Displaying publications 1 - 20 of 90 in total

Abstract:
Sort:
  1. Nazariah SS, Juliana J, Abdah MA
    Glob J Health Sci, 2013 Jul;5(4):93-105.
    PMID: 23777726 DOI: 10.5539/gjhs.v5n4p93
    In the last few years, air within homes have been indicates by various and emerging body as more serious polluted than those outdoor. Prevalence of respiratory inflammation among school children aged 8 and 10 years old attending national primary schools in urban and rural area were conducted in Klang Valley. Two population studies drawn from the questionnaires were used to investigate the association between indoor particulate matter (PM2.5 & PM10) in a home environment and respiratory implication through the understanding of biological responses. Approximately 430 healthy school children of Standard 2 and Standard 5 were selected. Indication of respiratory symptoms using adaptation questionnaire from American Thoracic Society (1978). Sputum sample collection taken for biological analysis. IL-6 then was analyse by using ELISA techniques. Indoor PM2.5 and PM10 were measured using Dust Trak Aerosol Monitor. The mean concentration of PM2.5 (45.38 µg/m3) and PM10 (80.07 µg/m3) in urban home environment is significantly higher compared to those in rural residential area (p=0.001). Similar trend also shows by the prevalence of respiratory symptom. Association were found with PM2.5 and PM10 with the level of IL-6 among school children. A greater exposure to PM2.5 and PM10 are associated with higher expression of IL-6 level suggesting that the concentration of indoor particulate in urban density area significantly influence the health of children.
    Matched MeSH terms: Particulate Matter/analysis
  2. Sugeng DA, Yahya WJ, Ithnin AM, Abdul Rashid MA, Mohd Syahril Amri NS, Abd Kadir H, et al.
    Environ Sci Pollut Res Int, 2018 Sep;25(27):27214-27224.
    PMID: 30030755 DOI: 10.1007/s11356-018-2760-1
    The focus of this work is to investigate the emission characteristics of a stationary diesel engine while utilizing an emulsion fuel from a novel preparation process. The emulsion preparation was performed in real time without using any surfactant. Instead of mechanically breaking the water down into droplets, the water is delivered thermally, by changing its phase from gas to liquid. Steam is used in this proposed process, where it will be converted into suspended water droplets once it meets colder diesel. The product is called steam-generated water-in-diesel emulsion fuel (S/D). The method is expected to reduce the moving components of a previous surfactant-less system; therefore, reducing costs and increasing the system reliability. The emission characteristics of S/D were compared with EURO 2 diesel (D2), and a conventional emulsion denoted as E10. E10 was prepared using 10% water (volumetric) and SPAN80 as a surfactant. The emission characterizations were carried out based on the exhaust gas of a single cylinder naturally aspirated CI engine fueled with D2, S/D, and E10. Compared to D2, both emulsions significantly reduced the emissions of nitrogen oxides (NOx) (E10 max ↓58.0%, S/D max ↓40.0%) and particulate matter (PM) (E10 max ↓20.0%, S/D max ↓57.0%).
    Matched MeSH terms: Particulate Matter/analysis*
  3. Suhaimi NF, Jalaludin J, Abu Bakar S
    PMID: 34360284 DOI: 10.3390/ijerph18157995
    This study aimed to investigate the association between traffic-related air pollution (TRAP) exposure and histone H3 modification among school children in high-traffic (HT) and low-traffic (LT) areas in Malaysia. Respondents' background information and personal exposure to traffic sources were obtained from questionnaires distributed to randomly selected school children. Real-time monitoring instruments were used for 6-h measurements of PM10, PM2.5, PM1, NO2, SO2, O3, CO, and total volatile organic compounds (TVOC). Meanwhile, 24-h measurements of PM2.5-bound black carbon (BC) were performed using air sampling pumps. The salivary histone H3 level was captured using an enzyme-linked immunosorbent assay (ELISA). HT schools had significantly higher PM10, PM2.5, PM1, BC, NO2, SO2, O3, CO, and TVOC than LT schools, all at p < 0.001. Children in the HT area were more likely to get higher histone H3 levels (z = -5.13). There were positive weak correlations between histone H3 level and concentrations of NO2 (r = 0.37), CO (r = 0.36), PM1 (r = 0.35), PM2.5 (r = 0.34), SO2 (r = 0.34), PM10 (r = 0.33), O3 (r = 0.33), TVOC (r = 0.25), and BC (r = 0.19). Overall, this study proposes the possible role of histone H3 modification in interpreting the effects of TRAP exposure via non-genotoxic mechanisms.
    Matched MeSH terms: Particulate Matter/analysis
  4. Nazif A, Mohammed NI, Malakahmad A, Abualqumboz MS
    Environ Sci Pollut Res Int, 2018 Jan;25(1):283-289.
    PMID: 29032528 DOI: 10.1007/s11356-017-0407-2
    The devastating health effects of particulate matter (PM10) exposure by susceptible populace has made it necessary to evaluate PM10 pollution. Meteorological parameters and seasonal variation increases PM10 concentration levels, especially in areas that have multiple anthropogenic activities. Hence, stepwise regression (SR), multiple linear regression (MLR) and principal component regression (PCR) analyses were used to analyse daily average PM10 concentration levels. The analyses were carried out using daily average PM10 concentration, temperature, humidity, wind speed and wind direction data from 2006 to 2010. The data was from an industrial air quality monitoring station in Malaysia. The SR analysis established that meteorological parameters had less influence on PM10 concentration levels having coefficient of determination (R 2) result from 23 to 29% based on seasoned and unseasoned analysis. While, the result of the prediction analysis showed that PCR models had a better R 2 result than MLR methods. The results for the analyses based on both seasoned and unseasoned data established that MLR models had R 2 result from 0.50 to 0.60. While, PCR models had R 2 result from 0.66 to 0.89. In addition, the validation analysis using 2016 data also recognised that the PCR model outperformed the MLR model, with the PCR model for the seasoned analysis having the best result. These analyses will aid in achieving sustainable air quality management strategies.
    Matched MeSH terms: Particulate Matter/analysis*
  5. Arora S, Sawaran Singh NS, Singh D, Rakesh Shrivastava R, Mathur T, Tiwari K, et al.
    Comput Intell Neurosci, 2022;2022:9755422.
    PMID: 36531923 DOI: 10.1155/2022/9755422
    In this study, the air quality index (AQI) of Indian cities of different tiers is predicted by using the vanilla recurrent neural network (RNN). AQI is used to measure the air quality of any region which is calculated on the basis of the concentration of ground-level ozone, particle pollution, carbon monoxide, and sulphur dioxide in air. Thus, the present air quality of an area is dependent on current weather conditions, vehicle traffic in that area, or anything that increases air pollution. Also, the current air quality is dependent on the climate conditions and industrialization in that area. Thus, the AQI is history-dependent. To capture this dependency, the memory property of fractional derivatives is exploited in this algorithm and the fractional gradient descent algorithm involving Caputo's derivative has been used in the backpropagation algorithm for training of the RNN. Due to the availability of a large amount of data and high computation support, deep neural networks are capable of giving state-of-the-art results in the time series prediction. But, in this study, the basic vanilla RNN has been chosen to check the effectiveness of fractional derivatives. The AQI and gases affecting AQI prediction results for different cities show that the proposed algorithm leads to higher accuracy. It has been observed that the results of the vanilla RNN with fractional derivatives are comparable to long short-term memory (LSTM).
    Matched MeSH terms: Particulate Matter/analysis
  6. Zulkepli NFS, Noorani MSM, Razak FA, Ismail M, Alias MA
    J Environ Manage, 2022 Mar 15;306:114434.
    PMID: 35065362 DOI: 10.1016/j.jenvman.2022.114434
    Haze has been a major issue afflicting Southeast Asian countries, including Malaysia, for the past few decades. Hierarchical agglomerative cluster analysis (HACA) is commonly used to evaluate the spatial behavior between areas in which pollutants interact. Typically, using HACA, the Euclidean distance acts as the dissimilarity measure and air quality monitoring stations are grouped according to this measure, thus revealing the most polluted areas. In this study, a framework for the hybridization of the HACA technique is proposed by considering the topological similarity (Wasserstein distance) between stations to evaluate the spatial patterns of the affected areas by haze episodes. For this, a tool in the topological data analysis (TDA), namely, persistent homology, is used to extract essential topological features hidden in the dataset. The performance of the proposed method is compared with that of traditional HACA and evaluated based on its ability to categorize areas according to the exceedance level of the particulate matter (PM10). Results show that additional topological features have yielded better accuracy compared to without the case that does not consider topological features. The cluster validity indices are computed to verify the results, and the proposed method outperforms the traditional method, suggesting a practical alternative approach for assessing the similarity in air pollution behaviors based on topological characterizations.
    Matched MeSH terms: Particulate Matter/analysis
  7. Chin YSJ, De Pretto L, Thuppil V, Ashfold MJ
    PLoS One, 2019;14(3):e0212206.
    PMID: 30870439 DOI: 10.1371/journal.pone.0212206
    As in many nations, air pollution linked to rapid industrialization is a public health and environmental concern in Malaysia, especially in cities. Understanding awareness of air pollution and support for environmental protection from the general public is essential for informing governmental approaches to dealing with this problem. This study presents a cross-sectional survey conducted in the Klang Valley and Iskandar conurbations to examine urban Malaysians' perception, awareness and opinions of air pollution. The survey was conducted in two languages, English and Malay, and administered through the online survey research software, Qualtrics. The survey consisted of three sections, where we collected sociodemographic information, information on the public perception of air quality and the causes of air pollution, information on public awareness of air pollution and its related impacts, and information on attitudes towards environmental protection. Of 214 respondents, over 60% were positive towards the air quality at both study sites despite the presence of harmful levels of air pollution. The air in the Klang Valley was perceived to be slightly more polluted and causing greater health issues. Overall, the majority of respondents were aware that motor vehicles represent the primary pollution source, yet private transport was still the preferred choice of transportation mode. A generally positive approach towards environmental protection emerged from the data. However, participants showed stronger agreement with protection actions that do not involve individual effort. Nonetheless, we found that certain segments of the sample (people owning more than three vehicles per household and those with relatives who suffered from respiratory diseases) were significantly more willing to personally pay for environmental protection compared to others. Implications point to the need for actions for spreading awareness of air pollution to the overall population, especially with regards to its health risks, as well as strategies for increasing the perception of behavioural control, especially with regards to motor vehicles' usage.
    Matched MeSH terms: Particulate Matter/analysis
  8. Yong NK, Awang N
    Environ Monit Assess, 2019 Jan 11;191(2):64.
    PMID: 30635772 DOI: 10.1007/s10661-019-7209-6
    This study presents the use of a wavelet-based time series model to forecast the daily average particulate matter with an aerodynamic diameter of less than 10 μm (PM10) in Peninsular Malaysia. The highlight of this study is the use of a discrete wavelet transform (DWT) in order to improve the forecast accuracy. The DWT was applied to convert the highly variable PM10 series into more stable approximations and details sub-series, and the ARIMA-GARCH time series models were developed for each sub-series. Two different forecast periods, one was during normal days, while the other was during haze episodes, were designed to justify the usefulness of DWT. The models' performance was evaluated by four indices, namely root mean square error, mean absolute percentage error, probability of detection and false alarm rate. The results showed that the model incorporated with DWT yielded more accurate forecasts than the conventional method without DWT for both the forecast periods, and the improvement was more prominent for the period during the haze episodes.
    Matched MeSH terms: Particulate Matter/analysis*
  9. Ng KY, Awang N
    Environ Monit Assess, 2018 Jan 06;190(2):63.
    PMID: 29306973 DOI: 10.1007/s10661-017-6419-z
    Frequent haze occurrences in Malaysia have made the management of PM10 (particulate matter with aerodynamic less than 10 μm) pollution a critical task. This requires knowledge on factors associating with PM10 variation and good forecast of PM10 concentrations. Hence, this paper demonstrates the prediction of 1-day-ahead daily average PM10 concentrations based on predictor variables including meteorological parameters and gaseous pollutants. Three different models were built. They were multiple linear regression (MLR) model with lagged predictor variables (MLR1), MLR model with lagged predictor variables and PM10 concentrations (MLR2) and regression with time series error (RTSE) model. The findings revealed that humidity, temperature, wind speed, wind direction, carbon monoxide and ozone were the main factors explaining the PM10 variation in Peninsular Malaysia. Comparison among the three models showed that MLR2 model was on a same level with RTSE model in terms of forecasting accuracy, while MLR1 model was the worst.
    Matched MeSH terms: Particulate Matter/analysis*
  10. Edimansyah BA, Rusli BN, Naing L, Azwan BA, Aziah BD
    PMID: 19323052
    The purpose of this study was to determine the indoor air quality (IAQ) status of an automotive assembly plant in Rawang, Selangor, Malaysia using selected IAQ parameters, such as carbon dioxide (CO2), carbon monoxide (CO), temperature, relative humidity (RH) and respirable particulate matter (PM10). A cross-sectional study was conducted in the paint shop and body shop sections of the plant in March 2005. The Q-TRAK Plus IAQ Monitor was used to record the patterns of CO, CO2, RH and temperature; whilst PM10 was measured using DUSTTRAK Aerosol Monitor over an 8-hour time weight average (8-TWA). It was found that the average temperatures, RH and PM10 in the paint shop section and body shop sections exceeded the Department of Safety and Health (DOSH) standards. The average concentrations of RH and CO were slightly higher in the body shop section than in the paint shop section, while the average concentrations of temperature and CO2 were slightly higher in the paint shop section than in the body shop section. There was no difference in the average concentrations of PM10 between the two sections.
    Matched MeSH terms: Particulate Matter/analysis
  11. Amaral AFS, Burney PGJ, Patel J, Minelli C, Mejza F, Mannino DM, et al.
    Thorax, 2021 12;76(12):1236-1241.
    PMID: 33975927 DOI: 10.1136/thoraxjnl-2020-216223
    Smoking is the most well-established cause of chronic airflow obstruction (CAO) but particulate air pollution and poverty have also been implicated. We regressed sex-specific prevalence of CAO from 41 Burden of Obstructive Lung Disease study sites against smoking prevalence from the same study, the gross national income per capita and the local annual mean level of ambient particulate matter (PM2.5) using negative binomial regression. The prevalence of CAO was not independently associated with PM2.5 but was strongly associated with smoking and was also associated with poverty. Strengthening tobacco control and improved understanding of the link between CAO and poverty should be prioritised.
    Matched MeSH terms: Particulate Matter/analysis
  12. Tella A, Balogun AL
    Environ Sci Pollut Res Int, 2022 Dec;29(57):86109-86125.
    PMID: 34533750 DOI: 10.1007/s11356-021-16150-0
    Rapid urbanization has caused severe deterioration of air quality globally, leading to increased hospitalization and premature deaths. Therefore, accurate prediction of air quality is crucial for mitigation planning to support urban sustainability and resilience. Although some studies have predicted air pollutants such as particulate matter (PM) using machine learning algorithms (MLAs), there is a paucity of studies on spatial hazard assessment with respect to the air quality index (AQI). Incorporating PM in AQI studies is crucial because of its easily inhalable micro-size which has adverse impacts on ecology, environment, and human health. Accurate and timely prediction of the air quality index can ensure adequate intervention to aid air quality management. Therefore, this study undertakes a spatial hazard assessment of the air quality index using particulate matter with a diameter of 10 μm or lesser (PM10) in Selangor, Malaysia, by developing four machine learning models: eXtreme Gradient Boosting (XGBoost), random forest (RF), K-nearest neighbour (KNN), and Naive Bayes (NB). Spatially processed data such as NDVI, SAVI, BU, LST, Ws, slope, elevation, and road density was used for the modelling. The model was trained with 70% of the dataset, while 30% was used for cross-validation. Results showed that XGBoost has the highest overall accuracy and precision of 0.989 and 0.995, followed by random forest (0.989, 0.993), K-nearest neighbour (0.987, 0.984), and Naive Bayes (0.917, 0.922), respectively. The spatial air quality maps were generated by integrating the geographical information system (GIS) with the four MLAs, which correlated with Malaysia's air pollution index. The maps indicate that air quality in Selangor is satisfactory and posed no threats to health. Nevertheless, the two algorithms with the best performance (XGBoost and RF) indicate that a high percentage of the air quality is moderate. The study concludes that successful air pollution management policies such as green infrastructure practice, improvement of energy efficiency, and restrictions on heavy-duty vehicles can be adopted in Selangor and other Southeast Asian cities to prevent deterioration of air quality in the future.
    Matched MeSH terms: Particulate Matter/analysis
  13. Masood A, Hameed MM, Srivastava A, Pham QB, Ahmad K, Razali SFM, et al.
    Sci Rep, 2023 Nov 29;13(1):21057.
    PMID: 38030733 DOI: 10.1038/s41598-023-47492-z
    Fine particulate matter (PM2.5) is a significant air pollutant that drives the most chronic health problems and premature mortality in big metropolitans such as Delhi. In such a context, accurate prediction of PM2.5 concentration is critical for raising public awareness, allowing sensitive populations to plan ahead, and providing governments with information for public health alerts. This study applies a novel hybridization of extreme learning machine (ELM) with a snake optimization algorithm called the ELM-SO model to forecast PM2.5 concentrations. The model has been developed on air quality inputs and meteorological parameters. Furthermore, the ELM-SO hybrid model is compared with individual machine learning models, such as Support Vector Regression (SVR), Random Forest (RF), Extreme Learning Machines (ELM), Gradient Boosting Regressor (GBR), XGBoost, and a deep learning model known as Long Short-Term Memory networks (LSTM), in forecasting PM2.5 concentrations. The study results suggested that ELM-SO exhibited the highest level of predictive performance among the five models, with a testing value of squared correlation coefficient (R2) of 0.928, and root mean square error of 30.325 µg/m3. The study's findings suggest that the ELM-SO technique is a valuable tool for accurately forecasting PM2.5 concentrations and could help advance the field of air quality forecasting. By developing state-of-the-art air pollution prediction models that incorporate ELM-SO, it may be possible to understand better and anticipate the effects of air pollution on human health and the environment.
    Matched MeSH terms: Particulate Matter/analysis
  14. Nguyen TTN, Pham HV, Lasko K, Bui MT, Laffly D, Jourdan A, et al.
    Environ Pollut, 2019 Dec;255(Pt 1):113106.
    PMID: 31541826 DOI: 10.1016/j.envpol.2019.113106
    Satellite observations for regional air quality assessment rely on comprehensive spatial coverage, and daily monitoring with reliable, cloud-free data quality. We investigated spatiotemporal variation and data quality of two global satellite Aerosol Optical Depth (AOD) products derived from MODIS and VIIRS imagery. AOD is considered an essential atmospheric parameter strongly related to ground Particulate Matter (PM) in Southeast Asia (SEA). We analyze seasonal variation, urban/rural area influence, and biomass burning effects on atmospheric pollution. Validation indicated a strong relationship between AERONET ground AOD and both MODIS AOD (R2 = 0.81) and VIIRS AOD (R2 = 0.68). The monthly variation of satellite AOD and AERONET AOD reflects two seasonal trends of air quality separately for mainland countries including Myanmar, Laos, Cambodia, Thailand, Vietnam, and Taiwan, Hong Kong, and for maritime countries consisting of Indonesia, Philippines, Malaysia, Brunei, Singapore, and Timor Leste. The mainland SEA has a pattern of monthly AOD variation in which AODs peak in March/April, decreasing during wet season from May-September, and increasing to the second peak in October. However, in maritime SEA, AOD concentration peaks in October. The three countries with the highest annual satellite AODs are Singapore, Hong Kong, and Vietnam. High urban population proportions in Singapore (40.7%) and Hong Kong (21.6%) were associated with high AOD concentrations as expected. AOD values in SEA urban areas were a factor of 1.4 higher than in rural areas, with respective averages of 0.477 and 0.336. The AOD values varied proportionately to the frequency of biomass burning in which both active fires and AOD peak in March/April and September/October. Peak AOD in September/October in some countries could be related to pollutant transport of Indonesia forest fires. This study analyzed satellite aerosol product quality in relation to AERONET in SEA countries and highlighted framework of air quality assessment over a large, complicated region.
    Matched MeSH terms: Particulate Matter/analysis*
  15. Plusquin M, Guida F, Polidoro S, Vermeulen R, Raaschou-Nielsen O, Campanella G, et al.
    Environ Int, 2017 11;108:127-136.
    PMID: 28843141 DOI: 10.1016/j.envint.2017.08.006
    Long-term exposure to air pollution has been associated with several adverse health effects including cardiovascular, respiratory diseases and cancers. However, underlying molecular alterations remain to be further investigated. The aim of this study is to investigate the effects of long-term exposure to air pollutants on (a) average DNA methylation at functional regions and, (b) individual differentially methylated CpG sites. An assumption is that omic measurements, including the methylome, are more sensitive to low doses than hard health outcomes. This study included blood-derived DNA methylation (Illumina-HM450 methylation) for 454 Italian and 159 Dutch participants from the European Prospective Investigation into Cancer and Nutrition (EPIC). Long-term air pollution exposure levels, including NO2, NOx, PM2.5, PMcoarse, PM10, PM2.5 absorbance (soot) were estimated using models developed within the ESCAPE project, and back-extrapolated to the time of sampling when possible. We meta-analysed the associations between the air pollutants and global DNA methylation, methylation in functional regions and epigenome-wide methylation. CpG sites found differentially methylated with air pollution were further investigated for functional interpretation in an independent population (EnviroGenoMarkers project), where (N=613) participants had both methylation and gene expression data available. Exposure to NO2 was associated with a significant global somatic hypomethylation (p-value=0.014). Hypomethylation of CpG island's shores and shelves and gene bodies was significantly associated with higher exposures to NO2 and NOx. Meta-analysing the epigenome-wide findings of the 2 cohorts did not show genome-wide significant associations at single CpG site level. However, several significant CpG were found if the analyses were separated by countries. By regressing gene expression levels against methylation levels of the exposure-related CpG sites, we identified several significant CpG-transcript pairs and highlighted 5 enriched pathways for NO2 and 9 for NOx mainly related to the immune system and its regulation. Our findings support results on global hypomethylation associated with air pollution, and suggest that the shores and shelves of CpG islands and gene bodies are mostly affected by higher exposure to NO2 and NOx. Functional differences in the immune system were suggested by transcriptome analyses.
    Matched MeSH terms: Particulate Matter/analysis
  16. Othman M, Latif MT, Jamhari AA, Abd Hamid HH, Uning R, Khan MF, et al.
    Chemosphere, 2021 Jan;262:127767.
    PMID: 32763576 DOI: 10.1016/j.chemosphere.2020.127767
    This study aimed to determine the spatial distribution of PM2.5 and PM10 collected in four regions (North, Central, South and East Coast) of Peninsular Malaysia during the southwest monsoon. Concurrent measurements of PM2.5 and PM10 were performed using a high volume sampler (HVS) for 24 h (August to September 2018) collecting a total of 104 samples. All samples were then analysed for water soluble inorganic ions (WSII) using ion chromatography, trace metals using inductively coupled plasma-mass spectroscopy (ICP-MS) and polycyclic aromatic hydrocarbon (PAHs) using gas chromatography-mass spectroscopy (GC-MS). The results showed that the highest average PM2.5 concentration during the sampling campaign was in the North region (33.2 ± 5.3 μg m-3) while for PM10 the highest was in the Central region (38.6 ± 7.70 μg m-3). WSII recorded contributions of 22% for PM2.5 and 20% for PM10 mass, with SO42- the most abundant species with average concentrations of 1.83 ± 0.42 μg m-3 (PM2.5) and 2.19 ± 0.27 μg m-3 (PM10). Using a Positive Matrix Factorization (PMF) model, soil fertilizer (23%) was identified as the major source of PM2.5 while industrial activity (25%) was identified as the major source of PM10. Overall, the studied metals had hazard quotients (HQ) value of <1 indicating a very low risk of non-carcinogenic elements while the highest excess lifetime cancer risk (ELCR) was recorded for Cr VI in the South region with values of 8.4E-06 (PM2.5) and 6.6E-05 (PM10). The incremental lifetime cancer risk (ILCR) calculated from the PAH concentrations was within the acceptable range for all regions.
    Matched MeSH terms: Particulate Matter/analysis*
  17. Zaini N, Ean LW, Ahmed AN, Abdul Malek M, Chow MF
    Sci Rep, 2022 Oct 20;12(1):17565.
    PMID: 36266317 DOI: 10.1038/s41598-022-21769-1
    Rapid growth in industrialization and urbanization have resulted in high concentration of air pollutants in the environment and thus causing severe air pollution. Excessive emission of particulate matter to ambient air has negatively impacted the health and well-being of human society. Therefore, accurate forecasting of air pollutant concentration is crucial to mitigate the associated health risk. This study aims to predict the hourly PM2.5 concentration for an urban area in Malaysia using a hybrid deep learning model. Ensemble empirical mode decomposition (EEMD) was employed to decompose the original sequence data of particulate matter into several subseries. Long short-term memory (LSTM) was used to individually forecast the decomposed subseries considering the influence of air pollutant parameters for 1-h ahead forecasting. Then, the outputs of each forecast were aggregated to obtain the final forecasting of PM2.5 concentration. This study utilized two air quality datasets from two monitoring stations to validate the performance of proposed hybrid EEMD-LSTM model based on various data distributions. The spatial and temporal correlation for the proposed dataset were analysed to determine the significant input parameters for the forecasting model. The LSTM architecture consists of two LSTM layers and the data decomposition method is added in the data pre-processing stage to improve the forecasting accuracy. Finally, a comparison analysis was conducted to compare the performance of the proposed model with other deep learning models. The results illustrated that EEMD-LSTM yielded the highest accuracy results among other deep learning models, and the hybrid forecasting model was proved to have superior performance as compared to individual models.
    Matched MeSH terms: Particulate Matter/analysis
  18. Otuyo MK, Nadzir MSM, Latif MT, Din SAM
    Environ Sci Pollut Res Int, 2023 Dec;30(58):121306-121337.
    PMID: 37993649 DOI: 10.1007/s11356-023-30923-9
    This comprehensive paper conducts an in-depth review of personal exposure and air pollutant levels within the microenvironments of Asian city transportation. Our methodology involved a systematic analysis of an extensive body of literature from diverse sources, encompassing a substantial quantity of studies conducted across multiple Asian cities. The investigation scrutinizes exposure to various pollutants, including particulate matters (PM10, PM2.5, and PM1), carbon dioxide (CO2), formaldehyde (CH2O), and total volatile organic compounds (TVOC), during transportation modes such as car travel, bus commuting, walking, and train rides. Notably, our review reveals a predominant focus on PM2.5, followed by PM10, PM1, CO2, and TVOC, with limited attention given to CH2O exposure. Across the spectrum of Asian cities and transportation modes, exposure concentrations exhibited considerable variability, a phenomenon attributed to a multitude of factors. Primary sources of exposure encompass motor vehicle emissions, traffic dynamics, road dust, and open bus doors. Furthermore, our findings illuminate the influence of external environments, particularly in proximity to train stations, on pollutant levels inside trains. Crucial factors affecting exposure encompass ventilation conditions, travel-specific variables, seat locations, vehicle types, and meteorological influences. The culmination of this rigorous review underscores the need for standardized measurements, enhanced ventilation systems, air filtration mechanisms, the adoption of clean energy sources, and comprehensive public education initiatives aimed at reducing pollutant exposure within city transportation microenvironments. Importantly, our study contributes to the growing body of knowledge surrounding this subject, offering valuable insights for policymakers and researchers dedicated to advancing air quality standards and safeguarding public health.
    Matched MeSH terms: Particulate Matter/analysis
  19. Syed Abdul Mutalib SN, Juahir H, Azid A, Mohd Sharif S, Latif MT, Aris AZ, et al.
    Environ Sci Process Impacts, 2013 Sep;15(9):1717-28.
    PMID: 23831918 DOI: 10.1039/c3em00161j
    The objective of this study is to identify spatial and temporal patterns in the air quality at three selected Malaysian air monitoring stations based on an eleven-year database (January 2000-December 2010). Four statistical methods, Discriminant Analysis (DA), Hierarchical Agglomerative Cluster Analysis (HACA), Principal Component Analysis (PCA) and Artificial Neural Networks (ANNs), were selected to analyze the datasets of five air quality parameters, namely: SO2, NO2, O3, CO and particulate matter with a diameter size of below 10 μm (PM10). The three selected air monitoring stations share the characteristic of being located in highly urbanized areas and are surrounded by a number of industries. The DA results show that spatial characterizations allow successful discrimination between the three stations, while HACA shows the temporal pattern from the monthly and yearly factor analysis which correlates with severe haze episodes that have happened in this country at certain periods of time. The PCA results show that the major source of air pollution is mostly due to the combustion of fossil fuel in motor vehicles and industrial activities. The spatial pattern recognition (S-ANN) results show a better prediction performance in discriminating between the regions, with an excellent percentage of correct classification compared to DA. This study presents the necessity and usefulness of environmetric techniques for the interpretation of large datasets aiming to obtain better information about air quality patterns based on spatial and temporal characterizations at the selected air monitoring stations.
    Matched MeSH terms: Particulate Matter/analysis*
  20. Fulazzaky MA
    Environ Monit Assess, 2010 Sep;168(1-4):669-84.
    PMID: 19728125 DOI: 10.1007/s10661-009-1142-z
    Water quality degradation in the Citarum river will increase from the year to year due to increasing pollutant loads when released particularly from Bandung region of the upstream areas into the river without treatment. This will be facing the problems on water quality status to use for multi-purposes in the downstream areas. The water quality evaluation system is used to evaluate the available water condition that distinguishes into two categories, i.e., the water quality index (WQI) and water quality aptitude (WQA). The assessment of water quality for the Citarum river from 10 selected stations was found that the WQI situates in the bad category generally and the WQA ranges from the suitable quality for agriculture and livestock watering uses to the unsuitable for biological potential function, drinking water production, and leisure activities and sports in the upstream areas of Saguling dam generally.
    Matched MeSH terms: Particulate Matter/analysis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links