Displaying publications 1 - 20 of 415 in total

Abstract:
Sort:
  1. Yap DYH, McMahon LP, Hao CM, Hu N, Okada H, Suzuki Y, et al.
    Nephrology (Carlton), 2021 Feb;26(2):105-118.
    PMID: 33222343 DOI: 10.1111/nep.13835
    Renal anaemia is a common and important complication in patients with chronic kidney disease (CKD). The current standard-of-care treatment for renal anaemia in CKD patients involves ensuring adequate iron stores and administration of erythropoietin stimulating agents (ESA). Hypoxia inducible factor (HIF) is a key transcription factor primarily involved in the cellular regulation and efficiency of oxygen delivery. Manipulation of the HIF pathway by the use of HIF-prolyl hydroxylase inhibitors (HIF-PHI) has emerged as a novel approach for renal anaemia management. Despite it being approved for clinical use in various Asia-Pacific countries, its novelty mandates the need for nephrologists and clinicians generally in the region to well understand potential benefits and harms when prescribing this class of drug. The Asian Pacific society of nephrology HIF-PHI Recommendation Committee, formed by a panel of 11 nephrologists from the Asia-Pacific region who have clinical experience or have been investigators in HIF-PHI studies, reviewed and deliberated on the clinical and preclinical data concerning HIF-PHI. This recommendation summarizes the consensus views of the committee regarding the use of HIF-PHI, taking into account both available data and expert opinion in areas where evidence remains scarce.
    Matched MeSH terms: Iron
  2. Shuhaimi-Othman M, Yakub N, Ramle NA, Abas A
    Toxicol Ind Health, 2015 Sep;31(9):773-82.
    PMID: 23302712 DOI: 10.1177/0748233712472519
    Two freshwater fish, Rasbora sumatrana (Cyprinidae) and Poecilia reticulata (guppy; Poeciliidae), were exposed to a range of eight heavy metals (copper (Cu), cadmium (Cd), zinc (Zn), lead (Pb), nickel (Ni), iron (Fe), aluminium (Al), and manganese (Mn)) at varied concentrations for 96 h in the laboratory. Mortality was assessed and median lethal concentrations (LC50) were calculated. It was observed that the LC50 values increased with a decrease in mean exposure times, for all metals and for both fish types. The 96-h LC50 values for Cu, Cd, Zn, Pb, Ni, Fe, Al, and Mn were 0.006, 0.10, 0.46, 0.63, 0.83, 1.71, 1.53, and 5.71 mg/L for R. sumatrana and 0.038, 0.17, 1.06, 1.99, 15.62, 1.46, 6.76, and 23.91 mg/L for P. reticulata, respectively. The metal toxicity trend for R. sumatrana and P. reticulata from most to least toxic was Cu > Cd > Zn > Pb > Ni > Al > Fe > Mn and Cu > Cd > Zn > Fe > Pb > Al > Ni > Mn, respectively. Results indicated that Cu was the most toxic metal on both fish, and R. sumatrana was more sensitive than P. reticulata to all the eight metals.
    Matched MeSH terms: Environmental Monitoring; Iron/analysis; Iron/toxicity
  3. Mohammed, Thamer Ahmed, Abdul Halim Ghazali
    MyJurnal
    In Malaysia, the use of groundwater can help to meet the increasing water demand. The utilization of the aquifers is currently contributing in water supplies, particularly for the northern states. In this study, quantitative and qualitative assessments were carried out for the groundwater exploitation in the states of Kelantan, Melaka, Terengganu and Perak. The relevant data was acquired from the Department of Mineral and Geoscience, Malaysia. The quantitative assessment mainly included the determination of the use to yield ratio (UTY). The formula was proposed to determine the UTY ratio for aquifers in Malaysia. The proposed formula was applied to determine the maximum UTY ratios for the aquifers located in the states of Kelantan, Melaka, and Terengganu, and were found to be 4.2, 5.2 and 0.6, respectively. This indicated that exploitation of groundwater was beyond the safe limit in the states of Kelantan and Melaka. The qualitative assessment showed that the groundwater is slightly acidic. In addition, the concentrations of iron and manganese were found to be higher than the allowable limits, but the chloride concentration was found within the allowable limit.
    Matched MeSH terms: Iron
  4. Poh BK, Wong YP, Abdul Karim N
    Malays J Nutr, 2005;11(1):1-21-.
    MyJurnal
    Traditionally, Chinese women adhere to special dietary practices during the month following childbirth. This paper discusses the dietary practices and food taboos practised by Chinese women in Kuala Lumpur. A total of 134 Chinese mothers of children below one year were recruited from three Maternal and Child Health Clinics and Maternity Hospital, Kuala Lumpur. Questionnaires and in-depth interviews were used to obtain information on socioeconomic background, dietary practices, food taboos and cooking methods during the confinement period. Food intake was assessed by multiple 24-hour dietary recall among 34 mothers during their confinement month (zuo yuezi). Body weight and height were measured, and body mass index calculated. Majority of the respondents had secondary school education (77.6%), household income between RM1001 and RM3000 (64%), and were homemakers (48.5%). The women were aged 18-39 years, and 68% were of normal weight. Most women (82%) practised 30 days of confinement, during which they adhered to special dietary practices. The diet was directed at attaining yin-yang (cold-hot) balance, whereby “hot” foods were most commonly used and “cold” foods were avoided. Ginger, rice wine and sesame seed oil, considered “hot” foods, were used in large amounts in the cooking. Rice, chicken and pork were also consumed in large amounts. Most vegetables and fruits were considered “cold” and were prohibited during confinement. Most mothers drank specially-prepared teas boiled from Chinese herbs. Mean energy intake was 19% below RNI, while mean protein intake was 93% above RNI (NCCFN, 2005). Mean intakes of thiamin, riboflavin and niacin were above 75% of RNI, while vitamins A and C were at half of RNI or less. Mean iron and calcium intakes were at 222% and 67% of RNI, respectively. It is concluded that most Chinese women in Kuala Lumpur do conform to special dietary practices during zuo yuezi.

    Study site: three Maternal and Child Health Clinics and Maternity Hospital, Kuala Lumpur
    Matched MeSH terms: Iron
  5. Ahmed, H.O., Hassan, Z., Abdul Manap, M.N.
    MyJurnal
    Slaughtering is the first step in meat processing. It involves killing an animal for the production of meat. Effectiveness of slaughter is determined by the amount of blood removed from the animal. This study aimed to compare the chemical changes and microbiological quality of broiler chicken meat slaughtered by Halal and Non-Halal slaughter methods during refrigerated storage. A total of sixty (60) broiler chickens were slaughtered by: i) Neck cutting (NC) - by severing the jugular veins, carotid arteries, trachea and the oesophagus according to the Islamic ritual method of slaughter and (ii) Neck poking (NP) - by poking the neck of the bird with a sharp object. Residual blood was quantified by measuring the haem iron content in the breast meat samples. Storage stability of chicken meat was evaluated by measuring the extent of lipid oxidation determined by thiobarbituric acid reactive substances (TBARS) and by assessing the microbiological quality of the meat. Haem iron content decreased significantly (P0.05) on chicken meat lipid oxidation at 1, 3, and 9 day of storage at 4oC. However, at 5 and 7 day of storage, significant differences (P
    Matched MeSH terms: Iron
  6. Aroyehun AQ, Palaniveloo K, Ghazali F, Rizman-Idid M, Abdul Razak S
    Molecules, 2019 Sep 10;24(18).
    PMID: 31510066 DOI: 10.3390/molecules24183298
    This study evaluated the effect of seasonal variation on the physicochemical, biochemical, and nutritional composition of Gracilaria manilaensis. Sampling was designed during the main monsoon seasons in Malaysia-the Southwest monsoon (SWM) and Northeast monsoon (NEM)-to understand the intraspecific variation (p < 0.05). Carbohydrates, protein, and dietary fiber were found to be higher in NEM-G. manilaensis, whereas a higher ash content was quantified in SWM-G. manilaensis. No significant differences were found in crude lipid and moisture content (p > 0.05). Vitamin B2 was calculated as (0.29 ± 0.06 mg 100 g-1) and (0.38 ± 0.06 mg 100 g-1) for the NEM and SWM samples, respectively (p < 0.05). The fatty acid profile showed the dominance of saturated fatty acids (SFAs)-palmitic acids, stearic acid, and myristic acid-while the mineral contents were found to be good sources of calcium (1750.97-4047.74 mg 100 g-1) and iron (1512.55-1346.05 mg 100 g-1). Tryptophan and lysine were recorded as the limiting essential amino acids (EAAs) in NEM G. manilaensis, while leucine and phenylalanine were found to be the limiting EAAs in the SWM samples. None of the extracts exhibited antibacterial properties against the screened strains. The study concluded that seasonal changes have a great effect on the biochemical composition of G. manilaensis.
    Matched MeSH terms: Iron
  7. Ismail, A. F., Sapari, N., Abdul Wahab, M. M.
    MyJurnal
    Land development, especially construction works, increase storm water volumes and pollution loads into rivers and lakes. The temporary drainage system at construction sites, particularly during the construction stage discharges a large amount of pollutants that can damage the aquatic system of the receiving water bodies. The potential of vegetative swale to alleviate this problem was evaluated. The size of the constructed vegetative swale was 7cm deep, 400cm long and 15cm wide at the bottom, and 17cm wide at the top. The experiment was conducted batch wise by filling the storage tank with the run-off water from the construction site. The water was allowed to flow through a pipe into the retention basin to maintain uniform flow before it entered the swale. The study showed that the run-off infiltrated through the soil at a rate of 489.6 mm/hr. Samples of surface run-off and infiltration water were collected at the end and the bottom of the swale. The results indicate that chemical oxygen demand (COD), total suspended solid (TSS), turbidity, iron and zinc were reduced by 85.4%, 80.8%, 36.4%, 52.8% and 96.0%, respectively, by surface flow and 91.1%, 98.8%, 58.2% 55.5% and 98.1%, respectively, by infiltration. Removal of nitrate and phosphorus by the planted vegetation was 69.4% and 21.1%, respectively, by infiltration. However, nutrient removal by surface flow was negligible. In conclusion, the vegetative swale was able to improve the water quality of the storm water run-off from the construction site from Class V to Class III, according to the Interim National Water Quality Standards for Malaysia.
    Matched MeSH terms: Iron
  8. Ibrahim TNBT, Feisal NAS, Azmi NM, Nazli SN, Salehuddin ASM, Nasir NICM, et al.
    Med J Malaysia, 2024 Mar;79(Suppl 1):14-22.
    PMID: 38555880
    INTRODUCTION: A study on the quality of drinking water was conducted at Air Kuning Treatment Plant In Perak, Malaysia, based on a sanitary survey in 14 sampling points stations from the intake area to the auxiliary points. This was to ensure the continuous supply of clean and safe drinking water to the consumers for public health protection. The objective was to examine the physical, microbiological, and chemical parameters of the water, classification at each site based on National Drinking Water Standards (NDWQS) and to understand the spatial variation using environmetric technique; principal component analysis (PCA).

    MATERIALS AND METHODS: Water samples were subjected to in situ and laboratory water quality analyses and focused on pH, turbidity, chlorine, Escherichia coli, total coliform, total hardness, iron (Fe), aluminium (Al), zinc (Zn), magnesium (Mg) and sodium (Na). All procedures followed the American Public Health Association (APHA) testing procedures.

    RESULTS: Based on the results obtained, the values of each parameter were found to be within the safe limits set by the NDWQS except for total coliform and iron (Fe). PCA has indicated that turbidity, total coliform, E. coli, Na, and Al were the major factors that contributed to the drinking water contamination in river water intake.

    CONCLUSION: Overall, the water from all sampling point stations after undergoing water treatment process was found to be safe as drinking water. It is important to evaluate the drinking water quality of the treatment plant to ensure that consumers have access to safe and clean drinking water as well as community awareness on drinking water quality is essential to promote public health and environmental protection.

    Matched MeSH terms: Iron
  9. Pang YL, Abdullah AZ
    J Hazard Mater, 2012 Oct 15;235-236:326-35.
    PMID: 22939090 DOI: 10.1016/j.jhazmat.2012.08.008
    Fe-doped titanium dioxide (TiO(2)) nanotubes were prepared using sol-gel followed by hydrothermal methods and characterized using various methods. The sonocatalytic activity was evaluated based on oxidation of Rhodamine B under ultrasonic irradiation. Iron ions (Fe(3+)) might incorporate into the lattice and intercalated in the interlayer spaces of TiO(2) nanotubes. The catalysts showed narrower band gap energies, higher specific surface areas, more active surface oxygen vacancies and significantly improved sonocatalytic activity. The optimum Fe doping at Fe:Ti=0.005 showed the highest sonocatalytic activity and exceeded that of un-doped TiO(2) nanotubes by a factor of 2.3 times. It was believed that Fe(3+) doping induced the formation of new states close to the valence band and conduction bands and accelerated the separation of charge carriers. Leached Fe(3+) could catalyze Fenton-like reaction and led to an increase in the hydroxyl radical (OH) generation. Fe-doped TiO(2) nanotubes could retain high degradation efficiency even after being reused for 4 cycles with minimal loss of Fe from the surface of the catalyst.
    Matched MeSH terms: Iron/chemistry*
  10. Loo WW, Pang YL, Lim S, Wong KH, Lai CW, Abdullah AZ
    Chemosphere, 2021 Jun;272:129588.
    PMID: 33482519 DOI: 10.1016/j.chemosphere.2021.129588
    Iron-doped titanium dioxide loaded on activated carbon (Fe-TiO2/AC) was successfully synthesized from oil palm empty fruit bunch (OPEFB) using sol-gel method. The properties of the synthesized pure TiO2, Fe-doped TiO2, AC, TiO2/AC and Fe-TiO2/AC were examined by various techniques such as field emission scanning electron microscopy (FE-SEM), Fourier-transform infrared spectroscopy (FT-IR), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS) and nitrogen adsorption-desorption analyses at 77 K. FE-SEM revealed that Fe-doped TiO2 particles were dispersed homogeneously on the AC surface. FT-IR demonstrated high surface hydroxylation after Fe doping on TiO2 and UV-Vis DRS showed that Fe-TiO2/AC had the lowest band gap energy. Catalytic performance results proved that Fe dopants could restrict the recombination rate of hole and electron pairs, whereas AC support improved the Malachite Green (MG) adsorption sites and active sites of the hybrid catalyst. Photocatalytic degradation of 100 mg/L MG in the presence of 1.0 g/L 15 wt% Fe-TiO2 incorporated with 25 wt% AC, initial solution pH of 4 and 3 mM H2O2 could achieve the highest removal efficiency of 97% after 45 min light irradiation. This work demonstrates a promising approach to synthesis an inexpensive and efficient Fe-TiO2/AC for the photocatalytic degradation of organic dye.
    Matched MeSH terms: Iron*
  11. Al-Mekhlafi MH, Surin J, Atiya AS, Ariffin WA, Mahdy AK, Abdullah HC
    Trans R Soc Trop Med Hyg, 2008 Oct;102(10):1046-52.
    PMID: 18617209 DOI: 10.1016/j.trstmh.2008.05.012
    A cross-sectional study to determine the current prevalence of anaemia and iron deficiency anaemia (IDA) and to investigate the possible risk factors for IDA was carried out on 241 aboriginal schoolchildren (120 boys, 121 girls) aged 7-12 years and living in remote areas in Pos Betau, Pahang, Malaysia. Haemoglobin (Hb) level was measured and serum iron status was assessed by serum ferritin (SF), serum iron (SI) and total iron binding capacity measurements. Socioeconomic data were collected using pre-tested questionnaires. All children were screened for intestinal parasitic infections. Overall, 48.5% (95% CI 42.3-54.8) of children were anaemic (Hb<12 g/dl). The prevalence of IDA was 34% (95% CI 28.3-40.2), which accounted for 70.1% of the anaemia cases. The prevalence of IDA was significantly higher in females than males. Low levels of mothers' education and low household income were identified as risk factors for IDA. Severe trichuriasis also found to be associated with low SF and SI. Logistic regression confirmed low levels of mothers' education and gender as significant risk factors for IDA. Improvement of socioeconomic status and health education together with periodic mass deworming should be included in public health strategies for the control and prevention of anaemia and IDA in this population.
    Matched MeSH terms: Iron/deficiency; Anemia, Iron-Deficiency/ethnology; Anemia, Iron-Deficiency/epidemiology*; Anemia, Iron-Deficiency/parasitology
  12. Ibrahim N, Baqiah H, Abdullah M
    Sains Malaysiana, 2013;42:961-966.
    High quality indium oxide and iron doped indium oxide nanocrystalline films were prepared by the sol-gel method followed by a spin coating technique. The samples were characterized by an X-ray diffractometer, an atomic force microscopy and a UV-vis spectroscopy. All samples had good crystallinity with a preferred orientation in the (222) direction. The crystallite size increased from 12.1 nm for the pure sample to 16.1 nm for the sample with x=0.35 and then decreased to 12.1 nm for the sample with x=0.45. All samples contained nanometer grain sizes with a smooth surface. All films showed a high transmission of over 91% in the wavelength range of 200-800 nm.
    Matched MeSH terms: Iron
  13. Mayakrishnan V, Veluswamy S, Sundaram KS, Kannappan P, Abdullah N
    Asian Pac J Trop Med, 2013 Jan;6(1):20-6.
    PMID: 23317881 DOI: 10.1016/S1995-7645(12)60195-3
    OBJECTIVE: To elucidate free radical scavenging activity of ethanolic extract Lagenaria siceraria (L. siceraria) (Molina) fruit.

    METHODS: The free radical scavenging activity of the L. siceraria (Molina) fruit extract was assayed by using α,α-diphenyl-β-picrylhydrazyl (DPPH), 2,20-azinobis 3-ethyl benzothiazoline-6-sulfonate (ABTS), FRAP, reducing power, chelating ability and β-carotene bleaching assay.

    RESULTS: The IC(50) values of DPPH and ABTS radical-scavenging activity was found to be 1.95 mg/mL and 19 mg/mL, respectively. In ferrous chelation assay, the percentage of inhibition was found to be 89.21%. The reducing power of ethanolic extract of L. siceraria (Molina) fruit was 0.068 at 1 mg/mL and increased to 0.192 at 5 mg/mL. The β-carotene linoleate bleaching assay was 46.7% at 5 mg/mL and antioxidant activity using FRAP at 0.305 for 1 mg/mL to 0.969 for 5 mg/mL.

    CONCLUSIONS: The results indicate that L. siceraria (Molina) fruit could be an important sources of natural radical scavengers.

    Matched MeSH terms: Iron Chelating Agents/pharmacology; Iron Chelating Agents/chemistry
  14. Nazmi NASM, Razak FIA, Mokhtar WNAW, Ibrahim MNM, Adam F, Yahaya N, et al.
    Environ Sci Pollut Res Int, 2022 Jan;29(1):1009-1020.
    PMID: 34341936 DOI: 10.1007/s11356-021-15733-1
    The world faces the challenge to produce ultra-low sulfur diesel with low-cost technology. Therefore, this research emphasised on production of low sulfur fuel utilising nanoparticle catalyst under mild condition. A small amount of cobalt oxide (10-30 wt%) was introduced into the Fe/Al2O3 catalyst through the wet impregnation method. Cobalt modification induces a positive effect on the performance of the iron catalyst. Hence, the insertion of cobalt species into Fe/Al2O3 led to the formation of lattice fringes in all directions which resulted in the formation of Co3O4 and Fe3O4 species. The optimised catalyst, Co/Fe-Al2O3, calcined at 400 °C with a dopant ratio of 10:90 indicating the highest desulfurisation activity by removing 96% of thiophene, 100% of dibenzothiophene (DBT) and 92% of 4,6-dimethyl dibenzothiophene (4,6-DMDBT). Based on the density functional theory (DFT) on Co/Fe-Al2O3, two pathways with the overall energy of -40.78 eV were suggested for the complete oxidation of DBT.
    Matched MeSH terms: Iron*
  15. Aziz HA, Othman OM, Abu Amr SS
    Waste Manag, 2013 Feb;33(2):396-400.
    PMID: 23158874 DOI: 10.1016/j.wasman.2012.10.016
    Leachate pollution is one of the main problems in landfilling. Researchers have yet to find an effective solution to this problem. The technology that can be used may differ based on the type of leachate produced. Coliform bacteria were recently reported as one of the most problematic pollutants in semi-aerobic (stabilized) leachate. In the present study, the performance of the Electro-Fenton process in removing coliform from leachate was investigated. The study focused on two types of leachate: Palau Borung landfill leachate with low Coliform content (200 MPN/100 m/L) and Ampang Jajar landfill leachate with high coliform content (>24 × 10(4)MPN/100 m/L). Optimal conditions for the Electro-Fenton treatment process were applied on both types of leachate. Then, the coliform was examined before and after treatment using the Most Probable Number (MPN) technique. Accordingly, 100% removal of coliform was obtained at low initial coliform content, whereas 99.9% removal was obtained at high initial coliform content. The study revealed that Electro-Fenton is an efficient process in removing high concentrations of pathogenic microorganisms from stabilized leachate.
    Matched MeSH terms: Iron/chemistry*
  16. Banch TJH, Hanafiah MM, Alkarkhi AFM, Abu Amr SS
    Polymers (Basel), 2019 Aug 14;11(8).
    PMID: 31416151 DOI: 10.3390/polym11081349
    In this study, tannin-based natural coagulant was used to treat stabilized landfill leachate. Tannin modified with amino group was utilized for the treatment process. Central composite design (CCD) was used to investigate and optimize the effect of tannin dosage and pH on four responses. The treatment efficiency was evaluated based on the removal of four selected (responses) parameters; namely, chemical oxygen demand (COD), color, NH3-N and total suspended solids (TSS). The optimum removal efficiency for COD, TSS, NH3-N and color was obtained using a tannin dosage of 0.73 g at a pH of 6. Moreover, the removal efficiency for selected heavy metals from leachate; namely, iron (Fe2+), zinc (Zn2+), copper (Cu2+), chromium (Cr2+), cadmium (Cd2+), lead (Pb2+), arsenic (As3+), and cobalt (Co2+) was also investigated. The results for removal efficiency for COD, TSS, NH3-N, and color were 53.50%, 60.26%, and 91.39%, respectively. The removal of selected heavy metals from leachate for Fe2+, Zn2+, Cu2+, Cr2+, Cd2+, Pb2+, As3+ and cobalt Co2+ were 89.76%, 94.61%, 94.15%, 89.94%, 17.26%, 93.78%, 86.43% and 84.19%, respectively. The results demonstrate that tannin-based natural coagulant could effectively remove organic compounds and heavy metals from stabilized landfill leachate.
    Matched MeSH terms: Iron
  17. Ali Hassan SH, Fry JR, Abu Bakar MF
    Biomed Res Int, 2013;2013:138950.
    PMID: 24288662 DOI: 10.1155/2013/138950
    Garcinia parvifolia belongs to the same family as mangosteen (Garcinia mangostana), which is known locally in Sabah as "asam kandis" or cherry mangosteen. The present study was conducted to determine the phytochemicals content (total phenolic, flavonoid, anthocyanin, and carotenoid content) and antioxidant and acetylcholinesterase inhibition activity of the flesh and peel of G. parvifolia. All samples were freeze-dried and extracted using 80% methanol and distilled water. For the 80% methanol extract, the flesh of G. parvifolia displayed higher phenolic and flavonoid contents than the peel, with values of 7.2 ± 0.3 mg gallic acid equivalent (GAE)/g and 5.9 ± 0.1 mg rutin equivalent (RU)/g, respectively. Anthocyanins were detected in the peel part of G. parvifolia but absent in the flesh. The peel of G. parvifolia displayed higher total carotenoid content as compared to the flesh part with the values of 17.0 ± 0.3 and 3.0 ± 0.0 mg β-carotene equivalents (BC)/100 g, respectively. The free-radical scavenging, ferric reducing, and acetylcholinesterase inhibition effect of the flesh were higher as compared to the peel in both extracts. These findings suggested that the edible part of G. parvifolia fruit has a potential as a natural source of antioxidant and anti-Alzheimer's agents.
    Matched MeSH terms: Iron/metabolism
  18. Batool S, Shah AA, Abu Bakar AF, Maah MJ, Abu Bakar NK
    Chemosphere, 2022 Feb;289:133011.
    PMID: 34863732 DOI: 10.1016/j.chemosphere.2021.133011
    Unique zerovalent iron (Fe0) supported on biochar nanocomposite (Fe0-BRtP) was synthesized from Nephelium lappaceum (Rambutan) fruit peel waste and were applied for the simultaneous removal of 6 selected organochlorine pesticides (OCPs) from aqueous medium. During facile synthesis of Fe0-BRtP, Rambutan peel extract was used as the green reducing mediator to reduce Fe2+ to zerovalent iron (Fe0), instead of toxic sodium borohydride which were used for chemical synthesis. For comparison, chemically synthesized Fe0-BChe nanocomposite was also prepared in this work. Characterization study confirmed the successful synthesis and dispersion of Fe0 nanoparticles on biochar surface. Batch experiments revealed that Fe0-BRtP and Fe0-BChe nanocomposites combine the advantage of adsorption and dechlorination of OCPs in aqueous medium and up to 96-99% and 83-91% removal was obtained within 120 and 150 min, respectively at initial pH 4. Nevertheless, the reactivity of Fe0-BChe nanocomposite decreased 2 folds after being aged in air for one month, whilst Fe0-BRtP almost remained the same. Adsorption isotherm of OCPs were fitted well to Langmuir isotherm and then to Freundlich isotherm. The experimental kinetic data were fitted first to pseudo-second-order adsorption kinetic model and then to pseudo-first-order reduction kinetic model. The adsorption mechanism involves π-π electron-donor-acceptor interaction and adsorption is facilitated by the hydrophobic sorption and pore filling. After being reused five times, the removal efficiency of regenerated Fe0-BChe and Fe0-BRtP was 5-13% and 89-92%, respectively. The application of this Fe0-BRtP nanocomposite could represent a green and low-cost potential material for adsorption and subsequent reduction of OCPs in aquatic system.
    Matched MeSH terms: Iron
  19. Hussein AS, Ghasheer HF, Ramli NM, Schroth RJ, Abu-Hassan MI
    Eur J Paediatr Dent, 2013 Jun;14(2):113-8.
    PMID: 23758460
    AIM: To assess the salivary levels of Copper (Cu), Zinc (Zn), Manganese (Mn) and Iron (Fe) obtained from children of different ethnic backgrounds in Shah Alam, Malaysia and investigate the possible relationships with caries.

    MATERIALS AND METHODS: One hundred and twenty primary school children were included. They were divided into caries and caries-free groups. Unstimulated whole saliva was collected from each participant using spitting method. The salivary elements were measured using an Atomic Absorption Spectrophotometer. Descriptive statistics, bivariate and Pearson's correlation analysis were performed.

    RESULTS: Salivary Cu and Zn levels were significantly higher in children with dental caries compared to those caries-free (p < 0.05). Moreover, these elements had a positive correlation with dental caries (Cu: r=0.698, p<0.001; Zn: r=0.181, p<0.05). No significant variations in Mn and Fe were observed between caries and caries-free group (p>0.05). Additionally, there were significant differences in salivary Zn and Fe among different age groups (p<0.05) and highly significant differences in salivary Cu, Mn and Fe among different ethnic groups (p<0.001). However, all elements exhibited no significant differences between males and females.

    CONCLUSION: The salivary Cu and Zn levels showed significant differences between caries and caries-free groups. The findings also revealed significant variations in the levels of salivary Cu, Mn and Fe among different ethnic groups and salivary Zn and Fe among different age groups.

    Matched MeSH terms: Iron/analysis
  20. Fathul Karim Sahrani, Zaharah Ibrahim, Madzlan Aziz, Adibah Yahya
    Corrosion caused by sulphate-reducing bacteria (SRB) isolated from seawater nearby to Pasir Gudang has been studied. The test coupon was a AISI 304 stainless steel. Potential and corrosion rate measurements were carried out in various types of culturing solutions, with SRB1, SRB2, combination of SRB1 & SRB2 and without SRBs inoculated (sterilized). From Tafel plots a higher corrosion rate has been found in medium inoculated with SRBs than that of the sterilized medium (control). When SRBs were present in the medium, the Tafel plot shifted towards more negative values (Ecorr was shifted to much less anodic values) and increase in current density compared to that of the sterilized medium (control). Localized corrosion was observed on the metal surface, and it was associated to the SRB activity. X-ray analysis (EDAX) showed that the corrosion product has higher content of sulphur for medium containing SRBs than that of the sterilized medium. X-Ray Diffraction analysis carried out on corrosion products which showed the presence of iron sulphide. This indicates the influence of the presence of SRB in corrosion process.
    Matched MeSH terms: Iron
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links