Displaying publications 1 - 20 of 38 in total

Abstract:
Sort:
  1. Amid M, Manap MY, Hussin M, Mustafa S
    Molecules, 2015 Jun 17;20(6):11184-201.
    PMID: 26091076 DOI: 10.3390/molecules200611184
    Lipase is one of the more important enzymes used in various industries such as the food, detergent, pharmaceutical, textile, and pulp and paper sectors. A novel aqueous two-phase system composed of surfactant and xylitol was employed for the first time to purify lipase from Cucurbita moschata. The influence of different parameters such as type and concentration of surfactants, and the composition of the surfactant/xylitol mixtures on the partitioning behavior and recovery of lipase was investigated. Moreover, the effect of system pH and crude load on the degree of purification and yield of the purified lipase were studied. The results indicated that the lipase was partitioned into the top surfactant rich phase while the impurities partitioned into the bottom xylitol-rich phase using an aqueous two phase system composed of 24% (w/w) Triton X-100 and 20% (w/w) xylitol, at 56.2% of tie line length (TLL), (TTL is one of the important parameters in this study and it is determined from a bimodal curve in which the tie-line connects two nodes on the bimodal, that represent concentration of phase components in the top and bottom phases) and a crude load of 25% (w/w) at pH 8.0. Recovery and recycling of components was also measured in each successive step process. The enzyme was successfully recovered by the proposed method with a high purification factor of 16.4 and yield of 97.4% while over 97% of the phase components were also recovered and recycled. This study demonstrated that the proposed novel aqueous two phase system method is more efficient and economical than the traditional aqueous two phase system method for the purification and recovery of the valuable enzyme lipase.
    Matched MeSH terms: Liquid-Liquid Extraction*
  2. Amid M, Manap Y, Azmira F, Hussin M, Sarker ZI
    PMID: 25973865 DOI: 10.1016/j.jchromb.2015.04.034
    Polygalacturonase is one of the important enzymes used in various industries such as food, detergent, pharmaceutical, textile, pulp and paper. A novel liquid/liquid extraction process composed of surfactant and acetonitrile was employed for the first time to purify polygalacturonase from Durio zibethinus. The influences of different parameters such as type and concentration of surfactants, concentrations of acetonitrile and composition of surfactant/acetonitrile on partitioning behavior and recovery of polygalacturonase was investigated. Moreover, the effect of pH of system and crude load on purification fold and yield of purified polygalacturonase were studied. The results of the experiment indicated the polygalacturonase was partitioned into surfactant top rich phase with impurities being partitioned into acetonitrile bottom rich phase in the novel method of liquid/liquid process composed of 23% (w/w) Triton X-100 and 19% (w/w) acetonitrile, at 55.6% of TLL (tie line length) crude load of 25% (w/w) at pH 6.0. Recovery and recycling of components also was measured in each successive step of liquid/liquid extraction process. The enzyme was successfully recovered by the method with a high purification factor of 14.3 and yield of 97.3% while phase components were also recovered and recycled above 95%. This study demonstrated that the novel method of liquid/liquid extraction process can be used as an efficient and economical extraction method rather than the traditional methods of extraction for the purification and recovery of the valuable enzyme.
    Matched MeSH terms: Liquid-Liquid Extraction/methods*
  3. Amir Rawa MS, Hassan Z, Murugaiyah V, Nogawa T, Wahab HA
    J Ethnopharmacol, 2019 Dec 05;245:112160.
    PMID: 31419500 DOI: 10.1016/j.jep.2019.112160
    ETHNOPHARMACOLOGICAL RELEVANCE: Enhancement of cholinergic functions in the brain via acetylcholinesterase inhibition is one of the main therapeutic strategies to improve symptoms associated with Alzheimer's or related cognitive deficits. There is a pathophysiological correlation between Alzheimer's and Diabetes Mellitus, as well as inflammation and oxidative stress that may cause cognitive decline.

    AIM OF THE STUDY: The present study was intended to evaluate anti-cholinesterase potential of 177 Malaysian plant extracts from 148 species known to have related ethnomedicinal uses such as anti-inflammatory, anti-oxidant, anti-diabetic, epilepsy, headache, memory enhancement and anti-aging.

    MATERIALS AND METHODS: Anti-cholinesterase screening against both acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes was performed on the basis of in-vitro colorimetric 96-well microplate-based assay method. Potent active plant extracts were subjected to liquid-liquid extraction and acid-base fractionation for further analysis.

    RESULTS: Fifty-seven plant extracts exhibited potent anti-cholinesterase activities (50-100% inhibition) at 200 μg/ml. Majority of the active plants originated from Fabaceae family. Coccoloba uvifera (L.) L. stem extract manifested the lowest IC50 of 3.78 μg/ml for AChE and 5.94 μg/ml for BChE. A few native species including Tetracera indica (Christm. & Panz.) Merr., Cyrtostachys renda Blume and Ixora javanica (Blume) DC. showed cholinesterase inhibition despite limited local medical applications. Further anti-AChE evaluation (50 μg/ml) of 18 potent plant extracts harbored active polar components in butanol and water fractions, except Senna pendula (Willd.) H.S.Irwin & Barneby (leaves and stems), Acacia auriculiformis Benth. (leaves), Artocarpus altilis (Parkinson ex F.A.Zorn) Fosberg (leaves), and Macaranga tanarius (L.) Mull.Arg. (leaves) that showed inhibitory activity in less polar fractions. The acidic extraction of these four plant species improved their inhibition level against AChE.

    CONCLUSION: This study rendered a preliminary overview of anti-cholinesterase activity from diverse Malaysian botanical families in which provided the medical relevance toward these native plant species, especially ones with limited ethnobotanical record or practice.

    Matched MeSH terms: Liquid-Liquid Extraction
  4. Khoo, H.E., Chong, E.L., Sia, C.M., Chang, S.K., Yim, H.S.
    Malays J Nutr, 2014;20(1):101-111.
    MyJurnal
    Introduction: Hygrocybe conica (HC), a wild mushroom commonly consumed by the indigenous people (Orang Asli) in Peninsular Malaysia, was assessed for its antioxidant content. Methods: The HC mushroom was extracted using distilled water and the crude extract partitioned using different solvents and open column chromatography to evaluate its potential antioxidant properties. The mushroom extract was partitioned using liquid-liquid extraction into the hexane (Fl), chloroform (F2), butanol (F3) and formic acid (F4) fractions. Based on solvent polarity, the water extract of the mushroom was fractionated into non-polar (FI), semi-polar (Fii), and polar fractions (Fiii) using open column chromato­ graphy. Antioxidant capacities were determined using DPPH, ABTS, and ferric reducing antioxidant power (FRAP) assays while Folin-Ciocalteu reagent assay was used to determine total phenolic content (TPC). Results: The HC extract had the highest TPC and DPPH scavenging capacity compared to its extract fractions. TE values (ABTS assay) of F2 and F4 were not significantly higher than the HC extract. Among the extract fractions of different polarities, Fiii had the highest antioxidant capacities (DPPH and FRAP) compared to FI and Fii while FRAP values of these fractions were not significantly lower than the FRAP value of HC extract. The HC extract had significantly lower antioxidant capacity than antioxidant standards (ascorbic acid and BHA). Tannie acid as the main bioactive component in HC mushroom was detected using HPLC method. The presence of phenolics in HC extract was also confirmed using TLC. Conclusion: Due to the presence of potent phenolic components, the mycelia of HC could be consumed for potential antioxidative benefits.
    Matched MeSH terms: Liquid-Liquid Extraction
  5. Mohamad Ali AS, Abdul Razak N, Ab Rahman I
    ScientificWorldJournal, 2012;2012:351967.
    PMID: 22629138 DOI: 10.1100/2012/351967
    Sorbent materials based on a hydrazone Schiff base compound, C(14)H(11)BrN(4)O(4), were prepared either by immobilizing the ligand into sol-gel (SG1) or bonding to silica (SG2). The sorbent materials were characterized by FT-IR, EDX, SEM, TEM, and TGA. The sorption characteristics of a matrix of eight transition metal ions (Ag(+), Cu(2+), Co(2+), Ni(2+), Fe(3+), Pb(2+), Zn(2+), and Mn(2+)) using batch method were studied. Several key parameters that affected the extraction efficiency such as pH, contact time, metal ions concentration, and gel size (for SGl) were investigated and optimized. Under the optimized conditions, the physically immobilized hydrazone sorbent (SG1) exhibits highest selectivity towards Ag(+) ions, while the chemically bonded hydrazone sorbent (SG2) exhibits high extraction for all metal ions tested. However, for practical applications such as the removal and preconcentration of Ag(+), the physically immobilized sorbent (SG1) is preferred.
    Matched MeSH terms: Liquid-Liquid Extraction/methods
  6. Haron MJ, Jahangirian H, Silong S, Yusof NA, Kassim A, Rafiee-Moghaddam R, et al.
    Int J Mol Sci, 2012;13(2):2148-59.
    PMID: 22408444 DOI: 10.3390/ijms13022148
    Liquid-liquid iron(III) extraction was investigated using benzyl fatty hydroxamic acids (BFHAs) and methyl fatty hydroxamic acids (MFHAs) as chelating agents through the formation of iron(III) methyl fatty hydroxamate (Fe-MFHs) or iron(III) benzyl fatty hydroxamate (Fe-BFHs) in the organic phase. The results obtained under optimized conditions, showed that the chelating agents in hexane extract iron(III) at pH 1.9 were realized effectively with a high percentage of extraction (97.2% and 98.1% for MFHAs and BFHAs, respectively). The presence of a large amount of Mg(II), Ni(II), Al(III), Mn(II) and Co(II) ions did affect the iron(III) extraction. Finally stripping studies for recovering iron(III) from organic phase (Fe-MFHs or Fe-BFHs dissolved in hexane) were carried out at various concentrations of HCl, HNO(3) and H(2)SO(4). The results showed that the desired acid for recovery of iron(III) was 5 M HCl and quantitative recovery of iron(III) was achieved from Fe(III)-MFHs and Fe(III)-BFHs solutions in hexane containing 5 mg/L of Fe(III).
    Matched MeSH terms: Liquid-Liquid Extraction/methods*
  7. Hariono M, Rollando R, Karamoy J, Hariyono P, Atmono M, Djohan M, et al.
    Molecules, 2020 Oct 14;25(20).
    PMID: 33066411 DOI: 10.3390/molecules25204691
    Matrix metalloproteinase9 (MMP9) is known to be highly expressed during metastatic cancer where most known potential inhibitors failed in the clinical trials. This study aims to select local plants in our state, as anti-breast cancer agent with hemopexin-like domain of MMP9 (PEX9) as the selective protein target. In silico screening for PEX9 inhibitors was performed from our in house-natural compound database to identify the plants. The selected plants were extracted using methanol and then a step-by-step in vitro screening against MMP9 was performed from its crude extract, partitions until fractions using FRET-based assay. The partitions were obtained by performing liquid-liquid extraction on the methanol extract using n-hexane, ethylacetate, n-butanol, and water representing nonpolar to polar solvents. The fractions were made from the selected partition, which demonstrated the best inhibition percentage toward MMP9, using column chromatography. Of the 200 compounds screened, 20 compounds that scored the binding affinity -11.2 to -8.1 kcal/mol toward PEX9 were selected as top hits. The binding of these hits were thoroughly investigated and linked to the plants which they were reported to be isolated from. Six of the eight crude extracts demonstrated inhibition toward MMP9 with the IC50 24 to 823 µg/mL. The partitions (1 mg/mL) of Ageratum conyzoides aerial parts and Ixora coccinea leaves showed inhibition 94% and 96%, whereas their fractions showed IC50 43 and 116 µg/mL, respectively toward MMP9. Using MTT assay, the crude extract of Ageratum exhibited IC50 22 and 229 µg/mL against 4T1 and T47D cell proliferations, respectively with a high safety index concluding its potential anti-breast cancer from herbal.
    Matched MeSH terms: Liquid-Liquid Extraction
  8. Vijay R, Lenin Singaravelu D, Vinod A, Sanjay MR, Siengchin S, Jawaid M, et al.
    Int J Biol Macromol, 2019 Mar 15;125:99-108.
    PMID: 30528990 DOI: 10.1016/j.ijbiomac.2018.12.056
    The aim of this study is to investigate natural cellulosic fibers extracted from Tridax procumbens plants. The obtained fibers were alkali treated for their effective usage as reinforcement in composites. The physical, chemical, crystallinity, thermal, wettability and surface characteristics were analyzed for raw, and alkali treated Tridax procumbens fibers (TPFs). The test results conclude that there was an increase in cellulose content with a reduction in hemicellulose, lignin, and wax upon alkali treatment. This enhanced the thermal stability, tensile strength, crystallinity, and surface roughness characteristics. The contact angle was also lesser for treated TPFs which prove its better wettability with the liquid phase. The Weibull distribution analysis was adopted for the analysis of the fiber diameter and tensile properties. Thus the considerable improvement in the properties of alkali treated TPFs would be worth for developing high-performance polymer composites.
    Matched MeSH terms: Liquid-Liquid Extraction
  9. Tsai ML, Lin CD, Khoo KA, Wang MY, Kuan TK, Lin WC, et al.
    Molecules, 2017 Dec 05;22(12).
    PMID: 29206180 DOI: 10.3390/molecules22122154
    'Mato Peiyu' pomelo (Citrus grandis (L.) Osbeck 'Mato Peiyu') leaves from pruning are currently an agricultural waste. The aim of this study was to isolate essential oils from these leaves through steam distillation (SD) and solvent-free microwave extraction (SFME) and to evaluate their applicability to skin care by analyzing their antimicrobial, antioxidant (diphenyl-1-picrylhydrazyl scavenging assay, β-carotene/linoleic acid assay, and nitric oxide scavenging assay), anti-inflammatory (5-lipoxygenase inhibition assay), and antityrosinase activities. The gas chromatography-mass spectrometry results indicated that the main components of 'Mato Peiyu' leaf essential oils were citronellal and citronellol, with a total percentage of 50.71% and 59.82% for SD and SFME, respectively. The highest bioactivity among all assays was obtained for 5-lipoxygenase inhibition, with an IC50 value of 0.034% (v/v). The MIC90 of the antimicrobial activity of essential oils against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Candida albicans ranged from 0.086% to 0.121% (v/v). Citronellal and citronellol were the main contributors, accounting for at least 54.58% of the essential oil's bioactivity. This paper is the first to report the compositions and bioactivities of 'Mato Peiyu' leaf essential oil, and the results imply that the pomelo leaf essential oil may be applied in skin care.
    Matched MeSH terms: Liquid-Liquid Extraction/methods
  10. Ayoib A, Hashim U, Gopinath SCB, Md Arshad MK
    Appl Microbiol Biotechnol, 2017 Nov;101(22):8077-8088.
    PMID: 28942548 DOI: 10.1007/s00253-017-8493-0
    This review covers a developmental progression on early to modern taxonomy at cellular level following the advent of electron microscopy and the advancement in deoxyribonucleic acid (DNA) extraction for expatiation of biological classification at DNA level. Here, we discuss the fundamental values of conventional chemical methods of DNA extraction using liquid/liquid extraction (LLE) followed by development of solid-phase extraction (SPE) methods, as well as recent advances in microfluidics device-based system for DNA extraction on-chip. We also discuss the importance of DNA extraction as well as the advantages over conventional chemical methods, and how Lab-on-a-Chip (LOC) system plays a crucial role for the future achievements.
    Matched MeSH terms: Liquid-Liquid Extraction
  11. Atif M, Khalid SH, Onn Kit GL, Sulaiman SA, Asif M, Chandersekaran A
    J Young Pharm, 2013 Mar;5(1):26-9.
    PMID: 24023449 DOI: 10.1016/j.jyp.2013.01.005
    A simple, sensitive and selective HPLC method with UV detection for determination of Glipizide in human plasma was developed. Liquid-liquid extraction method was used to extract the drug from the plasma samples. Chromatographic separation of Glipizide was achieved using C18 column (ZORBAX ODS 4.6 × 150 mm). The mobile phase was comprised of 0.01 M potassium dihydrogen phosphate and acetonitrile (65:35, v/v) adjusted to pH 4.25 with glacial acetic acid. The analysis was run at a flow rate of 1.5 mL/min with an injection volume was 20 μL. The detector was operated at 275 nm. The calibration curve was linear over a concentration range of 50-1600 ng/mL. Intra-day and inter-day precision and accuracy values were below 15%. The limit of quantification was 50 ng/mL and the mean recovery was above 98%. Freeze-thaw, short-term, long-term and post-preparative stability studies showed that Glipizide in plasma sample was stable. The method may be successfully applied to analyze the Glipizide concentration in plasma samples for bioavailability and bioequivalence studies.
    Matched MeSH terms: Liquid-Liquid Extraction
  12. Jajuli MN, Hussin MH, Saad B, Rahim AA, Hébrant M, Herzog G
    Anal Chem, 2019 06 04;91(11):7466-7473.
    PMID: 31050400 DOI: 10.1021/acs.analchem.9b01674
    A new sample preparation method is proposed for the extraction of pharmaceutical compounds (Metformin, Phenyl biguanide, and Phenformin) of varied hydrophilicity, dissolved in an aqueous sample. When in contact with an organic phase, an interfacial potential is imposed by the presence of an ion, tetramethylammonium (TMA+), common to each phase. The interfacial potential difference drives the transfer of ionic analytes across the interface and allows it to reach up to nearly 100% extraction efficiency and a 60-fold enrichment factor in optimized extraction conditions as determined by HPLC analysis.
    Matched MeSH terms: Liquid-Liquid Extraction*
  13. Thang LY, Breadmore MC, See HH
    J Chromatogr A, 2016 Jul 27.
    PMID: 27485148 DOI: 10.1016/j.chroma.2016.07.067
    An online preconcentration method, namely electrokinetic supercharging (EKS), was evaluated for the determination of tamoxifen and its metabolites in human plasma in nonaqueous capillary electrophoresis with ultraviolet detection (NACE-UV). This method was comprehensively optimized in terms of the leading electrolyte (LE) and terminating electrolyte (TE) injection lengths, as well as electrokinetic sample injection time. The optimized EKS conditions employed were as follows: hydrodynamic injection (HI) of 10mM potassium chloride as LE at 150mbar for 36s (4% of total capillary volume). The sample was injected at 10kV for 300s, followed by HI of 10mM pimozide as TE at 150mbar for 36s (4% of total capillary volume). Separation was performed in 7.5mM deoxycholic acid sodium salt, 15mM acetic acid and 1mM 18-crown-6 in 100% methanol at +25kV with UV detection at 205nm. Under optimized conditions, the sensitivity was enhanced between 160- and 600-fold when compared with our previously developed method based on HI at 150mbar for 12s. The detection limit of the method for tamoxifen and its metabolites were 0.05-0.25ng/mL, with RSDs between 2.1% and 3.5%. Recoveries in spiked human plasma were 95.6%-99.7%. A comparison was also made between the proposed EKS approach and the standard field-amplified sample injection (FASI) technique. EKS proved to be 3-5 times more sensitive than the FASI. The new EKS method was applied to the analysis of tamoxifen and its metabolites in plasma samples from breast cancer patients after liquid-liquid extraction.
    Matched MeSH terms: Liquid-Liquid Extraction
  14. Teo CL, Idris A
    Bioresour Technol, 2014 Nov;171:477-81.
    PMID: 25201293 DOI: 10.1016/j.biortech.2014.08.024
    The types of microalgae strains and the method used in lipid extraction have become crucial factors which influence the productivity of crude oil. In this paper, Nannochloropsis sp. and Tetraselmis sp. were chosen as the strains and four different methods were used to extract the lipids: Hara and Radin, Folch, Chen and Bligh and Dyer. These methods were performed by using conventional heating and microwave irradiation methods. Results revealed that highest lipid yield from the different species was obtained using different extraction methods; both under microwave irradiation. The lipid yield for Tetraselmis sp. and Nannochloropsis sp. was highest when Hara and Radin (8.19%), and Folch (8.47%) methods were used respectively under microwave irradiation. The lipids extracted were then transesterified to biodiesel and the quality of the biodiesel was analyzed using the gas chromatography.
    Matched MeSH terms: Liquid-Liquid Extraction/methods*
  15. Rahim NA, Hassandarvish P, Golbabapour S, Ismail S, Tayyab S, Abdulla MA
    Biomed Res Int, 2014;2014:416409.
    PMID: 24783203 DOI: 10.1155/2014/416409
    Herbal medicines appeared promising in prevention of many diseases. This study was conducted to investigate the gastroprotective effect of Curcuma xanthorrhiza leaf in the rats induced gastric ulcer by ethanol. Normal and ulcer control received carboxymethycellulose (5 mL/kg) orally, positive control was administered with 20 mg/kg omeprazole (reference drug) and 2 groups were received 250 mg/kg and 500 mg/kg of the leaf extract, respectively. To induce of gastric ulcers formation, ethanol (5 mL/kg) was given orally to all groups except normal control. Gross ulcer areas, histology, and amount of prostaglandin E2, superoxide dismutase and malondialdehyde were assessed to determine the potentiality of extract in prevention against gastric ulcers. Oral administration of extract showed significant gastric protection effect as the ulcer areas was remarkably decreased. Histology observation showed less edema and leucocytes infiltration as compared with the ulcer control which exhibited severe gastric mucosa injury. Furthermore, the leaf extract elevated the mucus weight, level of prostaglandin E2 and superoxide dismutase. The extract also reduced malondialdehyde amount significantly. Results showed leaf extract of Curcuma xanthorrhiza can enhanced the gastric protection and sustained the integrity of gastric mucosa structure. Acute toxicity test did not showed any sign of toxicity (2 g/kg and 5 g/kg).
    Matched MeSH terms: Liquid-Liquid Extraction
  16. Sankaran R, Show PL, Cheng YS, Tao Y, Ao X, Nguyen TDP, et al.
    Mol Biotechnol, 2018 Oct;60(10):749-761.
    PMID: 30116991 DOI: 10.1007/s12033-018-0111-6
    Microalgae are the most promising sources of protein, which have high potential due to their high-value protein content. Conventional methods of protein harnessing required multiple steps, and they are generally complex, time consuming, and expensive. Currently, the study of integration methods for microalgae cell disruption and protein recovery process as a single-step process is attracting considerable interest. This study aims to investigate the novel approach of integration method of electrolysis and liquid biphasic flotation for protein extraction from wet biomass of Chlorella sorokiniana CY-1 and obtaining the optimal operating conditions for the protein extraction. The optimized conditions were found at 60% (v/v) of 1-propanol as top phase, 250 g/L of dipotassium hydrogen phosphate as bottom phase, crude microalgae loading of 0.1 g, air flowrate of 150 cc/min, flotation time of 10 min, voltage of 20 V and electrode's tip touching the top phase of LBEF. The protein recovery and separation efficiency after optimization were 23.4106 ± 1.2514% and 173.0870 ± 4.4752%, respectively. Comparison for LBEF with and without the aid of electric supply was also conducted, and it was found that with the aid of electrolysis, the protein recovery and separation efficiency increased compared to the LBEF without electrolysis. This novel approach minimizes the steps for overall protein recovery from microalgae, time consumption, and cost of operation, which is beneficial in bioprocessing industry.
    Matched MeSH terms: Liquid-Liquid Extraction/methods*
  17. Tahziz A, Mohamad Haron DE, Aziz MY
    Molecules, 2020 May 16;25(10).
    PMID: 32429475 DOI: 10.3390/molecules25102335
    Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are widely used in products, and are known for their water and grease repellent properties. The persistence nature and potential toxicity of these substances have raised substantial concerns about health effects. Regarding humans, food consumption has reportedly been a significant source of exposure for both compounds. Hence, this study was performed to develop and validate an analytical method for PFOS and PFOA in egg yolks using liquid chromatographic tandem mass spectrometry (LC-MS/MS) followed by the determination of concentration of both compounds in the yolk of poultry eggs in Malaysia. A total of 47 poultry egg yolk samples were extracted by a simple protein precipitation technique using acetonitrile. The analytical method was developed using LC-MS/MS and validated based on the Food and Drug Administration (FDA)'s Bioanalytical Method Validation guidelines. The results revealed that PFOS was quantitatively detected in six samples, with the concentration range between 0.5 and 1.01 ng g-1. Among these, five samples were from home-produced chicken eggs, and one sample was from a quail egg. The levels of PFOA in all samples were below the quantifiable limit (<0.1 ng g-1). This indicated that the contamination of PFCs in poultry eggs were mostly attributed to the nature of free foraging animals, which had direct contact with the contaminants in soil and feed. In conclusion, a fast and robust analytical method for analyzing PFOS and PFOA in egg yolk samples using LC-MS/MS was successfully developed and validated. The presence of these emerging contaminants in this study signified widespread pollution in the environment.
    Matched MeSH terms: Liquid-Liquid Extraction/methods
  18. Low KL, Idris A, Mohd Yusof N
    Food Chem, 2020 Mar 01;307:125631.
    PMID: 31634761 DOI: 10.1016/j.foodchem.2019.125631
    Lutein available in the current market is derived from marigold petals. However, extensive studies showed that microalgae are rich in lutein content and potentially exploitable for its dietary and other industrial applications. In this study, microwave assisted binary phase solvent extraction method (MABS) was the novel protocol being developed and optimized to achieve maximum lutein recovery from microalgae Scenedesmus sp. biomass. Results showed that 60% potassium hydroxide solution with acetone in the ratio of 0.1 (ml/ml) was the ideal binary phase solvent composition. Empirical model developed using response surface methodology revealed highest lutein content can be recovered through MABS extraction method at 55 °C treatment temperature, 36 min in extraction time, 0.7 (mg/ml) for biomass to solvent ratio, 250 Watt microwave power and 250 rpm stirring speed. This optimized novel protocol had increased the amount of lutein recovered by 130% and shorten the overall extraction time by 3-folds.
    Matched MeSH terms: Liquid-Liquid Extraction/methods*
  19. Lee LY, Morad N, Ismail N, Talebi A, Rafatullah M
    Int J Mol Sci, 2020 Sep 18;21(18).
    PMID: 32962106 DOI: 10.3390/ijms21186860
    This study investigates the separation of two heavy metals, Cd(II) and Cu(II), from the mixed synthetic feed using a liquid-liquid extraction. The current study uses tri-octyl methylammonium chloride (Aliquat 336) as the extractant (with tributyl phosphate (TBP) as a phase modifier), diluted in toluene, in order to investigate the selective extraction of Cd(II) over Cu(II) ions. We investigate the use of ethylenediaminetetraacetic acid (EDTA) as a masking agent for Cu(II), when added in aqueous feed, for the selective extraction of Cd(II). Five factors that influence the selective extraction of Cd(II) over Cu(II) (the equilibrium pH (pHeq), Aliquat 336 concentration (Aliquat 336), TBP concentration (TBP), EDTA concentration (EDTA), and organic to aqueous ratio (O:A)) were analyzed. Results from a 25-1 fractional factorial design show that Aliquat 336 significantly influenced Cd(II) extraction, whereas EDTA was statistically significant for the antagonistic effect on the E% of Cu(II) in the same system. Moreover, results from optimization experiment showed that the optimum conditions are Aliquat 336 concentration of 99.64 mM and EDTA concentration of 48.86 mM-where 95.89% of Cd(II) was extracted with the least extracted Cu(II) of 0.59%. A second-order model was fitted for optimization of Cd(II) extraction with a R2 value of 0.998, and ANOVA results revealed that the model adequately fitted the data at a 5% significance level. Interaction between Aliquat 336 and Cd(II) has been proven via FTIR qualitative analysis, whereas the addition of TBP does not affect the extraction mechanism.
    Matched MeSH terms: Liquid-Liquid Extraction/instrumentation; Liquid-Liquid Extraction/methods*
  20. Salem MA, Michel HE, Ezzat MI, Okba MM, El-Desoky AM, Mohamed SO, et al.
    Molecules, 2020 May 14;25(10).
    PMID: 32422967 DOI: 10.3390/molecules25102307
    Hibiscus species (Malvaceae) have been long used as an antihypertensive folk remedy. The aim of our study was to specify the optimum solvent for extraction of the angiotensin-converting enzyme inhibiting (ACEI) constituents from Hibiscus sabdariffa L. The 80% methanol extract (H2) showed the highest ACEI activity, which exceeds that of the standard captopril (IC50 0.01255 ± 0.00343 and 0.210 ± 0.005 µg/mL, respectively). Additionally, in a comprehensive metabolomics approach, an ultra-performance liquid chromatography (UPLC) coupled to the high resolution tandem mass spectrometry (HRMS) method was used to trace the metabolites from each extraction method. Interestingly, our comprehensive analysis showed that the 80% methanol extract was predominated with secondary metabolites from all classes including flavonoids, anthocyanins, phenolic and organic acids. Among the detected metabolites, phenolic acids such as ferulic and chlorogenic acids, organic acids such as citrate derivatives and flavonoids such as kaempferol have been positively correlated to the antihypertensive potential. These results indicates that these compounds may significantly contribute synergistically to the ACE inhibitory activity of the 80% methanol extract.
    Matched MeSH terms: Liquid-Liquid Extraction/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links