Displaying publications 1 - 20 of 295 in total

Abstract:
Sort:
  1. Din MF, Ujang Z, van Loosdrecht MC, Ahmad A, Sairan MF
    Water Sci Technol, 2006;53(6):15-20.
    PMID: 16749434
    The process for the production of biodegradable plastic material (polyhydroxyalkanoates, PHAs) from microbial cells by mixed-bacterial cultivation using readily available waste (renewable resources) is the main consideration nowadays. These observations have shown impressive results typically under high carbon fraction, COD/N and COD/P (usually described as nutrient-limiting conditions) and warmest temperature (moderate condition). Therefore, the aim of this work is predominantly to select mixed cultures under high storage responded by cultivation on a substrate - non limited in a single batch reactor with shortest period for feeding and to characterize their storage response by using specific and kinetics determination. In that case, the selected-fixed temperature is 30 degrees C to establish tropical conditions. During the accumulated steady-state period, the cell growth was inhibited by high PHA content within the cells because of the carbon reserve consumption. From the experiments, there is no doubt about the PHA accumulation even at high carbon fraction ratio. Apparently, the best accumulation occurred at carbon fraction, 160 +/- 7.97 g COD/g N (PHAmean, = 44.54% of dried cells). Unfortunately, the highest PHA productivity was achieved at the high carbon fraction, 560 +/- 1.62 g COD/g N (0.152 +/- 0.17 g/l. min). Overall results showed that with high carbon fraction induced to the cultivation, the PO4 and NO3 can remove up to 20% in single cultivation.
    Matched MeSH terms: Plastics
  2. Lui JL
    Quintessence Int, 1994 May;25(5):313-9.
    PMID: 7938415
    Composite resins have been advocated as a reinforcing build-up material for badly damaged endodontically treated teeth with flared canals. However, the control of an autocuring composite resin is difficult because it polymerizes rapidly within the root canal. While the light-curing composite resins are more user friendly, their polymerization can be a problem deep in the root canal. Light-transmitting plastic posts allow the transmission of light into the root canal and enable intraradicular composite resin reconstitution and reinforcement of weakened roots. At the same time, the light-transmitting plastic post forms an optimal post canal in the rehabilitated root and can accurately fit a matching retentive final post. These light-transmitting posts are a useful addition to the dental armamentarium.
    Matched MeSH terms: Plastics
  3. Chek MF, Hiroe A, Hakoshima T, Sudesh K, Taguchi S
    Appl Microbiol Biotechnol, 2019 Feb;103(3):1131-1141.
    PMID: 30511262 DOI: 10.1007/s00253-018-9538-8
    Polyhydroxyalkanoates (PHAs) are biopolymers synthesized by a wide range of bacteria, which serve as a promising candidate in replacing some conventional petrochemical-based plastics. PHA synthase (PhaC) is the key enzyme in the polymerization of PHA, and the crystal structures were successfully determined using the catalytic domain of PhaC from Cupriavidus necator (PhaCCn-CAT) and Chromobacterium sp. USM2 (PhaCCs-CAT). Here, we review the beneficial mutations discovered in PhaCs from a structural perspective. The structural comparison of the residues involved in beneficial mutation reveals that the residues are near to the catalytic triad, but not inside the catalytic pocket. For instance, Ala510 of PhaCCn is near catalytic His508 and may be involved in the open-close regulation, which presumably play an important role in substrate specificity and activity. In the class II PhaC1 from Pseudomonas sp. 61-3 (PhaC1Ps), Ser325 stabilizes the catalytic cysteine through hydrogen bonding. Another residue, Gln508 of PhaC1Ps is located in a conserved hydrophobic pocket which is next to the catalytic Asp and His. A class I, II-conserved Phe420 of PhaCCn is one of the residues involved in dimerization and its mutation to serine greatly reduced the lag phase. The current structural analysis shows that the Phe362 and Phe518 of PhaC from Aeromonas caviae (PhaCAc) are assisting the dimer formation and maintaining the integrity of the core beta-sheet, respectively. The structure-function relationship of PhaCs discussed in this review will serve as valuable reference for future protein engineering works to enhance the performance of PhaCs and to produce novel biopolymers.
    Matched MeSH terms: Plastics
  4. Nasir Mohamad, Shariff Halim, Mohd Ekhwan Toriman, Nor Hidayah Abu Bakar, Ahmad Zubaidi A. Latif
    MyJurnal
    Zamzam is holy water believed by Muslim to have remedial power for all kinds of diseases. It contains
    many electrolytes and the concentration of the electrolytes may be affected by the types of container
    used for its storage. This study was carried out to determine the difference in ions concentration of
    Zamzam water stored in plastic and glass containers, and to determine cytotoxicity effects of Zamzam
    water against U-87 cell line (human primary glioblastoma cell line). Ion Chromatography (IC) was used
    to analyze the concentration. The analyzed anions in the Zamzam water include bromide, chloride,
    phosphate, nitrite, nitrate, sulfate and fluoride whereas the cations were ammonium, lithium, potassium,
    sodium, calcium and magnesium. Subsequently, MTT assay was used to determine the cytotoxicity of
    Zamzam water on U-87 cell line. This study reveals that Zamzam water anions and cations
    concentration was not statistically significant neither in plastic nor glass container. In addition, the
    Zamzam water did not cause any toxicity on the U87 cell line. We postulate that types of container do
    not have much influence on the ion concentration of Zamzam water and it is non-toxic on U87 cell line.
    Matched MeSH terms: Plastics
  5. Chew KW, Chia SR, Chia WY, Cheah WY, Munawaroh HSH, Ong WJ
    Environ Pollut, 2021 Mar 01;278:116836.
    PMID: 33689952 DOI: 10.1016/j.envpol.2021.116836
    The remarkable journey of progression of mankind has created various impacts in the form of polluted environment, amassed heavy metals and depleting resources. This alarming situation demands sustainable energy resources and approaches to deal with these environmental hazards and power deficit. Pyrolysis and co-pyrolysis address both energy and environmental issues caused by civilization and industrialization. The processes use hazardous waste materials including waste tires, plastic and medical waste, and biomass waste such as livestock waste and agricultural waste as feedstock to produce gas, char and pyrolysis oil for energy production. Usage of hazardous materials as pyrolysis and co-pyrolysis feedstock reduces disposal of harmful substances into environment, reducing occurrence of soil and water pollution, and substituting the non-renewable feedstock, fossil fuels. As compared to combustion, pyrolysis and co-pyrolysis have less emission of air pollutants and act as alternative options to landfill disposal and incineration for hazardous materials and biomass waste. Hence, stabilizing heavy metals and solving the energy and waste management problems. This review discusses the pyrolysis and co-pyrolysis of biomass and harmful wastes to strive towards circular economy and eco-friendly, cleaner energy with minimum waste disposal, reducing negative impact on the planet and creating future possibilities.
    Matched MeSH terms: Plastics
  6. Zamram QAZM, Mohsin HF, Mohamad MM, Nor Hazalin NAM, Hamid KA
    Curr Drug Deliv, 2021 Apr 18.
    PMID: 33874872 DOI: 10.2174/1567201818666210419114809
    AIM: Formulating topical products for skin delivery has always been a challenge for pharmaceutical scientists to fulfil good formulation criteria. Despite the challenges, gel-based drug delivery offers some advantages such that it is non-invasive, painless, avoidance of the first-pass metabolism and has satisfactory patient compliance.

    OBJECTIVES: In this study, Chromolaena odorata gel and quercetin gel (bioactive flavonoid compound) were successfully formulated and compared with placebo and conventional wound aid gel. The chromatographic profilling was conducted to screen the presence of phytoconstituents. Subsequently, all formulated gels were subjected to physical characteristic and stability study.

    METHODS: Reverse Phase High-Performance Liquid Chromatography (RP-HPLC) of C.odorata methanolic leaves extract shows a distinct compound separation at retention time 8.4min to 34.8 min at 254nm. All gels were characterised by evaluating their rheological properties including storage modulus, loss modulus and plastic viscosity. Besides, texture analysis was performed to measure the gels' firmness, consistency, cohesiveness, and viscosity index.

    RESULTS: From the observation, C. odorata gel demonstrated better spreadability as compared to the other gels, which acquired less work and favourable to be applied onto the skin. Moreover, C. odorata gel showed no changes in organoleptic properties and proven to be stable after 30 days of accelerated stability study at 40°C ± 2°C with relative humidity (RH) of 75%± 5%.

    CONCLUSION: C. odorata gel has shown to be stable, reflecting the combination of materials used in the formulation, which did not degrade throughout the study. This work suggests the potential of this gel as a vehicle to deliver the active ingredients of C. odorata to the skin, which can be further explored as a topical application in antimicrobial wound management or other skin diseases study.

    Matched MeSH terms: Plastics
  7. Yaradoddi JS, Banapurmath NR, Ganachari SV, Soudagar MEM, Mubarak NM, Hallad S, et al.
    Sci Rep, 2020 12 15;10(1):21960.
    PMID: 33319818 DOI: 10.1038/s41598-020-78912-z
    The main goal of the present work was to develop a value-added product of biodegradable material for sustainable packaging. The use of agriculture waste-derived carboxymethyl cellulose (CMC) mainly is to reduce the cost involved in the development of the film, at present commercially available CMS is costly. The main focus of the research is to translate the agricultural waste-derived CMC to useful biodegradable polymer suitable for packaging material. During this process CMC was extracted from the agricultural waste mainly sugar cane bagasse and the blends were prepared using CMC (waste derived), gelatin, agar and varied concentrations of glycerol; 1.5% (sample A), 2% (sample B), and 2.5% (sample C) was added. Thus, the film derived from the sample C (gelatin + CMC + agar) with 2.0% glycerol as a plasticizer exhibited excellent properties than other samples A and B. The physiochemical properties of each developed biodegradable plastics (sample A, B, C) were characterized using Fourier Transform Infra-Red (FTIR) spectroscopy and Differential Scanning Calorimetry (DSC), Thermogravimetric analysis (TGA). The swelling test, solubility in different solvents, oil permeability coefficient, water permeability (WP), mechanical strength of the produced material was claimed to be a good material for packaging and meanwhile its biodegradability (soil burial method) indicated their environmental compatibility nature and commercial properties. The reflected work is a novel approach, and which is vital in the conversion of organic waste to value-added product development. There is also another way to utilize commercial CMC in preparation of polymeric blends for the packaging material, which can save considerable time involved in the recovery of CMC from sugarcane bagasse.
    Matched MeSH terms: Biodegradable Plastics
  8. Chong HC, Fong KK, Hayati F
    Ann Med Surg (Lond), 2021 Apr;64:102267.
    PMID: 33889406 DOI: 10.1016/j.amsu.2021.102267
    Background: Extravasation injury (EVI) is common, yet it is always underestimated and underreported. Severity varies ranging from thrombophlebitis up to disability. Unrecognised EVI is a potential medicolegal case in medicine.

    Case presentation: We experience a 47-year-old lady who developed an unrecognised EVI after being admitted for sepsis. The EVI turned out to be a huge and sloughy skin ulcer. A series of wound debridement with vacuum dressing were conducted until the wound was able to be closed.

    Discussion: The EVI can be categorised according to Amjad EVI grading and Loth and Eversmann's EVI classification. Adult EVI tends to be overlooked, especially during critical care because patients cannot complain upon sedation and ventilation. In order to prevent EVI, firstly prevention is better than cure. Secondly, if EVI is recognised early, infusion should be stopped immediately. Thirdly, analgesia is mandatory. Finally, the plastic team needs to be engaged if it is deemed required.

    Conclusion: Prevention and early intervention before the occurrence of progressive tissue damage is the key to treatment. Early radical wound debridement and immediate or delayed wound coverage with skin graft or skin flap are indicated in full thickness skin necrosis, persistent pain, and chronic ulcer.

    Matched MeSH terms: Plastics
  9. Tang JY, Nishibuchi M, Nakaguchi Y, Ghazali FM, Saleha AA, Son R
    Lett Appl Microbiol, 2011 Jun;52(6):581-8.
    PMID: 21375548 DOI: 10.1111/j.1472-765X.2011.03039.x
    We quantified Campylobacter jejuni transferred from naturally contaminated raw chicken fillets and skins to similar cooked chicken parts via standard rubberwood (RW) and polyethylene cutting boards (PE).
    Matched MeSH terms: Plastics
  10. Tan LF, Elaine E, Pui LP, Nyam KL, Yusof YA
    Acta Sci Pol Technol Aliment, 2021 1 16;20(1):55-66.
    PMID: 33449520 DOI: 10.17306/J.AFS.0771
    BACKGROUND: Biodegradable food packaging has improved in quality with recent research incorporating natural extracts for functionality purposes. This research aims to develop chitosan film with Chrysanthemum morifolium essential oil to improve the shelf life of fresh raw chicken and beef.

    METHODS: 1.5% (w/v) chitosan films with Chrysanthemum morifolium essential oil (0% to 6% (v/v)) were produced through homogenization, the casting of a film solution in a petri dish and convection drying. The edible film was evaluated in terms of its physical (color, thickness, water vapor permeability), mechanical (puncture strength, tensile strength, elongation at break) and chemical properties (antioxidant assay, Fourier Transform Infrared Spectroscopy (FTIR)).

    RESULTS: With an increasing concentration of Chrysanthemum morifolium in the chitosan film, the test values of physical properties such as tensile strength, puncture force, and elongation at break declined significantly. However, the thickness, water permeability, and color profile (L*, a*, b*) values of the chitosan film increased. Similarly, the scavenging effect of antioxidant assay increased (from 4.97% to 18.63%) with a rise in Chrysanthemum morifolium concentration. 2%, 3%, and 4% of Chrysanthemum morifolium in the chitosan film showed a significant inhibition zone ranging from 2.67 mm to 3.82 mm against Staphylococcus aureus, a spoilage bacterium that is commonly found in chicken and beef products. The storage and pH tests showed that 4% of Chrysanthemum morifolium in the film maintained pH level (safe to consume), and the shelf life was extended from 3 days to 5 days of meat storage.

    CONCLUSIONS: This study demonstrated that the incorporation of 4% (v/v) Chrysanthemum morifolium extract into 1.5% (w/v) chitosan film extends the storage duration of raw meat products noticeably by reducing Staphylococcus aureus activity. Therefore, it increases the quality of the edible film as an environmentally friendly food packaging material so that it can act as a substitute for the use of plastic bags. Future studies will be conducted on improving the tensile strength of the edible film to increase the feasibility of using it in the food industry. In addition, the microstructure and surface morphology of the edible film can be further determined.

    Matched MeSH terms: Plastics
  11. Rasheed M, Jawaid M, Parveez B, Hussain Bhat A, Alamery S
    Polymers (Basel), 2021 Feb 01;13(3).
    PMID: 33535490 DOI: 10.3390/polym13030465
    The present study aims to develop a biodegradable polymer blend that is environmentally friendly and has comparable tensile and thermal properties with synthetic plastics. In this work, microcrystalline cellulose (MCC) extracted from bamboo-chips-reinforced poly (lactic acid) (PLA) and poly (butylene succinate) (PBS) blend composites were fabricated by melt-mixing at 180 °C and then hot pressing at 180 °C. PBS and MCC (0.5, 1, 1.5 wt%) were added to improve the brittle nature of PLA. Field emission scanning electron microscopy (FESEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscope (FTIR), thermogravimetric analysis (TGA), differential thermogravimetry (DTG), differential scanning calorimetry (DSC)), and universal testing machine were used to analyze morphology, crystallinity, physiochemical, thermal, and tensile properties, respectively. The thermal stability of the PLA-PBS blends enhanced on addition of MCC up to 1wt % due to their uniform dispersion in the polymer matrix. Tensile properties declined on addition of PBS and increased with MCC above (0.5 wt%) however except elongation at break increased on addition of PBS then decreased insignificantly on addition of MCC. Thus, PBS and MCC addition in PLA matrix decreases the brittleness, making it a potential contender that could be considered to replace plastics that are used for food packaging.
    Matched MeSH terms: Plastics
  12. Ibrahim YS, Tuan Anuar S, Azmi AA, Wan Mohd Khalik WMA, Lehata S, Hamzah SR, et al.
    JGH Open, 2021 Jan;5(1):116-121.
    PMID: 33490620 DOI: 10.1002/jgh3.12457
    Background and Aim: While dietary exposure to microplastics is increasingly recognized, it is unknown if ingested plastics remain within the digestive tract. We aimed to examine human colectomy specimens for microplastics and to report the characteristics as well as polymer composition of the particles.

    Methods: Colectomy samples were obtained from 11 adults (mean age 45.7, six males) who were residents of Northeastern Peninsular Malaysia. Microplastics were identified following chemical digestion of specimens and subsequent filtration. The samples were then examined for characteristics (abundance, length, shape, and color) and composition of three common polymer types using stereo- and Fourier Transform InfraRed (FTIR) microscopes.

    Results: Microplastics were detected in all 11 specimens with an average of 331 particles/individual specimen or 28.1 ± 15.4 particles/g tissue. Filaments or fibers accounted for 96.1% of particles, and 73.1% of all filaments were transparent. Out of 40 random filaments from 10 specimens (one had indeterminate spectra patterns), 90% were polycarbonate, 50% were polyamide, and 40% were polypropylene.

    Conclusion: Our study suggests that microplastics are ubiquitously present in the human colon.

    Matched MeSH terms: Plastics
  13. Mitsuwan W, Sin C, Keo S, Sangkanu S, de Lourdes Pereira M, Jimoh TO, et al.
    Heliyon, 2021 May;7(5):e06976.
    PMID: 34027178 DOI: 10.1016/j.heliyon.2021.e06976
    Plants with medicinal properties have been used in the treatment of several infectious diseases, including Acanthamoeba infections. The medicinal properties of Cambodian plant extracts; Annona muricata and Combretum trifoliatum were investigated against Acanthamoeba triangularis. A total of 39 plant extracts were evaluated and, as a result, 22 extracts showed positive anti-Acanthamoeba activity. Of the 22 extracts, 9 and 4 extracts showed anti-Acanthamoeba activity against trophozoites and cysts of A. triangularis, respectively. The minimum inhibitory concentration of A. muricata and C. trifoliatum extracts against trophozoites and cysts was 500 and 1,000 μg/mL, respectively. The combination of A. muricata at 1/4×MIC with chlorhexidine at 1/8×MIC demonstrated a synergistic effect against trophozoites, but partial synergy against cysts. A 40% reduction in trophozoites and 60% of cysts adhered to the plastic surface treated with both extracts at 1/2×MIC were noted comparing to the control (P < 0.05). Furthermore, a reduction of 80% and 90% of trophozoites adhered to the surface was observed after pre-treatment with A. muricata and C. trifoliatum extracts, respectively. A 90% of cysts adhered to the surface was decreased with pre-treatment of A. muricata at 1/2×MIC (P < 0.05). A 75% of trophozoites and cysts from Acanthamoeba adhered to the surface were removed after treatment with both extracts at 4×MIC (P < 0.05). In the model of contact lens, 1 log cells/mL of trophozoites and cysts was significantly decreased post-treatment with both extracts compared to the control. Trophozoites showed strong loss of acanthopodia and thorn-like projection pseudopodia, while cysts demonstrated retraction and folded appearance treated with both extracts when observed by SEM, which suggests the potential benefits of the medicinal plants A. muricata and C. trifoliatum as an option treatment against Acanthamoeba infections.
    Matched MeSH terms: Plastics
  14. Kiing, Sie Cheong, Balasubramaniam, Jaya-Raj, Yiu, Pang Hung, Wong, Sie Chuong, Amartalingam, Rajan
    MyJurnal
    Polyethylene is a widely used packaging material, but its non-biodegradable nature can lead to waste
    disposal problems. This increases the concern in research and development of biodegradable plastics from natural resource as alternatives to petroleum-derived plastics. In this study, biodegradable plastic composites were prepared by blending thermoplastic starch with natural rubber in the present of glycerol as plasticizer. Local sago starch was cast with 0.5 to 10% of natural rubber to prepare the bioplastic. The products were characterized by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), water absorption test, biodegradable test, hydrolysis test, and mechanical analysis. Meanwhile, composite with natural rubber latex was increased from 0.5 to 10% showing that the melting temperature is in the range of 120 to 150˚C, but with no significant difference. The water absorption characteristics, biodegradability, and tensile strength decreased by 11.21%, 30.18%, and 20.733 MPa, respectively. However, the elongation at break was increased from 26.67 to 503.3%. The findings of this study showed that sago starch has a great potential in bioplastic production with good miscibility and compatibility.
    Matched MeSH terms: Biodegradable Plastics
  15. Shahril Anuar Bahari, Kamrie Kamlon, Masitah Abu Kassim
    MyJurnal
    In this study, the rice husk flour-plastic waste composites (RPC) was produced from polypropylene (PP) and high density polyethylene (HDPE) wastes with 30 and 50% rice husk flour (RHF) contents. RPC was made by melt compounding and compression moulding processes. The electrical resistivity, thermal stability and tensile strength of RPC were determined. The RPC was tested in electrical resistivity and tensile strength according to the ASTM D-257 and ASTM D-638 respectively, while thermal stability was tested using thermogravimetric analysis (TGA) method. From the results, high content of RHF reduces all properties, except for tensile modulus of elasticity (TMOE) in tensile strength test. The ability of moisture absorption and the presence of hemicelluloses, cellulose and silica in RHF reduce the electrical resistivity and thermal stability behaviour of RPC from 50% RHF. The good binding elements and filler agglomeration in RPC from 50% RHF improve only TMOE. Insufficient stress transfer and rigid interphase occurred between RHF and plastics during tensile maximum load and elongation at break (Eb) in tensile strength test. In general, RPC from HDPE indicates better thermal stability, tensile modulus of rupture and Eb (in tensile strength test) compared to PP, based on the good behaviour of thermal conductivity, low water absorption, high molecular weight and good elongation properties of HDPE. However, RPC from PP shows good electrical resistance due to the low thermal expansion coefficient of PP.
    Matched MeSH terms: Plastics
  16. Goh See Ben, Zailina Hashim, Rosnan Hamzah
    MyJurnal
    A cross sectional study to determine the exposure of heat and its biological effects on the workers in a plastic factory located in the Shah Alam Industrial Estate, Selangor, Malaysia. Forty five respondents from the polymer section in the factory were selected as the respondents. Variables measured were the environmental temperature (WBGTin), air velocity, relative humidity, body temperature, average heart and recovery heart rate. QUESTEMP°34 Area Heat Stress Monitor was used to measure the environmental temperature in °C (WBGTin) and relative humidity (%). Velocicheck Model TSI 8830 was used to measure the air velocity in meter per second (m/s) while the OMRON Blood Pressure Monitor Model T3, was used to measure average heart rate and recovery heart rate. Body temperature (°C) was measured by the Instant Ear Thermometer-OMRON Gentle Temperature Model MC509. Interviews using questionnaires were used to determine respondents’ socioeconomic background, previous risk factors on heat exposure and other information related to heat stress. Results showed that the mean environmental temperature for the exposed group was 28.75°C, the mean air velocity was 0.15 m/s and the mean relative humidity was 58.1%. These production workers were exposed occasionally to heat when loading plastic powder into the molds as well as demolding the finished plastic products from the molds. The average time of monitoring was 2 hours for intermittent exposure and 8 hours duration for overall exposure. Maximum demand for work load was measured 1 minute after work activities were stopped at the demolding section. There was a significant difference between body temperature and average heart rate before work, after 2 hours of work and after 8 hours of work ( p < 0.001). The mean recovery heart rate after 1 min was 88.0 ± 12.0 beat per min. (bpm), indicating that there is no excessive physiological demand. Body temperature (36.8 ± 0.40°C) and average heart rate after 8 hours (78 ± 12 bpm) indicated a good body control of heat exposure. Five out of six workplaces monitored had temperatures of greater than 28°C (ACGIH TLV). The workers were exposed to moderate heat stress during the study period, however, body temperature and average heart rate measurement did not reach unacceptable level of physiologic strain.
    Matched MeSH terms: Plastics
  17. Zulperi D, Sijam K
    Plant Dis, 2014 Feb;98(2):275.
    PMID: 30708756 DOI: 10.1094/PDIS-03-13-0321-PDN
    During March 2011 to June 2012, 50 banana plants of cultivar Musa × paradisiaca 'Horn' with Moko disease symptoms were randomly sampled in 12 different locations of 5 outbreak states in Peninsular Malaysia comprising Kedah, Selangor, Pahang, Negeri Sembilan, and Johor, with disease incidence exceeding 90% in some severely affected plantations. The disease symptoms observed in the infected plants included yellowing and wilting of the oldest leaves, which became necrotic, and eventually led to their dieback or collapse. The pulp of banana fruits also became discolored and exuded bacterial ooze. Vascular tissues in pseudostems were discolored. Fragments from symptomatic plant samples were excised and cultured on Kelman's-tetrazolium salt (TZC) medium. Twenty positive samples produced fluidal colonies that were either entirely white or white with pink centers after incubation for 24 to 48 h at 28°C on Kelman's-TZC medium and appeared as gram-negative rods after Gram staining. They were also positive for potassium hydroxide (KOH), Kovacs oxidase, and catalase tests, but negative for utilization of disaccharides and hexose alcohols, which are characteristics of biovar 1 Ralstonia solanacearum. For the pathogenicity test, 30 μl of 108 CFU/ml bacterial suspension of three selected virulent strains were injected into banana (Musa × paradisiaca 'Horn') leaves explants grown in plastic pots of 1,440 cm3 volume in a greenhouse, with temperature range from 26 to 35°C. Leaves that were infiltrated with sterile distilled water served as a negative control. Inoculations with all isolates were performed in three replications, as well as the uninoculated control leaves explants. The inoculated plants produced the same symptoms as observed on naturally diseased samples, whereas control plants remained asymptomatic. Strain cultures were re-isolated and possessed the morphological and biochemical characteristics as previously described. PCR amplification using race 2 R. solanacearum primers ISRso19-F (5'-TGGGAGAGGATGGCGGCTTT-3') and ISRso19-R (5'-TGACCCGCCTTTCGGTGTTT-3') (3) produced a 1,900-bp product from DNA of all bacterial strains. BLAST searches resulted that the sequences were 95 to 98% identical to published R. solanacearum strain race 2 insertion sequence ISRso19 (GenBank Accession No. AF450275). These genes were later deposited in GenBank (KC812051, KC812052, and KC812053). Phylotype-specific multiplex PCR (Pmx-PCR) and Musa-specific multiplex PCR (Mmx-PCR) were performed to identify the phylotype and sequevar of all isolates (4). Pmx-PCR showed that all isolates belonged to phylotype II, whereas Mmx-PCR showed that they belonged to phylotype II sequevar 4 displaying 351-bp amplicon. Although there were previously extensive studies on R. solanacearum associated with bacterial wilt disease of banana crops in Malaysia, none related to Moko disease has been reported (1,2). The result has a great importance to better understand and document R. solanacearum race 2 biovar 1, since banana has been identified as the second most important commercial fruit crop with a high economic value in Malaysia. References: (1) R. Khakvar et al. Plant Pathol. J. 7:162, 2008. (2) R. Khakvar et al. Am. J. Agri. Biol. Sci. 3:490, 2008. (3) Y. A. Lee and C. N. Khor. Plant Pathol. Bull. 12:57, 2003. (4) P. Prior et al. Pages 405-414 in: Bacterial Wilt Disease and the Ralstonia solanacearum Species Complex. The American Phytopathological Society, St. Paul, MN, 2005.
    Matched MeSH terms: Plastics
  18. Lui JL
    Oper Dent, 1994 Sep-Oct;19(5):165-8.
    PMID: 8700755
    In this study, the depth of cure of composite resins cured within simulated root canals by means of light-transmitting plastic posts was compared to that achieved by the conventional light-curing method. Six sizes of posts with diameters of 1.05 mm, 1.20 mm, 1.35 mm, 1.50 mm, 1.65 mm, and 1.80 mm were investigated. In general, the larger the post diameter, the greater was the depth of cure. There were significant differences in the depth of cure between the control and all sizes of posts investigated. There were also significant differences between the various post diameters except for the 1.35 mm and 1.50 mm diameter posts. It was possible to achieve a depth of cure exceeding 11 mm using these light-transmitting posts.
    Matched MeSH terms: Plastics
  19. Kouidhi W, Thannimalay L, Soon CS, Ali Mohd M
    Int J Occup Med Environ Health, 2017 Jul 14;30(5):743-750.
    PMID: 28584331 DOI: 10.13075/ijomeh.1896.00917
    OBJECTIVES: The purpose of this study has been to assess ambient bisphenol A (BPA) levels in workplaces and urine levels of workers and to establish a BPA database for different populations in Malaysia.

    MATERIAL AND METHODS: Urine samples were collected from plastic factory workers and from control subjects after their shift. Air samples were collected using gas analyzers from 5 sampling positions in the injection molding unit work area and from ambient air. The level of BPA in airborne and urine samples was quantified by the gas chromatography mass spectrometry - selected ion monitoring (GCMS-SIM) analysis.

    RESULTS: Bisphenol A was detected in the median range of 8-28.3 ng/m³ and 2.4-3.59 ng/m³ for the 5 sampling points in the plastic molding factory and in the ambient air respectively. The median urinary BPA concentration was significantly higher in the workers (3.81 ng/ml) than in control subjects (0.73 ng/ml). The urinary BPA concentration was significantly associated with airborne BPA levels (ρ = 0.55, p < 0.01).

    CONCLUSIONS: Our findings provide the first evidence that workers in a molding factory in Malaysia are occupationally exposed to BPA. Int J Occup Med Environ Health 2017;30(5):743-750.

    Matched MeSH terms: Plastics
  20. Ramakrishnan N, Sharma S, Gupta A, Alashwal BY
    Int J Biol Macromol, 2018 May;111:352-358.
    PMID: 29320725 DOI: 10.1016/j.ijbiomac.2018.01.037
    Plastics have been one of the highly valued materials and it plays an significant role in human's life such as in food packaging and biomedical applications. Bioplastic materials can gradually work as a substitute for various materials based on fossil oil. The issue like sustainability and environmental challenges which occur due to manufacturing and disposal of synthetic plastics can be conquering by bio-based plastics. Feathers are among the most inexpensive abundant, and renewable protein sources. Feathers disposal to the landfills leads to environmental pollutions and it results into wastage of 90% of protein raw material. Keratin is non-burning hydrophilic, and biodegradable due to which it can be applicable in various ways via chemical processing. Main objective of this research is to synthesis bioplastic using keratin from chicken feathers. Extracted keratin solution mixed with different concentration of glycerol (2 to 10%) to produce plastic films. The mixture was stirred under constant magnetic stirring at 60 °C for 5 h. The mixtures are then poured into aluminum weighing boat and dried in an oven at 60 °C for 24 h. The mechanical properties of the samples were tested and the physic-chemical properties of the bioplastic were studied. According to the results, Scanning Electron Microscopy test showed good compatible morphologies without holes, cavity and edge. The difference in chemical composition was analyzed using Fourier transform infrared spectroscopy (FTIR). The samples were also characterized by thermo gravimetric analysis (TGA), differential scanning calorimetry (DSC), X-Ray diffraction (XRD) to check the thermal and crystallinity properties. Other than that, bioplastic made up from keratin with 2% of glycerol has the best mechanical and thermal properties. According to biodegradability test, all bioplastic produced are proven biodegradable. Therefore, the results showed possible application of the film as an alternative to fossil oil based materials which are harmful to the environment.
    Matched MeSH terms: Plastics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links