phenolic compounds and flavonoids are the major constituents of the plant. In anticholinesterase assay, the percent inhibition of standard drug (eserine) was 91.27 ± 1.17 and the half maximal inhibitory concentration (IC50) was 0.04 ± 0.0001. For α-glucosidase inhibition, the IC50 value for Dichloromethane fraction was 8.45 ± 0.13, for Methanol fraction it was 64.24 ± 0.15, and for aqueous fraction it was 42.62 ± 0.17 as compared with standard IC50 that is 37.42 (acarbose). Furthermore, results show that all fractions have potential against anti-urease enzyme, but DCM fraction of crude aqueous extract has significant IC50 value (45.26 ± 0.13) than other fractions.

    Conclusion: Keeping in view all the results, it is evident that the plant can be used in future for formulating effective drugs against many ailments. Secondary metabolites and their derivatives possess different biological activities, for example, .g. flavonoids in cancer, asthma, and Alzheimer. Furthermore, the extracts of this plant can be used in their crude form, which is an addition to the complementary and alternative treatment strategies.

    Matched MeSH terms: Indicators and Reagents
  12. Irekeola AA, E A R ENS, Lazim NM, Mohamud R, Yean CY, Shueb RH
    Cells, 2020 02 20;9(2).
    PMID: 32093265 DOI: 10.3390/cells9020487
    Regulatory T cells (Tregs) are renowned for maintaining homeostasis and self-tolerance through their ability to suppress immune responses. For over two decades, Tregs have been the subject of intensive research. The immunosuppressive and migratory potentials of Tregs have been exploited, especially in the areas of cancer, autoimmunity and vaccine development, and many assay protocols have since been developed. However, variations in assay conditions in different studies, as well as covert experimental factors, pose a great challenge to the reproducibility of results. Here, we focus on human Tregs derived from clinical samples and highlighted caveats that should be heeded when conducting Tregs suppression and migration assays. We particularly delineated how factors such as sample processing, choice of reagents and equipment, optimization and other experimental conditions could introduce bias into the assay, and we subsequently proffer recommendations to enhance reliability and reproducibility of results. It is hoped that prioritizing these factors will reduce the tendencies of generating false and misleading results, and thus, help improve our understanding and interpretation of Tregs functional studies.
    Matched MeSH terms: Indicators and Reagents
  13. Ghaffari Khaligh N, Mihankhah T, Titinchi S, Shahnavaz Z, Rafie Johan M
    Turk J Chem, 2020;44(4):1100-1109.
    PMID: 33488215 DOI: 10.3906/kim-2005-6
    This work introduces a new additive named 4,4'-trimethylenedipiperidine for the practical and ecofriendly preparation of ethyl 5-amino-7-(4-phenyl)-4,7-dihydro-[1,2,4]triazolo[1,5-a]pyrimidine-6-carboxylate derivatives. This chemical is commercially available and easy to handle. It also possesses a low melting point and a broad liquid range temperature, high thermal stability, and good solubility in water. Based on green chemistry principles, the reaction was performed in a) a mixture of green solvents i.e. water and ethanol (1:1 v/v) at reflux temperature, and b) the additive was liquefied at 65 °C and the reaction was conducted in the liquid state of the additive. High yields of the desired triazolo-pyrimidines were obtained under both aforementioned conditions. Our results demonstrated that this additive, containing 2 Lewis base sites and able to act as an acceptor-donor hydrogen bonding group, is a novel and efficient alternative to piperidine, owing to its unique properties such as its reduced toxicity, nonflammable nature, nonvolatile state, broad liquid range temperature, high thermal stability, and ability to be safely handled. Furthermore, this additive could be completely recovered and exhibited high recyclability without any change in its chemical structure and no significant reduction in its activity. The current methodology has several advantages: (a) it avoids the use of hazardous materials, as well as toxic, volatile, and flammable solvents, (b) it does not entail tedious processes, harsh conditions, and the multistep preparation of catalysts, (c) it uses a metal-free and noncorrosive catalyst, and (d) reduces the generation of hazardous waste and simple work-up processes. The most important result of this study is that 4,4'-trimethylenedipiperidine can be a promising alternative for toxic, volatile, and flammable base reagents in organic synthesis owing to its unique properties.
    Matched MeSH terms: Indicators and Reagents
  14. Zaharani L, Ghaffari Khaligh N, Shahnavaz Z, Rafie Johan M
    Turk J Chem, 2020;44(3):535-542.
    PMID: 33488175 DOI: 10.3906/kim-2002-26
    In the current protocol, the arene diazonium saccharin derivatives were initially produced from various substituted aromatic amines; subsequently, these intermediates were treated with a greener organic iodide for the preparation of the aryl iodide. We tried to choose low-cost, commercially available, biodegradable, recoverable, ecofriendly, and safe reagents and solvents. The arene diazonium saccharin intermediates could be stored in the liquid phase into a refrigerator for a long time with no significant loss activity. The outstanding merits of the current protocol (a) included the partial recovering of saccharin and tetraethylammonium salt, (b) reduce the use of solvents and the reaction steps due to eliminating separation and purification of intermediates, (c) good yield of the sterically hindered substrates, and (d) avoid the generation of heavy metal or corrosive waste.
    Matched MeSH terms: Indicators and Reagents
  15. Shahnavaz Z, Zaharani L, Johan MR, Khaligh NG
    Curr Org Synth, 2020;17(2):131-135.
    PMID: 32013833 DOI: 10.2174/1570179417666200203121437
    BACKGROUND: In continuation of our previous work and the applications of saccharin, we encouraged to investigate the one-pot synthesis of the aryl iodides by the diazotization of the arene diazonium saccharin salts.

    OBJECTIVE: Arene diazonium salts play an important role in organic synthesis as intermediate and a wide variety of aromatic compounds have been prepared using them. A serious drawback of arene diazonium salts is their instability in a dry state; therefore, they must be stored and handled carefully to avoid spontaneous explosion and other hazard events.

    METHODS: The arene diazonium saccharin salts were prepared as active intermediates in situ through the reaction of various aryl amines with tert-butyl nitrite (TBN) in the presence of saccharin (Sac-H). Then, in situ obtained intermediates were used into the diazotization step without separation and purification in the current protocol.

    RESULTS: A variety of aryl iodides were synthesized at a greener and low-cost method in the presence of TBN, Sac-H, glacial acetic acid, and TEAI.

    CONCLUSION: In summary, a telescopic reaction is developed for the synthesis of aryl iodides. The current methodology is safe, cost-effective, broad substrate scope, and metal-free. All used reagents are commercially available and inert to moisture and air. Also, the saccharine and tetraethylammonium cation could be partially recovered from the reaction residue, which reduces waste generation, energy consumption, raw material, and waste disposal costs.

    Matched MeSH terms: Indicators and Reagents
  16. Clarke AK, Ho HE, Rossi-Ashton JA, Taylor RJK, Unsworth WP
    Chem Asian J, 2019 Mar 25.
    PMID: 30908897 DOI: 10.1002/asia.201900309
    Indoles are amongst the most important class of heteroaromatics in organic chemistry, being commonly found in biologically active natural products and therapeutically useful compounds. The synthesis of indoles is therefore important and several methods for their synthesis that make use of silver(I) catalysts and reagents have been developed in recent years. This Focus Review contains, to the best of our knowledge, a comprehensive coverage of silver-mediated indole forming reactions since the first reaction of this type was reported in 2004.
    Matched MeSH terms: Indicators and Reagents
  17. Ramli SR, Moreira GMSG, Zantow J, Goris MGA, Nguyen VK, Novoselova N, et al.
    PLoS Negl Trop Dis, 2019 01;13(1):e0007131.
    PMID: 30677033 DOI: 10.1371/journal.pntd.0007131
    BACKGROUND: Leptospirosis is the most common zoonotic disease worldwide. The diagnostic performance of a serological test for human leptospirosis is mainly influenced by the antigen used in the test assay. An ideal serological test should cover all serovars of pathogenic leptospires with high sensitivity and specificity and use reagents that are relatively inexpensive to produce and can be used in tropical climates. Peptide-based tests fulfil at least the latter two requirements, and ORFeome phage display has been successfully used to identify immunogenic peptides from other pathogens.

    METHODOLOGY/PRINCIPAL FINDINGS: Two ORFeome phage display libraries of the entire Leptospira spp. genomes from five local strains isolated in Malaysia and seven WHO reference strains were constructed. Subsequently, 18 unique Leptospira peptides were identified in a screen using a pool of sera from patients with acute leptospirosis. Five of these were validated by titration ELISA using different pools of patient or control sera. The diagnostic performance of these five peptides was then assessed against 16 individual sera from patients with acute leptospirosis and 16 healthy donors and was compared to that of two recombinant reference proteins from L. interrogans. This analysis revealed two peptides (SIR16-D1 and SIR16-H1) from the local isolates with good accuracy for the detection of acute leptospirosis (area under the ROC curve: 0.86 and 0.78, respectively; sensitivity: 0.88 and 0.94; specificity: 0.81 and 0.69), which was close to that of the reference proteins LipL32 and Loa22 (area under the ROC curve: 0.91 and 0.80; sensitivity: 0.94 and 0.81; specificity: 0.75 and 0.75).

    CONCLUSIONS/SIGNIFICANCE: This analysis lends further support for using ORFeome phage display to identify pathogen-associated immunogenic peptides, and it suggests that this technique holds promise for the development of peptide-based diagnostics for leptospirosis and, possibly, of vaccines against this pathogen.

    Matched MeSH terms: Indicators and Reagents
  18. Azlina Yahya, Osama Abdul Nasir
    Q Bulletin, 2019;1(28):36-44.
    MyJurnal
    Wastage due to unnecessary laboratory test requests is a major problem in government hospitals because they have cost implications. Although screening of infectious marker tests such as Human Immunodeficiency Virus (HIV), Hepatitis B surface Antigen (HBsAg), Hepatitis B antibody (AHBS) and Hepatitis C Virus (HCV)) before testing have been put in place, inappropriate tests were still being carried out in the Serology laboratory, which resulted in wasted human resources and reagents, increased workload and increased maintenance costs. Based on the verification studies using the Laboratory Information System (LIS), we observed only 70% of the tests followed the ordering guidelines or test specifications. Thus, we aim to increase the standard to more than 95% of the infectious marker test requests which were appropriate according to a few guidelines.
    A cross-sectional study was conducted for all infectious marker tests received at Serology Laboratory from January 2015 to June 2016 to verify the problem. A workplace audit and questionnaire survey on the staff were carried out to gain more information. Low level of knowledge, unavailability of standardised guidelines for quick and easy reference, lack of staff and inefficient work processes were among the main contributing factors. Empowering new staff to screen specimens, developing simple and informative screening guidelines, providing adequate trays and refrigerators for screening purposes and strengthening and developing a more effective process of care were the strategies taken during this study.
    The appropriate tests carried out from July to September 2015, October to December 2015, January to March 2016 and April to June 2016 were 99%, 98.80%, 99.50%, 98.90% respectively. During the same period, 711, 411, 710 and 768 tests were rejected. We monitored the performance and managed to achieve 100% appropriate testing for the period of July 2016 to June 2018 and an estimation of MYR 73,437.50 cost saving was achieve
    Matched MeSH terms: Indicators and Reagents
  19. Hooi Ling Foo
    MyJurnal
    Probiotics are live microorganisms and when consumed in adequate amounts will confer health benefit on the host. Probiotic effects of Lactic Acid Bacteria (LAB) have been reported extensively, which rely generally on the viability of LAB cells. However, we have reported extensively the prominent probiotic effects of cell less postbiotics metabolites produced by various strains of Lactobacillus plantarum isolated from Malaysian foods on rats, poultry and pigs. L. plantarum is a major species of LAB. Despite the emerging evidence of anticancer properties of LAB, very limited information is available on the cytotoxic and antiproliferative activities of cytobiotic metabolites produced by LAB. Recently, we have documented the selective antiproliferative and cytotoxicity of cytobiotic produced by six strains of L. plantarum on normal human primary cells, breast, colorectal, cervical, liver and leukemia cancer cell lines via MTT assay, trypan blue exclusion method and BrdU assay. Haemolytic assay was used to determine the toxicity of cytobiotic using human and various animal red blood cells. The cytotoxicity mode was subsequently determined for selected UL4 cytobiotic on MCF-7 cells due to its pronounced cytotoxic effect by fluorescent microscopic ob-servation using AO/PI dye reagents and flow cytometric analyses. The selective cytotoxicity effect on various cancel cells that occurred in a strain-specific and cancer cell type-specific manner whilst sparing the normal cells will be discussed in the presentation. Moreover, the antiproliferative effects and induction of late apoptosis effects against selected malignant cancer cells will be discussed further in the presentation. This report reveals the vast potential of cytobiotics produced by L. plantarum strains as functional supplement and as an adjunctive treatment for cancer.
    Matched MeSH terms: Indicators and Reagents
  20. Idros N, Chu D
    ACS Sens, 2018 09 28;3(9):1756-1764.
    PMID: 30193067 DOI: 10.1021/acssensors.8b00490
    Heavy metals are highly toxic at trace levels and their pollution has shown great threat to the environment and public health worldwide where current detection methods require expensive instrumentation and laborious operation, which can only be accomplished in centralized laboratories. Herein, we report a low-cost, paper-based microfluidic analytical device (μPAD) for facile, portable, and disposable monitoring of mercury, lead, chromium, nickel, copper, and iron ions. Triple indicators or ligands that contain ions or molecules are preloaded on the μPADs and upon addition of a metal ion, the colorimetric indicators will elicit color changes observed by the naked eyes. The color features were quantitatively analyzed in a three-dimensional space of red, green, and blue or the RGB-space using digital imaging and color calibration techniques. The sensing platform offers higher accuracy for cross references, and is capable of simultaneous detection and discrimination of different metal ions in even real water samples. It demonstrates great potential for semiquantitative and even qualitative analysis with a sensitivity below the safe limit concentrations, and a controlled error range.
    Matched MeSH terms: Indicators and Reagents/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links