Displaying publications 1 - 20 of 39 in total

Abstract:
Sort:
  1. Zyoud SH, Zyoud SH, Al-Jabi SW, Sweileh WM, Awang R
    PMID: 27382475 DOI: 10.1186/s40557-016-0117-0
    BACKGROUND: Recently, the pharmaceutical manufacturing industry has been growing rapidly in many countries in the world, including in Arab countries. Pharmaceuticals reach aquatic environments and are prevalent at small concentrations in wastewater from the drug manufacturing industry and hospitals. Such presence also occurs in domestic wastewater and results from the disposal of unused and expired medicines. Therefore, the objective of this study was to analyze and compare the quantity and quality of publications made by researchers in Arab countries on pharmaceutical wastewater.

    METHODS: To retrieve documents related to pharmaceutical wastewater, we used the Scopus database on November 21, 2015. All documents with terms related to pharmaceutical wastewater in the title or abstract were analysed. Results obtained from Arab countries were compared with those obtained from Turkey, Iran and Israel.

    RESULTS: Globally, a total of 6360 publications were retrieved while those from Arab countries, Iran, Turkey and Israel, were 179, 113, 96 and 54 publications respectively. The highest share of publications belonged to Kingdom of Saudi Arabia (KSA) with a total of 47 (26.2 %) publications, followed by Egypt (38; 21.2 %), Tunisia (17; 9.5 %) and Morocco (16; 8.9 %). The total number of citations was 1635, with a mean of 9.13 and a median (inter quartile range) of 3 (1.0-10.0). The study identified 87 (48.6 %) documents with 32 countries of international collaboration with Arab countries. It was noted that Arab researchers collaborated mainly with authors in Western Europe (54; 30.2 %), followed by authors from the Asiatic region (29; 16.2 %) and Northern America (15; 8.4 %). The most productive institution was King Saud University, KSA (13; 7.3 %), followed by the National Research Centre, Egypt (10; 7.3 %).

    CONCLUSIONS: This study showed that KSA has the largest share of productivity on pharmaceutical wastewater research. Bibliometric analysis demonstrated that research productivity, mainly from Arab countries in pharmaceutical wastewater research, was relatively lagging behind. More research effort is required for Arab countries to catch up with those of non-Arab Middle Easter countries on pharmaceutical wastewater research.

    Matched MeSH terms: Manufacturing Industry
  2. Yap HJ, Taha Z, Dawal SZ, Chang SW
    PLoS One, 2014;9(10):e109692.
    PMID: 25360663 DOI: 10.1371/journal.pone.0109692
    Traditional robotic work cell design and programming are considered inefficient and outdated in current industrial and market demands. In this research, virtual reality (VR) technology is used to improve human-robot interface, whereby complicated commands or programming knowledge is not required. The proposed solution, known as VR-based Programming of a Robotic Work Cell (VR-Rocell), consists of two sub-programmes, which are VR-Robotic Work Cell Layout (VR-RoWL) and VR-based Robot Teaching System (VR-RoT). VR-RoWL is developed to assign the layout design for an industrial robotic work cell, whereby VR-RoT is developed to overcome safety issues and lack of trained personnel in robot programming. Simple and user-friendly interfaces are designed for inexperienced users to generate robot commands without damaging the robot or interrupting the production line. The user is able to attempt numerous times to attain an optimum solution. A case study is conducted in the Robotics Laboratory to assemble an electronics casing and it is found that the output models are compatible with commercial software without loss of information. Furthermore, the generated KUKA commands are workable when loaded into a commercial simulator. The operation of the actual robotic work cell shows that the errors may be due to the dynamics of the KUKA robot rather than the accuracy of the generated programme. Therefore, it is concluded that the virtual reality based solution approach can be implemented in an industrial robotic work cell.
    Matched MeSH terms: Manufacturing Industry/education; Manufacturing Industry/methods*
  3. Yang F, Sun Y, Zhang Y, Wang T
    PMID: 34281094 DOI: 10.3390/ijerph18137157
    This study aims to analyze the development trend of the manufacturing industry transformation and upgrading in the Guangdong-Hong Kong-Macao Greater Bay Area (2008-2018). On the basis of synergetics, the order parameter method of factor analysis is used to study these factors. The results show that: (1) There are five slow variable factors, such as intelligent manufacturing industry, technological innovation, scale agglomeration, market demand, and fixed asset investment, which are important power sources of the transformation and upgrading of the manufacturing industry in Greater Bay Area. The development of these factors is relatively mature, and they cooperate with each other. (2) Similar to a fast variable of manufacturing development ecology, green development is an important coordinating factor in removing bottlenecks. Finally, suggestions for the development of the transformation and upgrading of the manufacturing industry are put forward.
    Matched MeSH terms: Manufacturing Industry*
  4. Wai Onn Hong
    MyJurnal
    Malaysia’s palm oil industry is growing in complexity and successively to succeed on the global level by accounts for about 36% of the word production of palm oil [1]. But, Occupational Health and Safety (OHS) issues are still problematic areas that need to be addressed by all parties concerned in this industry. In the olden days, unlike construction or manufacturing industry, palm oil industry was green in OHS management system. However, due to stringent in the legislative enforcement in the past few years, it has lead some of the plantation companies to develop OHS management system, which are based on Occupational Health and Safety Assessment Series (OHSAS), towards corporate sustainability. Sustainability is not about paying lip-service to the latest corporate buzzword; neither is it about superficially meeting minimum requirements for the sake of compliance. Rather, sustainability is a core value that lies at the heart of the companies’ business conduct. In practical terms, this means strive to operate with due consideration for the interest of all stakeholders by making the health and safety of all workers a priority. This paper describes the certification of OHSAS 18001 and MS 1722 in Genting Plantations Berhad (GENP) prove the commitment to sustainability by forming guiding principle on safety management. Further, this paper also demonstrates that the implementation of safety management can help to reduce the accident rate, especially fatal accident.
    Matched MeSH terms: Manufacturing Industry
  5. Tawfik A, Bakr MH, Nasr M, Haider J, Mesfer MKA, Lim H, et al.
    Chemosphere, 2022 Feb;289:133166.
    PMID: 34875288 DOI: 10.1016/j.chemosphere.2021.133166
    The sustainable application of an up-flow anaerobic baffled reactor (UABR) to treat real paper and cardboard industrial effluent (PCIE) containing bronopol (2-bromo-2-nitropropan-1, 3-diol) was investigated. At a hydraulic retention time (HRT) of 11.7 h and a bronopol concentration of 7.0 mg L-1, the removal efficiencies of total chemical oxygen demand (CODtotal), CODsoluble, CODparticulate, total suspended solids (TSS), volatile suspended solids (VSS), carbohydrates, and proteins were 55.3 ± 5.2%, 26.8 ± 2.3%, 94.4 ± 4.6%, 89.4 ± 2.6%, 84.5 ± 3.2%, 72.1 ± 1.8%, and 22.4 ± 1.8%, respectively. The conversion of complex organics (e.g., carbohydrates and proteins) into bio-methane (CH4) was assisted via enzyme activities of, in U (100 mL)-1, α-amylase (224-270), α-xylanase (171-188), carboxymethyl cellulase (CM-cellulase) (146-187), polygalacturonase (56-126), and protease (67,000-75300). The acidogenic condition was dominant at a short HRT of 2.9 h, where methane yield dropped by 32.5%. Under this condition, the growth of methanogenic bacteria could be inhibited by volatile fatty acids (VFA) accumulation. The analysis of Fourier-transform infrared (FTIR) spectra detected peaks relevant to methylene and nitro groups in the sludge samples, suggesting that entrapment/adsorption by the sludge bed could be a major mechanism for removing bronopol. The economic feasibility of UABR, as proposed to receive 100 m3 d-1 of PCIE, showed a payback period (profits from environmental benefits, biogas recovery, and carbon credit) of 7.6 yr. The study outcomes showed a high connection to the environmental-, economic-, and social-related sustainable development goals (SDGs).
    Matched MeSH terms: Manufacturing Industry
  6. Siti Suhaili Shahlan, Mimi H. Hassim, Kamarizan Kidam, Haszlee Mohd Safuan, Norasikin Othman, Adnan Ripin, et al.
    MyJurnal
    According to annual reports from the Social Security Organization (SOCSO), between years 2009 and 2011,
    metal industry has the highest reported number of accidents compared to the other manufacturing industry in small
    and medium enterprises (SMEs). Therefore, the aim of this study was to investigate the actual causes of problems that
    lead to the accidents involving metal industries within SMEs. In this study, a checklist through site visits was used to
    collect the data. The overall results revealed that the main causes of accidents are; organization failure, human factor,
    machine failure and surrounding environments.
    Matched MeSH terms: Manufacturing Industry
  7. Shudipta Choudhury
    MyJurnal
    Background: Technological diversity management in the manufacturing of advanced medical devices is
    essential. The manufacturing industries of medical devices should act in accordance with the technical
    guidelines and regulations in order to ensure best practices with the use of devices in hospitals
    Aim: To explore safety hazards, cost implications, and social and ethical standards to be considered during
    the manufacturing of advanced medical devices
    Subject and Methods: Aqualitative descriptive study was used. There was no targeted sample in the current
    study whereby secondary data were used to explore the research topic. Secondary sources were obtained
    from databases including EBSCOHOST, PubMed, ProQuest, Science Direct, and Google Scholar. Peerreviewed
    articles, journals, books, conference proceedings, and other web publications were used to gather
    relevant data.
    Results: The current study indicated that the technological diversity management of advanced medical
    devices is associated with safety hazards like security threats, integrity problems, and medical errors. The
    study also showed that high cost of standardizations, supply, and purchase of advanced medical devices is a
    huge burden faced by the manufacturers andusers. The study showed that the regulation of the medical
    devices, certification, and post-market surveillanceare essential social and ethical considerations during the
    manufacturing process of the new medical devices.
    Conclusion: The current study explored the technological diversity of advanced medical devices. It is
    evident in the current study that technology diversity of medical devices is associated with safety hazards
    and cost implications. The study disclosed that taking into account social and ethical issues aid in
    manufacturing safe and high quality medical devices.
    Matched MeSH terms: Manufacturing Industry
  8. Salleh, R.M., Djauhari, M.A.
    ASM Science Journal, 2012;6(1):1-13.
    MyJurnal
    A monitoring procedure was introduced for process variability in a multivariate setting based on individual observations which was a combination of (i) robust high breakdown point approach in the set-up stage to determine the reference sample and (ii) the use of Wilks chart in the mass production stage. This setting is what the Malaysian manufacturing industry is currently lacking in, especially when a robust approach must be used. The advantage of this procedure was revealed by using the case of a female shrouded connector production process in a Malaysian industry. Moreover, this procedure could also be used in any process quality monitoring and for any industry. A recommendation for quality practitioners was also addressed.
    Matched MeSH terms: Manufacturing Industry
  9. Saedi AM, Majid AA, Isa Z
    Int J Occup Saf Ergon, 2021 Sep;27(3):714-727.
    PMID: 31131712 DOI: 10.1080/10803548.2019.1623454
    Introduction. Demographic information is one of the key parameters that organizations utilize to modify their practices in order to respond to the existing risk within work environments. The present article aims to assess the level of safety climate factors as well as to evaluate the influence of personal factors on safety climate in two different-sized industries. Methods. A total of 216 employees in two large and three small and medium-sized chemical manufacturing industries responded to a questionnaire. Descriptive statistics were used to measure the safety climate level; a two-independent-sample Mann-Whitney U test and a Kruskal-Wallis test were run to compare the difference in safety climate scores among different demographic variables. Results. The lower level of safety climate in small and medium-sized industries revealed lower understanding and performance of management and non-management with regard to safety climate compared to the large industries. Additionally, significant mean differences on some safety climate factors among demographic variables were detected in both sizes of industries, emphasizing the important role of the employees' demographic variables on the plants' safety climate. Conclusion. Improving organization-level and group-level safety climates is recommended to improve employees' level of safety climate and control their personal factors.
    Matched MeSH terms: Manufacturing Industry*
  10. Saad Mohd Said, Zairihan Abdul Halim, Fatimah Said
    MyJurnal
    This study analyzes the determinants of workplace injuries across 44 four-digit manufacturing industries in Malaysia from 1993 to 2008 through the business cycle and structural approaches. The results of fixed-effects estimations revealed that workplace injuries in Malaysian manufacturing sector were negatively influenced by firm size and positively influenced by business cycle. Consistent with the findings of previous studies in other countries, the empirical evidence of this study supports the pro-cyclical behavior of injury rates in manufacturing industries towards business cycle. The analysis demonstrates that both structural and cyclical variation effects are important determinants of workplace injuries in Malaysia.
    Matched MeSH terms: Manufacturing Industry
  11. Roseni Abdul Aziz, Mat Rebi Abdul Rani, Jafri Mohd Rohani, Ademola James Adeyemi
    MyJurnal
    Studies have identified working postures as a major risk factors associated with Work-related musculoskeletal disorders (WMSD) in industries. This study investigated the prevalence of WMSD among assembly workers in Malaysia and how psychosocial factors such as personal values and workers relationship with family and superior are associated with discomfort and pain. A survey was conducted among 127 workers at assembly process in the manufacturing industry. The workers were aged 28.74±6.74 years and 64.6% of them were males. Analysis of Variance (ANOVA) was used to determine the effect of workplace factors on WMSD at different body regions. Spearman’s rank correlation was used to investigate association between psychosocial factors and occurrence of discomfort and pain. Only occupation and job activities revealed any significant different with WMSD in the major body regions while there was no significant difference in gender, age and work duration classifications. Shoulder painis the most prevalent in terms of frequency and intensity of occurrence. Psychosocial issues that have to do with person values, effect of job on family relationship and workers rapport with superiors are all found to be associated with the discomfort and pain among the occupational group. Employers and concerned government agencies need to take more proactive steps in tackling the problem as the occurrence of WMSD will have a significant effect on the overall wellbeing of the working population.
    Matched MeSH terms: Manufacturing Industry
  12. Putra MA, Teh KC, Tan J, Choong TSY
    Environ Sci Pollut Res Int, 2020 Aug;27(23):29352-29360.
    PMID: 32440875 DOI: 10.1007/s11356-020-09207-z
    Cement is a vital material used in the construction of concrete buildings. World annual cement demand is increasing rapidly along with the improvement in infrastructure development. However, cement manufacturing industries are facing challenges in reducing the environmental impacts of cement production. To resolve this issue, a suitable methodology is crucial to ensure the selected processes are effective and efficient and at the same time environmentally friendly. Different technologies and equipment have potential to produce variations in operational effectiveness, environmental impacts, and manufacturing costs in cement manufacturing industries. Therefore, this work aims to present the sustainability assessment of cement plants by taking into consideration of environmental, social, and economic impacts. Three cement production plants located in Western Indonesian are used as case studies where social impact and environmental impact are evaluated via life cycle assessment (LCA) model. This model is integrated with analytic hierarchy process (AHP), a multi-criteria decision analysis tool in selecting the most sustainable cement manufacturing plant.
    Matched MeSH terms: Manufacturing Industry
  13. Prasetyo YT, Garcia MM, Dewi RS, Chuenyindee T, Kurata YB, Widia M
    Work, 2022;73(4):1307-1324.
    PMID: 36057804 DOI: 10.3233/WOR-210662
    BACKGROUND: The manufacturing industry is one of the catalysts for the Philippines. However, this sector is one of the most dangerous industries in the Philippines considering the frequency of occupational injuries.

    OBJECTIVE: To determine the primary and root causes of recorded accidents, demographics of the person involved, and solutions to prevent the recurrence of certain accidents.

    METHODS: This study analyzed 185 occupational injury cases in a food and beverage manufacturing company in the Philippines from January to December 2018. A comprehensive classification system was established to examine and code each case in terms of age, gender, working shift, employee type, tenure, department, category, activity during the accident, root cause of injury, injury classification, direct cause of injury, type of injury, part of body injured, agent of injury, and location of the accident. Cramer's V analysis and Phi coefficient analyses were employed on the subject cases to determine the significant factors and the corresponding extent of significance.

    RESULTS: The results showed that the majority of the occupational injuries were caused by stepping on, striking against, or stuck by objects (77 cases, 41.6%), caught in between (34 cases, 18.4%), fall (34 cases, 18.4%), and exposure or contact with extreme temperatures (24 cases, 13%). Interestingly, female workers who had accidents were more likely due to inadequate hazard information or lack of procedures whereas male workers were more likely due to failure to secure. The prevention measures such as passive safeguards and personal protective equipment, pictograms, and regular safety audits were derived from the results of these analyses.

    CONCLUSIONS: This study is the first comprehensive analysis of occupational injuries in the food and beverage industry in the Philippines. The findings can be applied to positively influence the effectiveness of prevention and rehabilitation programs mitigating workplace injuries and illnesses.

    Matched MeSH terms: Manufacturing Industry
  14. Othman R, Abd Rasib AA, Ilias MA, Murthy S, Ismail N, Mohd Hanafi N
    Data Brief, 2019 Jun;24:103824.
    PMID: 30984808 DOI: 10.1016/j.dib.2019.103824
    Eucheuma denticulatum or commonly known as "Spinosum", is an economically important red alga that naturally grows on coral reefs with moderately strong currents in tropical and sub-tropical areas. This species is the primary source of iota-carrageenan which has high demands in the food, pharmaceutical and manufacturing industries, and as such it has been widely cultivated. The increasing global demand for carrageenan has led to extensive commercial cultivation of carrageenophytes mainly in the tropics. The carrageenophyte seaweeds including E. denticulatum are indigenous to Sabah, Malaysia. To enrich the information on the genes involved in carrageenan biosynthesis, RNA sequencing has been performed and transcriptomic dataset has been generated using Illumina HiSeq™ 2000 sequencer. The raw data and transcriptomic data have been deposited in NCBI database with the accession number PRJNA477734. These data will provide valuable resources for functional genomics annotation and investigation of mechanisms underlying the regulations of genes in this algal species.
    Matched MeSH terms: Manufacturing Industry
  15. Oo, Z., Sujan, D., Rong Kimberly, F. P
    MyJurnal
    Aluminium titanate (AT) (Al2TiO5) is a promising engineering material because of its low thermal expansion coefficient, excellent thermal shock resistance, good refractoriness and non-wetting with most metals. Functionally graded material (FGM) is generally a particulate composite with continuously varying volume fractions. FGMs are alternative materials for dental implants, building materials and ballistic protection. It has been of great interest to future engines, internal combustion engines, metal cutting and other high temperature engineering application. There has been a demand for an adequate disc brake that requires less maintenance in the automotive manufacturing industry. FGM, the next evolution of layered structure, consists of graded compositions that are dispersed across the ceramic which produces a gradual improvement in the properties across the ceramic at a steady pace.
    Matched MeSH terms: Manufacturing Industry
  16. Omar, Naja Nadiera, Iskandar Shahrim Mustafa, Nurhayati Abdullah, Rokiah Hashim
    MyJurnal
    Phenol Formaldehyde (PF) resin has been extensively used in the manufacturing industry as a binding agent, especially in the production of wood-based panels because of its ability to provide good moisture resistance, exterior strength and durability as well as excellent temperature stability. However, due to the use of limited petroleum-based phenol in its formulation, there is a strong interest in exploring renewable biomass material to partially substitute the petroleum-based phenol. In this study, the slow pyrolysis of biomass decomposition process was used to convert two types of biomass, namely, oil palm frond and Rhizophora hardwood, into bio-oil. The phenol-rich fraction of the bio-oil was separated and added into the formulation of PF resin to produce an environmentally-friendly type of PF resin, known as bio-oilphenol-formaldehyde (BPF) resin. This BPF resin was observed to have comparable viscosity, better alkalinity, improved non-volatile content and faster curing temperature than conventional PF resin. Moreover, the particleboard bonded with this BPF resin was observed to have just as excellent bonding strength as the one bonded using conventional PF resin. However, the BPF resin exhibited an increased level of free formaldehyde and less thermal stability than the conventional PF resin, probably due to the addition of the less reactive bio-oil.
    Matched MeSH terms: Manufacturing Industry
  17. Nuruzzakiyah Mohd Ishanuddin, Ezrin Hani Sukadarin, Hanida Abdul Aziz, Junaidah Zakaria
    MyJurnal
    To investigate the safety climate and knowledge, attitude and practice (KAP) on occupational safety and health (OSH)in the manufacturing industry, also to determine the association between safety climate factors and KAP of safety among manufacturing worker. A cross-sectional study was conducted among 59 respondents from two manufacturing plants located in Gebeng, Kuantan, Pahang. Most of the respondents were Malay (91.5%) and male (96.6%). Participants were administered a set of questionnaires (Cronbach alpha=0.674) that measured the safety climate as perceived by the workers towards their supervisor and KAP of the workers regarding safety-related matters at the workplace. Self-administered questionnaires consisted of 5 points Likert scale used to measure each of the items of safety climate and KAP. The scales for safety climate and KAP were probed using 16 items and 17 items in the questionnaires, respectively. The results were analysed using a non-parametric test, which is Spearman’s rho correlations and descriptive statistics. Bivariate analysis was performed. There was a moderate positive correlation between safety climate and KAP domains (Spearman’s rho: 0.581, p
    Matched MeSH terms: Manufacturing Industry
  18. Nurul Nadiah Abdul Halim, S. Sarifah Radiah Shariff, Siti Meriam Zahari
    MATEMATIKA, 2020;36(2):113-126.
    MyJurnal
    Preventive maintenance (PM) planning becomes a crucial issue in the real world of the manufacturing process. It is important in the manufacturing industry to maintain the optimum level of production and minimize its investments. Thus, this paper focuses on multiple jobs with a single production line by considering stochastic machine breakdown time. The aim of this paper is to propose a good integration of production and PM schedule that will minimize total completion time. In this study, a hybrid method, which is a genetic algorithm (GA), is used with the Monte Carlo simulation (MCS) technique to deal with the uncertain behavior of machine breakdown time. A deterministic model is adopted and tested under different levels of complexity. Its performance is evaluated based on the value of average completion time. The result clearly shows that the proposed integrated production with PM schedule can reduce the average completion time by 11.68% compared to the production scheduling with machine breakdown time.
    Matched MeSH terms: Manufacturing Industry
  19. Nurcahyo R, Zulfadlillah, Habiburrahman M
    Heliyon, 2021 Jan;7(1):e05537.
    PMID: 33506119 DOI: 10.1016/j.heliyon.2020.e05537
    Previous research has emphasized the need to further investigate the impact of ISO 9001 on company performance in the manufacturing sector of developing countries. Indonesia is one of those developing countries where the implementation of ISO 9001 is yet to be adequately researched. The Indonesian automotive manufacturing industry is still unable to compete with Malaysia and Thailand even though many companies have implemented ISO 9001. This study aimed to examine the relationship between ISO 9001 and operational (productivity, customer satisfaction, and product quality) and business (sales growth, profit rate, and market share) performance of Indonesian automotive component manufacturing industries. It also aimed to identify major obstacles in the effective implementation of ISO 9001. Multiple linear regression analyses about operational and business performance were employed for this purpose. The sample size comprised 50 automotive component manufacturing industries located in the Jakarta, Bogor, Tangerang, and Bekasi region of Indonesia. The study demonstrates that the implementation of the ISO 9001:2015 quality management system has a significant positive impact on the operational performance as well as the business performance. Additionally, the operational performance has a significant positive impact on the business performance. This study also reveals the major obstacles in the effective implementation of ISO 9001 in the manufacturing industry, which include a lack of qualified personnel, inadequate training, employee resistance, and lack of commitment among top-level management executives. It offers clear implications for managers who focus on elements that will enhance the effectiveness of ISO 9001 implementation by choosing the correct strategies, allocating sufficient resources, and improving their firm's performance. The novelty of this study lies in filling the existing research gap, which involves a detailed examination of the relationship between the implementation of ISO 9001 and the company's performance, particularly in manufacturing industries of developing countries.
    Matched MeSH terms: Manufacturing Industry
  20. Nguyen HT, Dawal SZ, Nukman Y, Rifai AP, Aoyama H
    PLoS One, 2016;11(4):e0153222.
    PMID: 27070543 DOI: 10.1371/journal.pone.0153222
    The conveyor system plays a vital role in improving the performance of flexible manufacturing cells (FMCs). The conveyor selection problem involves the evaluation of a set of potential alternatives based on qualitative and quantitative criteria. This paper presents an integrated multi-criteria decision making (MCDM) model of a fuzzy AHP (analytic hierarchy process) and fuzzy ARAS (additive ratio assessment) for conveyor evaluation and selection. In this model, linguistic terms represented as triangular fuzzy numbers are used to quantify experts' uncertain assessments of alternatives with respect to the criteria. The fuzzy set is then integrated into the AHP to determine the weights of the criteria. Finally, a fuzzy ARAS is used to calculate the weights of the alternatives. To demonstrate the effectiveness of the proposed model, a case study is performed of a practical example, and the results obtained demonstrate practical potential for the implementation of FMCs.
    Matched MeSH terms: Manufacturing Industry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links