Displaying publications 1 - 20 of 39 in total

Abstract:
Sort:
  1. Zulfadhly Z, Mashitah MD, Bhatia S
    Environ Pollut, 2001;112(3):463-70.
    PMID: 11291452
    The ability of Pycnoporus sanguineus to adsorb heavy metals from aqueous solution was investigated in fixed-bed column studies. The experiments were conducted to study the effect of important design parameters such as column bed height, flow rate and initial concentration of solution. The breakthrough profiles were obtained in these studies. A mathematical model based on external mass transfer and pore diffusion was used for the prediction of mass transfer coefficient and effective diffusivity of metals in macro-fungi bed. Experimental breakthrough profiles were compared with the simulated breakthrough profiles obtained from the mathematical model. Bed Depth Service Time (BDST) model was used to analyse the experimental data and evaluated the performance of biosorption column. The BDST model parameters needed for the design of biosorption columns were evaluated for lead, copper and cadmium removal in the column. The columns were regenerated by eluting the metal ions using 0.1 M hydrochloric acid solution after the adsorption studies. The columns were subjected to repeated cycles of adsorption of same metal ions and desorption to evaluate the removal efficiency after adsorption-desorption.
    Matched MeSH terms: Metals, Heavy/chemistry
  2. Zain SM, Basri H, Suja F, Jaafar O
    Water Sci Technol, 2002;46(9):303-8.
    PMID: 12448482
    Some of the major concerns when applying sewage sludge to land include the potential effect on pH and cation exchange capacity; the mobility and the accumulation of heavy metals in sludge treated soil; the potential of applying too much nutrients and the problems associated with odors and insects. The main objective of this study is to identify the effects of sewage sludge application on the physical and chemical properties of sludge treated soil. Sewage sludge was applied to soil at various rates ranging from 0 L/m2 to 341 L/m2. In order to simulate the natural environment, the study was carried out at a pilot treatment site (5.2 m x 6.7 m) in an open area, covered with transparent roofing material to allow natural sunlight to pass through. Simulated rain was applied by means of a sprinkler system. Data obtained from sludge treated soil showed that the pH values decreased when the application rates were increased and the application period prolonged. The effect of sewage sludge on cation exchange capacity was not so clear; the values obtained for every application rate of sewage sludge did not indicate any consistent behaviour. The mobility of heavy metals in soils treated with sludge were described by observing the changes in the concentration of the heavy metals. The study showed that Cd has the highest mobility in sludge treated soil followed by Cu, Cr, Zn, Ni and Pb.
    Matched MeSH terms: Metals, Heavy/chemistry
  3. Wan Ngah WS, Hanafiah MA
    Bioresour Technol, 2008 Jul;99(10):3935-48.
    PMID: 17681755
    The application of low-cost adsorbents obtained from plant wastes as a replacement for costly conventional methods of removing heavy metal ions from wastewater has been reviewed. It is well known that cellulosic waste materials can be obtained and employed as cheap adsorbents and their performance to remove heavy metal ions can be affected upon chemical treatment. In general, chemically modified plant wastes exhibit higher adsorption capacities than unmodified forms. Numerous chemicals have been used for modifications which include mineral and organic acids, bases, oxidizing agent, organic compounds, etc. In this review, an extensive list of plant wastes as adsorbents including rice husks, spent grain, sawdust, sugarcane bagasse, fruit wastes, weeds and others has been compiled. Some of the treated adsorbents show good adsorption capacities for Cd, Cu, Pb, Zn and Ni.
    Matched MeSH terms: Metals, Heavy/chemistry*
  4. Udechukwu BE, Ismail A, Zulkifli SZ, Omar H
    Environ Sci Pollut Res Int, 2015 Mar;22(6):4242-55.
    PMID: 25292304 DOI: 10.1007/s11356-014-3663-4
    Sungai Puloh mangrove estuary supports a large diversity of macrobenthic organisms and provides social benefits to the local community. Recently, it became a major recipient of heavy metals originating from industries in the hinterland as a result of industrialization and urbanization. This study was conducted to evaluate mobility and pollution status of heavy metals (Cd, Cu, Ni, Pb, Zn, and Fe) in intertidal surface sediments of this area. Surface sediment samples were collected based on four different anthropogenic sources. Metals concentrations were analyzed using an atomic absorption spectrophotometer (AAS). Results revealed that the mean concentrations were Zn (1023.68 ± 762.93 μg/g), Pb (78.8 ± 49.61 μg/g), Cu (46.89 ± 43.79 μg/g), Ni (35.54 ± 10.75 μg/g), Cd (0.94 ± 0.29 μg/g), and Fe (7.14 ± 0.94%). Most of the mean values of analyzed metals were below both the interim sediment quality guidelines (ISQG-low and ISQG-high), except for Pb concentration (above ISQG-low) and Zn concentration (above ISQG-high), thus suggesting that Pb and Zn may pose some environmental concern. Cadmium, Pb, and Zn concentrations were above the threshold effect level (TEL), indicating seldom adverse effect of these metals on macrobenthic organisms. Pollution load index (PLI) indicated deterioration and other indices revealed the intertidal surface sediment is moderately polluted with Cd, Pb, and Zn. Therefore, this mangrove area requires urgent attention to mitigate further contamination. Finally, this study will contribute to data sources for Malaysia in establishing her own ISQG since it is a baseline study with detailed contamination assessment indices for surface sediment of intertidal mangrove area.
    Matched MeSH terms: Metals, Heavy/chemistry*
  5. Siyal AA, Shamsuddin MR, Khan MI, Rabat NE, Zulfiqar M, Man Z, et al.
    J Environ Manage, 2018 Oct 15;224:327-339.
    PMID: 30056352 DOI: 10.1016/j.jenvman.2018.07.046
    The world water resources are contaminated due to discharge of a large number of pollutants from industrial and domestic sources. A variety of a single and multiple units of physical, chemical, and biological processes are employed for pollutants removal from wastewater. Adsorption is the most widely utilized process due to high efficiency, simple procedure and cost effectiveness. This paper reviews the research work carried out on the use of geopolymer materials for the adsorption of heavy metals and dyes. Geopolymers possess good surface properties, heterogeneous microstructure and amorphous structure. The performance of geopolymers in the removal of heavy metals and dyes is reported comparable to other materials. The pseudo-second order kinetics and Langmuir isotherm models mostly fit to the adsorption data suggesting homogeneous distribution of adsorption sites with the formation of monolayer adsorbate on the surface of geopolymers. Adsorption of heavy metals and dyes onto geopolymers is spontaneous, endothermic and entropy driven process. Future research should focus on the enhancement of geopolymer performance, testing on pollutants other than heavy metals and dyes, and verification on real wastewater in continuous operation.
    Matched MeSH terms: Metals, Heavy/chemistry
  6. Shukor MY, Baharom NA, Masdor NA, Abdullah MP, Shamaan NA, Jamal JA, et al.
    J Environ Biol, 2009 Jan;30(1):17-22.
    PMID: 20112858
    A new inhibitive heavy metals determination method using trypsin has been developed. The enzyme was assayed using the casein-Coomassie-dye-binding method. In the absence of inhibitors, casein was hydrolysed to completion and the Coomassie-dye was unable to stain the protein and the solution became brown. In the presence of metals, the hydrolysis of casein was inhibited and the solution remained blue. The bioassay was able to detect zinc and mercury with IC50 (concentration causing 50% inhibition) values of 5.78 and 16.38 mg l(-1) respectively. The limits of detection (LOD), for zinc and mercury were 0.06 mg l(-1) (0.05-0.07, 95% confidence interval) and 1.06 mg l(-1) (1.017-1.102, 95% confidence interval), respectively. The limits of quantitation (LOQ) for zinc and mercury were 0.61 mg l(-1) (0.51-0.74 at a 95% confidence interval) and 1.35 mg l(-1) (1.29-1.40 at a 95% confidence interval), respectively. The IC50 value for zinc was much higher than the IC50 values for papain and Rainbow trout, but was within the range of Daphnia magna and Microtox. The IC50 value for zinc was only lower than those for immobilized urease. Other toxic heavy metals, such as lead, silver arsenic, copper and cadmium, did not inhibit the enzyme at 20 mg l(-1). Using this assay we managed to detect elevated zinc concentrations in several environmental samples. Pesticides, such as carbaryl, flucythrinate, metolachlor glyphosate, diuron, diazinon, endosulfan sulphate, atrazine, coumaphos, imidacloprid, dicamba and paraquat, showed no effect on the activity of trypsin relative to control (One-way ANOVA, F(12,26)= 0.3527, p> 0.05). Of the 17 xenobiotics tested, only (sodium dodecyl sulphate) SDS gave positive interference with 150% activity higher than that of the control at 0.25% (v/v).
    Matched MeSH terms: Metals, Heavy/chemistry
  7. Shiekh RA, Malik MA, Al-Thabaiti SA, Wani MY, Nabi A
    ScientificWorldJournal, 2014;2014:404617.
    PMID: 24772018 DOI: 10.1155/2014/404617
    2-Phenyl-N,N'-bis(pyridin-4-ylcarbonyl)butanediamide ligand with a series of transition metal complexes has been synthesized via two routes: microwave irradiation and conventional heating method. Microwave irritation method happened to be the efficient and versatile route for the synthesis of these metal complexes. These complexes were found to have the general composition M(L)Cl2/M(L)(CH3COO)2 (where M = Cu(II), Co(II), Ni(II), and L = ligand). Different physical and spectroscopic techniques were used to investigate the structural features of the synthesized compounds, which supported an octahedral geometry for these complexes. In vitro antifungal activity of the ligand and its metal complexes revealed that the metal complexes are highly active compared to the standard drug. Metal complexes showed enhanced activity compared to the ligand, which is an important step towards the designing of antifungal drug candidates.
    Matched MeSH terms: Metals, Heavy/chemistry*
  8. Sherlala AIA, Raman AAA, Bello MM, Asghar A
    Chemosphere, 2018 Feb;193:1004-1017.
    PMID: 29874727 DOI: 10.1016/j.chemosphere.2017.11.093
    Graphene-based adsorbents have attracted wide interests as effective adsorbents for heavy metals removal from the environment. Due to their excellent electrical, mechanical, optical and transport properties, graphene and its derivatives such as graphene oxide (GO) have found various applications. However, in many applications, surface modification is necessary as pristine graphene/GO may be ineffective in some specific applications such as adsorption of heavy metal ions. Consequently, the modification of graphene/GO using various metals and non-metals is an ongoing research effort in the carbon-material realm. The use of organic materials represents an economical and environmentally friendly approach in modifying GO for environmental applications such as heavy metal adsorption. This review discusses the applications of organo-functionalized GO composites for the adsorption of heavy metals. The aspects reviewed include the commonly used organic materials for modifying GO, the performance of the modified composites in heavy metals adsorption, effects of operational parameters, adsorption mechanisms and kinetic, as well as the stability of the adsorbents. Despite the significant research efforts on GO modification, many aspects such as the interaction between the functional groups and the heavy metal ions, and the quantitative effect of the functional groups are yet to be fully understood. The review, therefore, offers some perspectives on the future research needs.
    Matched MeSH terms: Metals, Heavy/chemistry*
  9. Salmiaton A, Garforth AA
    Waste Manag, 2011 Jun;31(6):1139-45.
    PMID: 21324661 DOI: 10.1016/j.wasman.2011.01.025
    Waste plastics contain a substantial number of valuable chemicals. The wastes from post-consumer as well as from industrial production can be recycled to valuable chemical feedstock, which can be used in refineries and/or petrochemical industries. This chemical recycling process is an ideal approach in recycling the waste for a better environment. Polymer cracking using a laboratory fluidized bed reactor concentrated on the used highly contaminated catalyst, E-Cat 2. Even though E-Cat 2 had low activity due to fewer acid sites, the products yielded were similar with amorphous ASA and were far better than thermal cracking. The high levels of heavy metals, namely nickel and vanadium, deposited during their lifetime as an FCC catalyst, did not greatly affect on the catalyst activity. It was also shown that E-Cat 2 could be used with and without regeneration. Although there was more deactivation when there was no regeneration step, the yield of gases (C(2)-C(7)) remained fairly constant. For the first time, these results indicate that "waste" FCC catalyst (E-Cat) is a good candidate for future feedstock recycling of polymer waste. The major benefits of using E-Cat are a low market price, the ability to tolerate reuse and regeneration capacity.
    Matched MeSH terms: Metals, Heavy/chemistry
  10. Rudramurthy GR, Swamy MK
    J Biol Inorg Chem, 2018 Dec;23(8):1185-1204.
    PMID: 30097748 DOI: 10.1007/s00775-018-1600-6
    Nanotechnology advancements have led to the development of its allied fields, such as nanoparticle synthesis and their applications in the field of biomedicine. Nanotechnology driven innovations have given a hope to the patients as well as physicians in solving the complex medical problems. Nanoparticles with a size ranging from 0.2 to 100 nm are associated with an increased surface to volume ratio. Moreover, the physico-chemical and biological properties of nanoparticles can be modified depending on the applications. Different nanoparticles have been documented with a wide range of applications in various fields of medicine and biology including cancer therapy, drug delivery, tissue engineering, regenerative medicine, biomolecules detection, and also as antimicrobial agents. However, the development of stable and effective nanoparticles requires a profound knowledge on both physico-chemical features of nanomaterials and their intended applications. Further, the health risks associated with the use of engineered nanoparticles needs a serious attention.
    Matched MeSH terms: Metals, Heavy/chemistry
  11. Ramdzan NSM, Fen YW, Anas NAA, Omar NAS, Saleviter S
    Molecules, 2020 May 30;25(11).
    PMID: 32486124 DOI: 10.3390/molecules25112548
    Great efforts have been devoted to the invention of environmental sensors as the amount of water pollution has increased in recent decades. Chitosan, cellulose and nanocrystalline cellulose are examples of biopolymers that have been intensively studied due to their potential applications, particularly as sensors. Furthermore, the rapid use of conducting polymer materials as a sensing layer in environmental monitoring has also been developed. Thus, the incorporation of biopolymer and conducting polymer materials with various methods has shown promising potential with sensitively and selectively toward heavy metal ions. In this feature paper, selected recent and updated investigations are reviewed on biopolymer and conducting polymer-based materials in sensors aimed at the detection of heavy metal ions by optical methods. This review intends to provide sufficient evidence of the potential of polymer-based materials as sensing layers, and future outlooks are considered in developing surface plasmon resonance as an excellent and valid sensor for heavy metal ion detection.
    Matched MeSH terms: Metals, Heavy/chemistry*
  12. Rahman MS, Sathasivam KV
    Biomed Res Int, 2015;2015:126298.
    PMID: 26295032 DOI: 10.1155/2015/126298
    Biosorption process is a promising technology for the removal of heavy metals from industrial wastes and effluents using low-cost and effective biosorbents. In the present study, adsorption of Pb(2+), Cu(2+), Fe(2+), and Zn(2+) onto dried biomass of red seaweed Kappaphycus sp. was investigated as a function of pH, contact time, initial metal ion concentration, and temperature. The experimental data were evaluated by four isotherm models (Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich) and four kinetic models (pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion models). The adsorption process was feasible, spontaneous, and endothermic in nature. Functional groups in the biomass involved in metal adsorption process were revealed as carboxylic and sulfonic acids and sulfonate by Fourier transform infrared analysis. A total of nine error functions were applied to validate the models. We strongly suggest the analysis of error functions for validating adsorption isotherm and kinetic models using linear methods. The present work shows that the red seaweed Kappaphycus sp. can be used as a potentially low-cost biosorbent for the removal of heavy metal ions from aqueous solutions. Further study is warranted to evaluate its feasibility for the removal of heavy metals from the real environment.
    Matched MeSH terms: Metals, Heavy/chemistry*
  13. Rafatullah M, Sulaiman O, Hashim R, Ahmad A
    J Hazard Mater, 2009 Oct 30;170(2-3):969-77.
    PMID: 19520510 DOI: 10.1016/j.jhazmat.2009.05.066
    The present study proposed the use of meranti sawdust in the removal of Cu(II), Cr(III), Ni(II) and Pb(II) ions from synthetic aqueous solutions. Batch adsorption studies showed that meranti sawdust was able to adsorb Cu(II), Cr(III), Ni(II) and Pb(II) ions from aqueous solutions in the concentration range 1-200mg/L. The adsorption was favoured with maximum adsorption at pH 6, whereas the adsorption starts at pH 1 for all metal ions. The effects of contact time, initial concentration of metal ions, adsorbent dosage and temperature have been reported. The applicability of Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) isotherm was tried for the system to completely understand the adsorption isotherm processes. The adsorption kinetics tested with pseudo-first-order and pseudo-second-order models yielded high R(2) values from 0.850 to 0.932 and from 0.991 to 0.999, respectively. The meranti sawdust was found to be cost effective and has good efficiency to remove these toxic metal ions from aqueous solution.
    Matched MeSH terms: Metals, Heavy/chemistry*
  14. Qamar Z, Haji Abdul Rahim ZB, Chew HP, Fatima T
    J Pak Med Assoc, 2017 Jan;67(1):116-120.
    PMID: 28065967
    Dental enamel, an avascular, irreparable, outermost and protective layer of the human clinical crown has a potential to withstand the physico-chemical effects and forces. These properties are being regulated by a unique association among elements occurring in the crystallites setup of human dental enamel. Calcium and phosphate are the major components (hydroxyapatite) in addition to some trace elements which have a profound effect on enamel. The current review was planned to determine the aptitude of various trace elements to substitute and their influence on human dental enamel in terms of physical and chemical properties.
    Matched MeSH terms: Metals, Heavy/chemistry
  15. Othman R, Hasni SI, Baharuddin ZM
    J Environ Biol, 2016 09;37(5 Spec No):1181-1185.
    PMID: 29989751
    Degradation or decline of soil quality that cause shallow slope failure may occur due to physical or chemical processes. It can be triggered off by natural phenomena, or induced by human activity through misuse of land resources, excessive development and urbanization leading to deforestation and erosion of covered soil masses causing serious threat to slopes. The extent of damage of the slopes can be minimized if a long-term early warning system is predicted in the landslide prone areas. The aim of the study was to characterize chemical properties of stable and unstable slope along selected highways of Malaysia which can be manipulated as indicator to forecast shallow slope failure. The elements in soil chemical properties contributed to each other as binding agents that affected the existing soil structure. It could make the soil structure strong or weak. Indicators that can be used to predict shallow slope failure were low content in iron, lead, aluminum, chromium, zinc, low content of organic carbon and CEC.
    Matched MeSH terms: Metals, Heavy/chemistry*
  16. Ong SA, Lim PE, Seng CE
    Ann Chim, 2004 Jan-Feb;94(1-2):85-92.
    PMID: 15141467
    The sorption of Cu(II) and Cd(II) from synthetic solution by powdered activated carbon (PAC), biomass, rice husk (RH) and activated rice husk (ARH) were investigate under batch conditions. After activated by concentrated nitric acid for 15 hours at 60-65 degrees C, the adsorption capacity for RH was increased. The adsorbents arranged in the increasing order of adsorption capacities to the Langmuir Q degree parameter were biomass > PAC > ARH > RH. The addition of adsorbents in base mix solution had increased the specific oxygen uptake rate (SOUR) activated sludge microorganisms with and without the presence of metals. The increased of SOUR were due to the ability of PAC and RH in reducing the inhibitory effect of metals on microorganisms and provide a reaction site between activated sludge microorganisms and substrates.
    Matched MeSH terms: Metals, Heavy/chemistry
  17. Omar NA, Praveena SM, Aris AZ, Hashim Z
    Food Chem, 2015 Dec 1;188:46-50.
    PMID: 26041162 DOI: 10.1016/j.foodchem.2015.04.087
    Little is known about the bioavailability of heavy metal contamination and its health risks after rice ingestion. This study aimed to determine bioavailability of heavy metal (As, Cd, Cu, Cr, Co, Al, Fe, Zn and Pb) concentrations in cooked rice and human Health Risk Assessment (HRA). The results found Zn was the highest (4.3±0.1 mg/kg), whereas As showed the lowest (0.015±0.001 mg/kg) bioavailability of heavy metal concentration in 22 varieties of cooked rice. For single heavy metal exposure, no potential of non carcinogenic health risks was found, while carcinogenic health risks were found only for As. Combined heavy metal exposures found that total Hazard Quotient (HQtotal) values for adult were higher than the acceptable range (HQTotal<1), whereas total Lifetime Cancer Risk (LCRTotal) values were higher than the acceptable range (LCRTotal values >1×10(-4)) for both adult and children. This study is done to understand that the inclusion of bioavailability heavy metal into HRA produces a more realistic estimation of human heavy metal exposure.
    Matched MeSH terms: Metals, Heavy/chemistry*
  18. Nemati K, Abu Bakar NK, Abas MR, Sobhanzadeh E
    J Hazard Mater, 2011 Aug 15;192(1):402-10.
    PMID: 21684080 DOI: 10.1016/j.jhazmat.2011.05.039
    The sequential extraction procedure proposed by the European Standard, Measurements and Testing (SM&T) program, formerly the Community Bureau of Reference (BCR), was applied for partitioning of heavy metals (HMs) in river sediments collected along the course of Sungai Buloh and the Straits of Malacca in Selangor, Malaysia. Eight elements (V, Pb, Cd, Cr, Co, Ni, Cu and Zn) from seven stations (S1-S7) and at different depths were analyzed using the modified BCR Sequential Extraction Procedure (SEP) in combination with ICP-MS to obtain the metal distribution patterns in this region. The results showed that heavy metal contaminations at S2 and S3 was more severe than at other sampling sites, especially for Zn, Cu, Ni and Pb. Nevertheless, the element concentrations from top to bottom layers decreased predominantly. The samples from the Straits of Malacca (S4-S7) the highest contamination factors obtained were for Co, Zn and Pb while the lowest were found for V and Cr, similar to Sungai Buloh sediments. The sediments showed a low risk for V, Cr, Cu and Pb with RAC values of less than 10%, but medium risk for Co, Zn (except S3), Cd at S1 and S2 and Ni at S1, S3 and S5. Zn at S3 and Cd at S3-S7 showed high risk to our sediment samples. There is not any element of very high risk conditions in the selected samples.
    Matched MeSH terms: Metals, Heavy/chemistry
  19. Nemati K, Abu Bakar NK, Abas MR, Sobhanzadeh E, Low KH
    Environ Monit Assess, 2011 May;176(1-4):313-20.
    PMID: 20632089 DOI: 10.1007/s10661-010-1584-3
    A study was carried out to investigate the fractionation of Cd, Cr, Cu, Fe, Mn, Pb, and Zn in shrimp aquaculture sludge from Selangor, Malaysia, using original (unmodified) and modified four-steps BCR (European Community Bureau of Reference, now known as the Standards Measurements and Testing Program) sequential extraction scheme. Step 2 of the unmodified BCR procedure (subsequently called Method A) involves treatment with 0.1 M hydroxylammonium chloride at pH 2, whereas 0.5 M hydroxylammonium chloride at pH 1.5 was used in the modified BCR procedure (subsequently called Method B). Metal analyses were carried out by flame atomic absorption spectrometry. A pseudo-total aqua-regia digest of BCR CRM 701 has also been undertaken for quality assurance purposes. The recovery of Method A for all metals studied ranges from 96.14% to 105.26%, while the recovery for Method B ranges from 95.94% to 122.40%. Our results reveal that Method A underestimated the proportion of metals bound to the easily reducible fraction except for copper. Therefore, the potential mobility of these elements is higher than others. Thus, to use this sludge as a fertilizer we have to first find a remediation for reduction of heavy metal contamination.
    Matched MeSH terms: Metals, Heavy/chemistry
  20. Nasir AM, Goh PS, Abdullah MS, Ng BC, Ismail AF
    Chemosphere, 2019 Oct;232:96-112.
    PMID: 31152909 DOI: 10.1016/j.chemosphere.2019.05.174
    Heavy metal contamination in aqueous system has attracted global attention due to the toxicity and carcinogenicity effects towards living bodies. Among available removal techniques, adsorptive removal by nanosized materials such as metal oxide, metal organic frameworks, zeolite and carbon-based materials has attracted much attention due to the large active surface area, large number of functional groups, high chemical and thermal stability which led to outstanding adsorption performance. However, the usage of nanosized materials is restricted by the difficulty in separating the spent adsorbent from aqueous solution. The shift towards the use of adsorptive composite membrane for heavy metal ions removal has attracted much attention due to the synergistic properties of adsorption and filtration approaches in a same chamber. Thus, this review critically discusses the development of nanoadsorbents and adsorptive nanocomposite membranes for heavy metal removal over the last decade. The adsorption mechanism of heavy metal ions by the advanced nanoadsorbents is also discussed using kinetic and isotherm models. The challenges and future prospect of adsorptive membrane technology for heavy metal removal is presented at the end of this review.
    Matched MeSH terms: Metals, Heavy/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links