Displaying publications 1 - 20 of 192 in total

Abstract:
Sort:
  1. Okuyama E, Homma M, Satoh Y, Fujimoto H, Ishibashi M, Yamazaki M, et al.
    Chem Pharm Bull (Tokyo), 1999 Oct;47(10):1473-6.
    PMID: 10553643
    From the extract of a Malaysian herbal medicine, Lemuni Hitam (Diospyros sp.), which exhibited monoamine oxidase (MAO) inhibition, three new naphthoquinone and/or naphthalene dimers (lemuninols A-C, 1-3) were isolated together with 4,6-dihydroxy-5-methoxy-2-methyl-naphthalene (8) and six known monomers (4-7, 9 and 10). The structures were determined by spectroscopic methods including 2D-NMR techniques. Among them, lemuninol A showed 45% inhibition of MAO (mouse liver) at 5.0 x 10(-6) g/ml, and lemuninols B and C and a naphthoquinone (9) indicated weak activity. Some related quinones were also tested for their MAO inhibitory activities.
    Matched MeSH terms: Models, Chemical
  2. Peh KK, Lim CP, Quek SS, Khoh KH
    Pharm Res, 2000 Nov;17(11):1384-8.
    PMID: 11205731
    PURPOSE: To use artificial neural networks for predicting dissolution profiles of matrix-controlled release theophylline pellet preparation, and to evaluate the network performance by comparing the predicted dissolution profiles with those obtained from physical experiments using similarity factor.

    METHODS: The Multi-Layered Perceptron (MLP) neural network was used to predict the dissolution profiles of theophylline pellets containing different ratios of microcrystalline cellulose (MCC) and glyceryl monostearate (GMS). The concepts of leave-one-out as well as a time-point by time-point estimation basis were used to predict the rate of drug release for each matrix ratio. All the data were used for training, except for one set which was selected to compare with the predicted output. The closeness between the predicted and the reference dissolution profiles was investigated using similarity factor (f2).

    RESULTS: The f2 values were all above 60, indicating that the predicted dissolution profiles were closely similar to the dissolution profiles obtained from physical experiments.

    CONCLUSION: The MLP network could be used as a model for predicting the dissolution profiles of matrix-controlled release theophylline pellet preparation in product development.

    Matched MeSH terms: Models, Chemical*
  3. Tan YT, Peh KK, Al-Hanbali O
    AAPS PharmSciTech, 2000;1(3):E24.
    PMID: 14727910
    This study examined the mechanical (hardness, compressibility, adhesiveness, and cohesiveness) and rheological (zero-rate viscosity and thixotropy) properties of polyethylene glycol (PEG) gels that contain different ratios of Carbopol 934P (CP) and polyvinylpyrrolidone K90 (PVP). Mechanical properties were examined using a texture analyzer (TA-XT2), and rheological properties were examined using a rheometer (Rheomat 115A). In addition, lidocaine release from gels was evaluated using a release apparatus simulating the buccal condition. The results indicated that an increase in CP concentration significantly increased gel compressibility, hardness, and adhesiveness, factors that affect ease of gel removal from container, ease of gel application onto mucosal membrane, and gel bioadhesion. However, CP concentration was negatively correlated with gel cohesiveness, a factor representing structural reformation. In contrast, PVP concentration was negatively correlated with gel hardness and compressibility, but positively correlated with gel cohesiveness. All PEG gels exhibited pseudoplastic flow with thixotropy, indicating a general loss of consistency with increased shearing stress. Drug release T50% was affected by the flow rate of the simulated saliva solution. A reduction in the flow rate caused a slower drug release and hence a higher T50% value. In addition, drug release was significantly reduced as the concentrations of CP and PVP increased because of the increase in zero-rate viscosity of the gels. Response surfaces and contour plots of the dependent variables further substantiated that various combinations of CP and PVP in the PEG gels offered a wide range of mechanical, rheological, and drug-release characteristics. A combination of CP and PVP with complementary physical properties resulted in a prolonged buccal drug delivery.
    Matched MeSH terms: Models, Chemical
  4. Lim TA, Inbasegaran K
    Br J Anaesth, 2001 Mar;86(3):422-4.
    PMID: 11573534
    We derived the predicted effect compartment concentration of thiopental, at loss of the eyelash reflex, following three different injection regimens. Sixty patients were given thiopental for induction of anaesthesia. Twenty patients received multiple small boluses, 20 patients received a single bolus and 20 patients received an infusion. Computer simulation was then used to derive the effect compartment concentration. The median concentration was not significantly different between the three groups. EC50, derived after combining all three groups was 11.3 microg ml(-1). The EC05-EC95 range was 6.9-18.3 microg ml(-1), suggesting wide inter-individual variation.
    Matched MeSH terms: Models, Chemical
  5. Zulfadhly Z, Mashitah MD, Bhatia S
    Environ Pollut, 2001;112(3):463-70.
    PMID: 11291452
    The ability of Pycnoporus sanguineus to adsorb heavy metals from aqueous solution was investigated in fixed-bed column studies. The experiments were conducted to study the effect of important design parameters such as column bed height, flow rate and initial concentration of solution. The breakthrough profiles were obtained in these studies. A mathematical model based on external mass transfer and pore diffusion was used for the prediction of mass transfer coefficient and effective diffusivity of metals in macro-fungi bed. Experimental breakthrough profiles were compared with the simulated breakthrough profiles obtained from the mathematical model. Bed Depth Service Time (BDST) model was used to analyse the experimental data and evaluated the performance of biosorption column. The BDST model parameters needed for the design of biosorption columns were evaluated for lead, copper and cadmium removal in the column. The columns were regenerated by eluting the metal ions using 0.1 M hydrochloric acid solution after the adsorption studies. The columns were subjected to repeated cycles of adsorption of same metal ions and desorption to evaluate the removal efficiency after adsorption-desorption.
    Matched MeSH terms: Models, Chemical*
  6. Lim TA
    Br J Anaesth, 2003 Nov;91(5):730-2.
    PMID: 14570797
    BACKGROUND: Calculation of the effect compartment concentration (Ce) in non-steady-state conditions requires the equilibrium rate constant, keo. Most studies of propofol derive the keo using EEG measurements. This study investigated an alternative method. Starting from a predicted concentration-time profile, a keo value was included so that the predicted Ce at a specific pharmacodynamic end-point was the same when using three different methods of injection.

    METHODS: Seventy-five patients were given propofol for induction of anaesthesia. Twenty-five patients received a single bolus, 25 patients received an infusion, and 25 patients received a bolus followed by an infusion. Computer simulation was used to derive the central compartment concentration. The keo that brought about the same value for Ce at loss of the eyelash reflex using the three methods of injection was derived.

    RESULTS: Keo was found to be 0.80 min(-1). Mean (SD) Ce at loss of the eyelash reflex was 2.27 (0.69) microg ml(-1).

    CONCLUSIONS: The effect compartment equilibrium rate constant and concentration at loss of the eyelash reflex can be derived without the use of electronic central nervous system monitors.

    Matched MeSH terms: Models, Chemical
  7. Awang R, Basri M, Ahmad S, Salleh AB
    Biotechnol Lett, 2004 Jan;26(1):11-4.
    PMID: 15005144
    The esterification of palm-based 9,10-dihydroxystearic acid (DHSA) and 1-octanol in hexane as catalyzed by lipase from Rhizomucor meihei (Lipozyme IM) followed Michaelis-Menten kinetics. The esterification reaction follows a Ping-Pong, Bi-Bi mechanism. The maximum rate was estimated to be 1 micromol min(-1) mg(-1) catalyst in hexane at 50 degrees C, and the Michaelis-Menten constants for DHSA and 1-octanol were 1.3 M and 0.7 M, respectively.
    Matched MeSH terms: Models, Chemical*
  8. Ahmad R, Shaari K, Lajis NH, Hamzah AS, Ismail NH, Kitajima M
    Phytochemistry, 2005 May;66(10):1141-7.
    PMID: 15924918
    Four new furanoanthraquinones, 2-hydroxymethyl-3,4-[2'-(1-hydroxy-1-methylethyl)-dihydrofurano]-8-hydroxyanthraquinone, 2-hydroxymethyl-3,4-[1'-hydroxy-2'-(1-hydroxy-1-methylethyl)-dihydrofurano]-8-hydroxyanthraquinone, 2-hydroxymethyl-3,4-[2'-1-hydroxy-1-methylethyl)-dihydrofurano]anthraquinone and 2-methyl-3,4-[2'-(1-hydroxy-1-methylethyl)-dihydrofurano] anthraquinone or capitellataquinone A-D and four known anthraquinones, rubiadin, anthragallol 2-methyl ether, alizarin 1-methyl ether and digiferruginol, together with scopoletin were isolated from the stems of Hedyotis capitellata Wall (Rubiaceae). Lucidin-3-O-beta-glucoside was isolated from the roots of the plant. Characterization of the new compounds was carried out by extensive NMR studies using FGCOSY, FGHMQC, FGHMBC and DEPT-135 in addition to other spectroscopic methods.
    Matched MeSH terms: Models, Chemical
  9. Abdul-Talib S, Ujang Z, Vollertsen J, Hvitved-Jacobsen T
    Water Sci Technol, 2005;52(3):181-9.
    PMID: 16206858
    A two-stage anoxic transformation process, involving growth of biomass utilizing two types of different electron acceptors, namely nitrate and nitrite, has been observed. The present water quality modules established for sewer processes cannot account for the two-stage process. This paper outlines the development of a model concept that enables the two-stage anoxic transformation process to be simulated. The proposed model is formulated in a matrix form that is similar to the Activated Sludge Models and Sewer Process Model matrices. The model was successfully applied to simulate changes in nitrate and nitrite concentrations during anoxic transformations in the bulkwater phase of municipal wastewater.
    Matched MeSH terms: Models, Chemical
  10. Al-Zuhair S
    Biotechnol Prog, 2005 Sep-Oct;21(5):1442-8.
    PMID: 16209548
    Kinetics of production of biodiesel by enzymatic methanolysis of vegetable oils using lipase has been investigated. A mathematical model taking into account the mechanism of the methanolysis reaction starting from the vegetable oil as substrate, rather than the free fatty acids, has been developed. The kinetic parameters were estimated by fitting the experimental data of the enzymatic reaction of sunflower oil by two types of lipases, namely, Rhizomucor miehei lipase (RM) immobilized on ion-exchange resins and Thermomyces lanuginosa lipase (TL) immobilized on silica gel. There was a good agreement between the experimental results of the initial rate of reaction and those predicted by the proposed model equations, for both enzymes. From the proposed model equations, the regions where the effect of alcohol inhibition fades, at different substrate concentrations, were identified. The proposed model equation can be used to predict the rate of methanolysis of vegetable oils in a batch or a continuous reactor and to determine the optimal conditions for biodiesel production.
    Matched MeSH terms: Models, Chemical*
  11. Zulkali MM, Ahmad AL, Norulakmal NH
    Bioresour Technol, 2006 Jan;97(1):21-5.
    PMID: 15963716
    The effects of initial concentration of lead, temperature, biomass loading and pH were investigated for an optimized condition of lead uptake from the aqueous solution. The optimization process was analyzed using Central Composite Face-Centered Experimental Design in Response Surface Methodology (RSM) by Design Expert Version 5.0.7 (StatEase, USA). The design was employed to derive a statistical model for the effect of parameters studied on the removal of lead ion from aqueous solution. The coefficient of determination, R2 was found to be 92.36%. The initial concentration of 50.0 mg/L, temperature of 60 degrees C, biomass loading of 0.2 g and pH of 5.0 had been found to be the optimum conditions for the maximum uptake of lead ions in 98.11% batch mode. Under the optimum conditions, the lead uptake was attained to be circa 8.60 mg/g.
    Matched MeSH terms: Models, Chemical
  12. Sannasi P, Kader J, Ismail BS, Salmijah S
    Bioresour Technol, 2006 Mar;97(5):740-7.
    PMID: 16324841
    This paper reports the sorption of three metallic ions, namely Cr(VI), Cu(II) and Pb(II) in aqueous solution by a consortium culture (CC) comprising an acclimatised mixed bacterial culture collected from point and non-point sources. Metal sorption capability of growing and non-growing cells at initial pH of between 3 and 8 in the 1-100mg/L concentration range were studied based on Q(max) and K(f) values of the Langmuir and linearised Freundlich isotherm models, respectively. Maximal metal loading was generally observed to be dependent on the initial pH. Growing cells displayed significant maximal loading (Q(max)) for Pb(II) (238.09 mg/g) and Cu(II) (178.87 mg/g) at pH 6 and at pH 7 for Cr(VI) (90.91 mg/g) compared to non-growing cells (p < 0.05). At the pH range of 6-8, growing cells showed higher loading capacity compared to non-growing cells i.e. 38-52% for Cr, 17-28% for Cu and 3-17% for Pb. At lower metal concentrations and at more acidic pH (3-4) however, non-growing cells had higher metal loading capacity than growing cells. The metal sorption capacity for both populations were as follows: Pb(II) > Cu(II) > Cr(VI).
    Matched MeSH terms: Models, Chemical
  13. Fazlena H, Kamaruddin AH, Zulkali MM
    Bioprocess Biosyst Eng, 2006 Mar;28(4):227-33.
    PMID: 16215728
    A lipase catalysed enantioselective hydrolysis process under in situ racemization of the remaining (R)-ibuprofen ester substrate with sodium hydroxide as the catalyst was developed for the production of S-ibuprofen from (R,S)-ibuprofen ester in isooctane. Detailed investigations on parameters study indicated that 0.5 M NaOH, addition of 20% (v/v) co-solvent (dimethyl sulphoxide), operating temperature of 45 degrees C, and 40 mmol/L substrate gave 86% conversion and 99.4% optical purity of S-ibuprofen in dynamic kinetic resolution. Meanwhile, in common enzymatic kinetic resolution process, only 42% conversion of the racemate and 93% enantiomeric excess of the product was obtained which are of lower values as compared to dynamic kinetic resolution. The S-ibuprofen produced during each process was evaluated and approximately 50% increment in concentration of S-acid product was produced when dynamic kinetic resolution was applied into the process.
    Matched MeSH terms: Models, Chemical*
  14. Ibrahim Z, Tsuboi Y, Ono O
    IEEE Trans Nanobioscience, 2006 Jun;5(2):103-9.
    PMID: 16805106
    Previously, direct-proportional length-based DNA computing (DPLB-DNAC) for solving weighted graph problems has been reported. The proposed DPLB-DNAC has been successfully applied to solve the shortest path problem, which is an instance of weighted graph problems. The design and development of DPLB-DNAC is important in order to extend the capability of DNA computing for solving numerical optimization problem. According to DPLB-DNAC, after the initial pool generation, the initial solution is subjected to amplification by polymerase chain reaction and, finally, the output of the computation is visualized by gel electrophoresis. In this paper, however, we give more attention to the initial pool generation of DPLB-DNAC. For this purpose, two kinds of initial pool generation methods, which are generally used for solving weighted graph problems, are evaluated. Those methods are hybridization-ligation and parallel overlap assembly (POA). It is found that for DPLB-DNAC, POA is better than that of the hybridization-ligation method, in terms of population size, generation time, material usage, and efficiency, as supported by the results of actual experiments.
    Matched MeSH terms: Models, Chemical*
  15. Serri NA, Kamaruddin AH, Long WS
    Bioprocess Biosyst Eng, 2006 Oct;29(4):253-60.
    PMID: 16868763
    Immobilized Candida rugosa lipase was used for the synthesis of citronellyl laurate from citronellol and lauric acid. Screening of different types of support (Amberlite MB-1 and Celite) for immobilization of lipase and solvent (n-hexane, n-heptane, and iso-octane) and optimization of reaction conditions, such as catalyst loading, effect of substrates molar ratio and temperature, have been studied. The maximum enzyme activity was obtained at 310 K. The immobilized C. rugosa lipase onto Amberlite MB-1 support was found to be the best support with a conversion of 89% of citronellyl laurate ester in iso-octane compared to Celite 545. Deactivation of C. rugosa lipase at 313, 318 and 323 K were observed. Ordered bi bi mechanism with dead end complex of lauric acid was found to fit the initial rate data and the kinetic parameters were obtained by non-linear regression analysis.
    Matched MeSH terms: Models, Chemical*
  16. Kambara H, Yamada T, Tsujioka M, Matsunaga S, Tanaka R, Ali HI, et al.
    Chem Biodivers, 2006 Dec;3(12):1301-6.
    PMID: 17193244
    As a part of our chemical studies on Malaysian medicinal plants, five Malaysian plant species were evaluated by cytotoxicity assays using P388 murine leukemia cells. Since Acalypha siamensis exhibited the strongest growth inhibition, its constituents were studied as the object of search for bioactive materials. A novel tetraterpene, acalyphaser A (1), was isolated in the course of the purification. Its structure was elucidated on the basis of 1D- and 2D-NMR techniques, and mass spectrometry.
    Matched MeSH terms: Models, Chemical
  17. Ahmad AA, Hameed BH, Aziz N
    J Hazard Mater, 2007 Mar 6;141(1):70-6.
    PMID: 16887263
    Palm ash, an agriculture waste residue from palm-oil industry in Malaysia, was investigated as a replacement for the current expensive methods of removing direct blue 71 dye from an aqueous solution. The experimental data were analyzed by the Langmuir and Freundlich models of adsorption. Equilibrium data fitted well with Freundlich model in the range of 50-600mg/L. The equilibrium adsorption capacity of the palm ash was determined with the Langmuir equation and found to be 400.01mg dye per gram adsorbent at 30 degrees C. The rates of adsorption were found to conform to the pseudo-second-order kinetics with good correlation. The results indicate that the palm ash could be employed as a low-cost alternative to commercial activated carbon.
    Matched MeSH terms: Models, Chemical
  18. Shamsir MS, Dalby AR
    Biophys J, 2007 Mar 15;92(6):2080-9.
    PMID: 17172295
    Previous molecular dynamic simulations have reported elongation of the existing beta-sheet in prion proteins. Detailed examination has shown that these elongations do not extend beyond the proline residues flanking these beta-sheets. In addition, proline has also been suggested to possess a possible structural role in preserving protein interaction sites by preventing invasion of neighboring secondary structures. In this work, we have studied the possible structural role of the flanking proline residues by simulating mutant structures with alternate substitution of the proline residues with valine. Simulations showed a directional inhibition of elongation, with the elongation progressing in the direction of valine including evident inhibition of elongation by existing proline residues. This suggests that the flanking proline residues in prion proteins may have a containment role and would confine the beta-sheet within a specific length.
    Matched MeSH terms: Models, Chemical*
  19. Chan CH, Lim PE
    Bioresour Technol, 2007 May;98(7):1333-8.
    PMID: 16822665
    Performance of the sequencing batch reactor (SBR) treating synthetic phenolic wastewater at influent phenol concentrations from 100 to 1000 mg/L was evaluated. Two identical SBRs were built and operated with FILL, REACT, SETTLE and DRAW periods in the ratio of 4:6:1:1 for a cycle time of 12h. One of the reactors was operated with aerated FILL (R1) and the other with unaerated FILL (R2). The treated effluent quality and the rate of degradation during REACT were the criteria for evaluating performance of the two reactors. The results showed that the FILL mode had no significant influence on the treatment efficiency of phenol and COD for the entire range of influent phenol concentrations investigated. However, reactor R1 required a relatively shorter REACT time for phenol removal as compared to R2. This meant that R1 had the advantage of providing treatment at a higher organic loading rate.
    Matched MeSH terms: Models, Chemical
  20. Mirhosseini H, Tan CP, Hamid NS, Yusof S
    J Agric Food Chem, 2007 Sep 19;55(19):7659-66.
    PMID: 17708646
    The possible relationships between the main emulsion components (namely, Arabic gum, xanthan gum, and orange oil) and the physicochemical properties of orange beverage emulsion were evaluated by using response surface methodology. The physicochemical emulsion property variables considered as response variables were emulsion stability, viscosity, fluid behavior, zeta-potential, and electrophoretic mobility. The independent variables had the most and least significant ( p < 0.05) effect on viscosity and zeta-potential, respectively. The quadratic effect of orange oil and Arabic gum, the interaction effect of Arabic gum and xanthan gum, and the main effect of Arabic gum were the most significant ( p < 0.05) effects on turbidity loss rate, viscosity, viscosity ratio, and mobility, respectively. The main effect of Arabic gum was found to be significant ( p < 0.05) in all response variables except for turbidity loss rate. The nonlinear regression equations were significantly ( p < 0.05) fitted for all response variables with high R (2) values (>0.86), which had no indication of lack of fit. The results indicated that a combined level of 10.78% (w/w) Arabic gum, 0.56% (w/w) xanthan gum, and 15.27% (w/w) orange oil was predicted to provide the overall optimum region in terms of physicochemical properties studied. No significant ( p > 0.05) difference between the experimental and the predicted values confirmed the adequacy of response surface equations.
    Matched MeSH terms: Models, Chemical
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links