Displaying publications 1 - 20 of 634 in total

Abstract:
Sort:
  1. Singh O, Chan JY, Lin K, Heng CC, Chowbay B
    PLoS One, 2012;7(12):e51771.
    PMID: 23272163 DOI: 10.1371/journal.pone.0051771
    This study aimed to explore the influence of SLC22A1, PXR, ABCG2, ABCB1 and CYP3A5 3 genetic polymorphisms on imatinib mesylate (IM) pharmacokinetics in Asian patients with chronic myeloid leukemia (CML).
    Matched MeSH terms: Polymorphism, Single Nucleotide
  2. Low JS, Chin YM, Mushiroda T, Kubo M, Govindasamy GK, Pua KC, et al.
    PLoS One, 2016;11(1):e0145774.
    PMID: 26730743 DOI: 10.1371/journal.pone.0145774
    BACKGROUND: Nasopharyngeal carcinoma (NPC) is a neoplasm of the epithelial lining of the nasopharynx. Despite various reports linking genomic variants to NPC predisposition, very few reports were done on copy number variations (CNV). CNV is an inherent structural variation that has been found to be involved in cancer predisposition.

    METHODS: A discovery cohort of Malaysian Chinese descent (NPC patients, n = 140; Healthy controls, n = 256) were genotyped using Illumina® HumanOmniExpress BeadChip. PennCNV and cnvPartition calling algorithms were applied for CNV calling. Taqman CNV assays and digital PCR were used to validate CNV calls and replicate candidate copy number variant region (CNVR) associations in a follow-up Malaysian Chinese (NPC cases, n = 465; and Healthy controls, n = 677) and Malay cohort (NPC cases, n = 114; Healthy controls, n = 124).

    RESULTS: Six putative CNVRs overlapping GRM5, MICA/HCP5/HCG26, LILRB3/LILRA6, DPY19L2, RNase3/RNase2 and GOLPH3 genes were jointly identified by PennCNV and cnvPartition. CNVs overlapping GRM5 and MICA/HCP5/HCG26 were subjected to further validation by Taqman CNV assays and digital PCR. Combined analysis in Malaysian Chinese cohort revealed a strong association at CNVR on chromosome 11q14.3 (Pcombined = 1.54x10-5; odds ratio (OR) = 7.27; 95% CI = 2.96-17.88) overlapping GRM5 and a suggestive association at CNVR on chromosome 6p21.3 (Pcombined = 1.29x10-3; OR = 4.21; 95% CI = 1.75-10.11) overlapping MICA/HCP5/HCG26 genes.

    CONCLUSION: Our results demonstrated the association of CNVs towards NPC susceptibility, implicating a possible role of CNVs in NPC development.

    Matched MeSH terms: Polymorphism, Single Nucleotide
  3. Suaini NH, Koplin JJ, Ellis JA, Peters RL, Ponsonby AL, Dharmage SC, et al.
    J Steroid Biochem Mol Biol, 2014 Oct;144 Pt B:445-54.
    PMID: 25174667 DOI: 10.1016/j.jsbmb.2014.08.018
    We aimed to investigate the relationship between genetic and environmental exposure and vitamin D status at age one, stratified by ethnicity. This study included 563 12-month-old infants in the HealthNuts population-based study. DNA from participants' blood samples was genotyped using Sequenom MassARRAY MALDI-TOF system on 28 single nucleotide polymorphisms (SNPs) in six genes. Using logistic regression, we examined associations between environmental exposure and SNPs in vitamin D pathway and filaggrin genes and vitamin D insufficiency (VDI). VDI, defined as serum 25-hydroxyvitamin D3(25(OH)D3) level ≤50nmol/L, was measured using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Infants were stratified by ethnicity determined by parent's country of birth. Infants formula fed at 12 months were associated with reduced odds of VDI compared to infants with no current formula use at 12 months. This association differed by ethnicity (Pinteraction=0.01). The odds ratio (OR) of VDI was 0.29 for Caucasian infants (95% CI, 0.18-0.47) and 0.04 for Asian infants (95% CI, 0.006-0.23). Maternal vitamin D supplementation during pregnancy and/or breastfeeding were associated with increased odds of infants being VDI (OR, 2.39; 95% CI, 1.11-5.18 and OR, 2.5; 95% CI, 1.20-5.24 respectively). Presence of a minor allele for any GC SNP (rs17467825, rs1155563, rs2282679, rs3755967, rs4588, rs7041) was associated with increased odds of VDI. Caucasian infants homozygous (AA) for rs4588 had an OR of 2.49 of being associated with VDI (95% CI, 1.19-5.18). In a country without routine infant vitamin D supplementation or food chain fortification, formula use is strongly associated with a reduced risk of VDI regardless of ethnicity. There was borderline significance for an association between filaggrin mutations and VDI. However, polymorphisms in vitamin D pathway related genes were associated with increased likelihood of being VDI in infancy.
    Matched MeSH terms: Polymorphism, Single Nucleotide
  4. Stegger M, Wirth T, Andersen PS, Skov RL, De Grassi A, Simões PM, et al.
    mBio, 2014 Aug 26;5(5):e01044-14.
    PMID: 25161186 DOI: 10.1128/mBio.01044-14
    Community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) was recognized in Europe and worldwide in the late 1990s. Within a decade, several genetically and geographically distinct CA-MRSA lineages carrying the small SCCmec type IV and V genetic elements and the Panton-Valentine leukocidin (PVL) emerged around the world. In Europe, the predominant CA-MRSA strain belongs to clonal complex 80 (CC80) and is resistant to kanamycin/amikacin and fusidic acid. CC80 was first reported in 1993 but was relatively rare until the late 1990s. It has since been identified throughout North Africa, the Middle East, and Europe, with recent sporadic reports in sub-Saharan Africa. While strongly associated with skin and soft tissue infections, it is rarely found among asymptomatic carriers. Methicillin-sensitive S. aureus (MSSA) CC80 strains are extremely rare except in sub-Saharan Africa. In the current study, we applied whole-genome sequencing to a global collection of both MSSA and MRSA CC80 isolates. Phylogenetic analyses strongly suggest that the European epidemic CA-MRSA lineage is derived from a PVL-positive MSSA ancestor from sub-Saharan Africa. Moreover, the tree topology suggests a single acquisition of both the SCCmec element and a plasmid encoding the fusidic acid resistance determinant. Four canonical SNPs distinguish the derived CA-MRSA lineage and include a nonsynonymous mutation in accessory gene regulator C (agrC). These changes were associated with a star-like expansion into Europe, the Middle East, and North Africa in the early 1990s, including multiple cases of cross-continent imports likely driven by human migrations.

    IMPORTANCE: With increasing levels of CA-MRSA reported from most parts of the Western world, there is a great interest in understanding the origin and factors associated with the emergence of these epidemic lineages. To trace the origin, evolution, and dissemination pattern of the European CA-MRSA clone (CC80), we sequenced a global collection of strains of the S. aureus CC80 lineage. Our study determined that a single descendant of a PVL-positive methicillin-sensitive ancestor circulating in sub-Saharan Africa rose to become the dominant CA-MRSA clone in Europe, the Middle East, and North Africa. In the transition from a methicillin-susceptible lineage to a successful CA-MRSA clone, it simultaneously became resistant to fusidic acid, a widely used antibiotic for skin and soft tissue infections, thus demonstrating the importance of antibiotic selection in the success of this clone. This finding furthermore highlights the significance of horizontal gene acquisitions and underscores the combined importance of these factors for the success of CA-MRSA.

    Matched MeSH terms: Polymorphism, Single Nucleotide
  5. Au A, Baba AA, Azlan H, Norsa'adah B, Ankathil R
    J Clin Pharm Ther, 2014 Dec;39(6):685-90.
    PMID: 25060527 DOI: 10.1111/jcpt.12197
    The introduction and success of imatinib mesylate (IM) has brought about a paradigm shift in chronic myeloid leukaemia (CML) treatment. However, despite the high efficacy of IM, clinical resistance develops due to a heterogeneous array of mechanisms. Pharmacogenetic variability as a result of genetic polymorphisms could be one of the most important factors influencing resistance to IM. The aim of this study was to investigate the association between genetic variations in drug efflux transporter ABCC1 (MRP1) and ABCC2 (MRP2) genes and response to IM in patients with CML.
    Matched MeSH terms: Polymorphism, Single Nucleotide
  6. Sermwittayawong N, Nishibuchi M, Sawangjaroen N, Vuddhakul V
    PMID: 26867373
    During 2009 to 2010, a total of 408 blood samples collected from malaria patients in Ranong (149) and Yala (259) Provinces, Thailand were investigated for Plasmodium spp using microscopic examination. There are no statistical differences in the prevalence of P. falciparum and P. vivax in samples collected from Ranong and Yala (46% vs 52%, and 54% vs 45%, respectively). Single nucleotide polymorphism of codon 86 in pfmdr1 (encoding P. falciparum multidrug resistance protein 1) was investigated among 75 samples of P. falciparum and 2 samples of P. knowlesi. A pfmdr1 N86Y mutation was detected in 1 out of 29 samples and 45 out of 46 samples obtained from Ranong and Yala Provinces, respectively. It is interesting that pfmdr1 was detected in two P. knowlesi DNA samples obtained previously from Ranong Province which was 99% homologous to pfmdr1 obtained from falciparum parasites in the same area but the mutation was not observed. The difference in multidrug resistance protein in Plasmodium obtained from those two border areas of Thailand will be of use in monitoring drug resistance in these border regions of the country.
    Matched MeSH terms: Polymorphism, Single Nucleotide
  7. Hossain MM, Mukheem A, Kamarul T
    Life Sci, 2015 Aug 15;135:55-67.
    PMID: 25818192 DOI: 10.1016/j.lfs.2015.03.010
    Hypoadiponectinemia is characterized by low plasma adiponectin levels that can be caused by genetic factors, such as single nucleotide polymorphisms (SNPs) and mutations in the adiponectin gene or by visceral fat deposition/obesity. Reports have suggested that hypoadiponectinemia is associated with dyslipidemia, hypertension, hyperuricemia, metabolic syndrome, atherosclerosis, type 2 diabetes mellitus and various cardiovascular diseases. Previous studies have highlighted several potential strategies to up-regulate adiponectin secretion and function, including visceral fat reduction through diet therapy and exercise, administration of exogenous adiponectin, treatment with peroxisome proliferator-activating receptor gamma (PPARγ) agonists (e.g., thiazolidinediones (TZDs)) and ligands (e.g., bezafibrate and fenofibrate) or the blocking of the renin-angiotensin system. Likewise, the up-regulation of the expression and stimulation of adiponectin receptors by using adiponectin receptor agonists would be an effective method to treat obesity-related conditions. Notably, adiponectin is an abundantly expressed bioactive protein that also exhibits a wide spectrum of biological properties, such as insulin-sensitizing, anti-diabetic, anti-inflammatory and anti-atherosclerotic activities. Although targeting adiponectin and its receptors has been useful for treating diabetes and other metabolic-related diseases in experimental studies, current drug development based on adiponectin/adiponectin receptors for clinical applications is scarce, and there is a lack of available clinical trial data. This comprehensive review discusses the strategies that are presently being pursued to harness the potential of adiponectin up-regulation. In addition, we examined the current status of drug development and its potential for clinical applications.
    Matched MeSH terms: Polymorphism, Single Nucleotide
  8. Borgquist S, Rosendahl AH, Czene K, Bhoo-Pathy N, Dorkhan M, Hall P, et al.
    Breast Cancer Res, 2018 08 09;20(1):93.
    PMID: 30092829 DOI: 10.1186/s13058-018-1026-7
    BACKGROUND: Long-term insulin exposure has been implicated in breast cancer etiology, but epidemiological evidence remains inconclusive. The aims of this study were to investigate the association of insulin therapy with mammographic density (MD) as an intermediate phenotype for breast cancer and to assess associations with long-term elevated circulating insulin levels using a genetic score comprising 18 insulin-associated variants.

    METHODS: We used data from the KARolinska MAmmography (Karma) project, a Swedish mammography screening cohort. Insulin-treated patients with type 1 (T1D, n = 122) and type 2 (T2D, n = 237) diabetes were identified through linkage with the Prescribed Drug Register and age-matched to 1771 women without diabetes. We assessed associations with treatment duration and insulin glargine use, and we further examined MD differences using non-insulin-treated T2D patients as an active comparator. MD was measured using a fully automated volumetric method, and analyses were adjusted for multiple potential confounders. Associations with the insulin genetic score were assessed in 9437 study participants without diabetes.

    RESULTS: Compared with age-matched women without diabetes, insulin-treated T1D patients had greater percent dense (8.7% vs. 11.4%) and absolute dense volumes (59.7 vs. 64.7 cm3), and a smaller absolute nondense volume (615 vs. 491 cm3). Similar associations were observed for insulin-treated T2D, and estimates were not materially different in analyses comparing insulin-treated T2D patients with T2D patients receiving noninsulin glucose-lowering medication. In both T1D and T2D, the magnitude of the association with the absolute dense volume was highest for long-term insulin therapy (≥ 5 years) and the long-acting insulin analog glargine. No consistent evidence of differential associations by insulin treatment duration or type was found for percent dense and absolute nondense volumes. Genetically predicted insulin levels were positively associated with percent dense and absolute dense volumes, but not with the absolute nondense volume (percentage difference [95% CI] per 1-SD increase in insulin genetic score = 0.8 [0.0; 1.6], 0.9 [0.1; 1.8], and 0.1 [- 0.8; 0.9], respectively).

    CONCLUSIONS: The consistency in direction of association for insulin treatment and the insulin genetic score with the absolute dense volume suggest a causal influence of long-term increased insulin exposure on mammographic dense breast tissue.

    Matched MeSH terms: Polymorphism, Single Nucleotide
  9. Chew CS, Cherry CL, Kamarulzaman A, Yien TH, Aghafar Z, Price P
    Dis Markers, 2011;31(5):303-9.
    PMID: 22048272 DOI: 10.3233/DMA-2011-0844
    Chemokines influence the migration of leukocytes to secondary lymphoid tissue and sites of inflammation. In HIV patients, they are implicated in inflammatory complications of antiretroviral therapy (ART), notably Immune Reconstitution Disease (IRD) and Sensory Neuropathy (SN). However most chemokines have not been monitored as patients begin ART or correlated with IRD and SN.
    Matched MeSH terms: Polymorphism, Single Nucleotide
  10. Al-Absi B, Razif MFM, Noor SM, Saif-Ali R, Aqlan M, Salem SD, et al.
    Genet Test Mol Biomarkers, 2017 Oct;21(10):592-599.
    PMID: 28768142 DOI: 10.1089/gtmb.2017.0084
    BACKGROUND: Genome-wide and candidate gene association studies have previously revealed links between a predisposition to acute lymphoblastic leukemia (ALL) and genetic polymorphisms in the following genes: IKZF1 (7p12.2; ID: 10320), DDC (7p12.2; ID: 1644), CDKN2A (9p21.3; ID: 1029), CEBPE (14q11.2; ID: 1053), and LMO1 (11p15; ID: 4004). In this study, we aimed to conduct an investigation into the possible association between polymorphisms in these genes and ALL within a sample of Yemeni children of Arab-Asian descent.

    METHODS: Seven single-nucleotide polymorphisms (SNPs) in IKZF1, three SNPs in DDC, two SNPs in CDKN2A, two SNPs in CEBPE, and three SNPs in LMO1 were genotyped in 289 Yemeni children (136 cases and 153 controls), using the nanofluidic Dynamic Array (Fluidigm 192.24 Dynamic Array). Logistic regression analyses were used to estimate ALL risk, and the strength of association was expressed as odds ratios with 95% confidence intervals.

    RESULTS: We found that the IKZF1 SNP rs10235796 C allele (p = 0.002), the IKZF1 rs6964969 A>G polymorphism (p = 0.048, GG vs. AA), the CDKN2A rs3731246 G>C polymorphism (p = 0.047, GC+CC vs. GG), and the CDKN2A SNP rs3731246 C allele (p = 0.007) were significantly associated with ALL in Yemenis of Arab-Asian descent. In addition, a borderline association was found between IKZF1 rs4132601 T>G variant and ALL risk. No associations were found between the IKZF1 SNPs (rs11978267; rs7789635), DDC SNPs (rs3779084; rs880028; rs7809758), CDKN2A SNP (rs3731217), the CEBPE SNPs (rs2239633; rs12434881) and LMO1 SNPs (rs442264; rs3794012; rs4237770) with ALL in Yemeni children.

    CONCLUSION: The IKZF1 SNPs, rs10235796 and rs6964969, and the CDKN2A SNP rs3731246 (previously unreported) could serve as risk markers for ALL susceptibility in Yemeni children.

    Matched MeSH terms: Polymorphism, Single Nucleotide
  11. Munkongdee T, Tongsima S, Ngamphiw C, Wangkumhang P, Peerapittayamongkol C, Hashim HB, et al.
    Sci Rep, 2021 05 14;11(1):10352.
    PMID: 33990643 DOI: 10.1038/s41598-021-89641-2
    β-Thalassemia/HbE disease has a wide spectrum of clinical phenotypes ranging from asymptomatic to dependent on regular blood transfusions. Ability to predict disease severity is helpful for clinical management and treatment decision making. A thalassemia severity score has been developed from Mediterranean β-thalassemia patients. However, different ethnic groups may have different allele frequency and linkage disequilibrium structures. Here, Thai β0-thalassemia/HbE disease genome-wild association studies (GWAS) data of 487 patients were analyzed by SNP interaction prioritization algorithm, interacting Loci (iLoci), to find predictive SNPs for disease severity. Three SNPs from two SNP interaction pairs associated with disease severity were identifies. The three-SNP disease severity risk score composed of rs766432 in BCL11A, rs9399137 in HBS1L-MYB and rs72872548 in HBE1 showed more than 85% specificity and 75% accuracy. The three-SNP predictive score was then validated in two independent cohorts of Thai and Malaysian β0-thalassemia/HbE patients with comparable specificity and accuracy. The SNP risk score could be used for prediction of clinical severity for Southeast Asia β0-thalassemia/HbE population.
    Matched MeSH terms: Polymorphism, Single Nucleotide
  12. Ahmad N, Shah SA, Abdul Gafor AH, Abdul Murad NA, Kamaruddin MA, Abd Jalal N, et al.
    Diabet Med, 2020 11;37(11):1890-1901.
    PMID: 32012348 DOI: 10.1111/dme.14257
    AIM: To examine the possible gene-environment interactions between 32 single nucleotide polymorphisms and environmental factors that could modify the probability of chronic kidney disease.

    METHODS: A case-control study was conducted involving 600 people with type 2 diabetes (300 chronic kidney disease cases, 300 controls) who participated in The Malaysian Cohort project. Retrospective subanalysis was performed on the chronic kidney disease cases to assess chronic kidney disease progression from the recruitment phase. We genotyped 32 single nucleotide polymorphisms using mass spectrometry. The probability of chronic kidney disease and predicted rate of newly detected chronic kidney disease progression were estimated from the significant gene-environment interaction analyses.

    RESULTS: Four single nucleotide polymorphisms (eNOS rs2070744, PPARGC1A rs8192678, KCNQ1 rs2237895 and KCNQ1 rs2283228) and five environmental factors (age, sex, smoking, waist circumference and HDL) were significantly associated with chronic kidney disease. Gene-environment interaction analyses revealed significant probabilities of chronic kidney disease for sex (PPARGC1A rs8192678), smoking (eNOS rs2070744, PPARGC1A rs8192678 and KCNQ1 rs2237895), waist circumference (eNOS rs2070744, PPARGC1A rs8192678, KCNQ1 rs2237895 and KCNQ1 rs2283228) and HDL (eNOS rs2070744 and PPARGC1A rs8192678). Subanalysis indicated that the rate of newly detected chronic kidney disease progression was 133 cases per 1000 person-years (95% CI: 115, 153), with a mean follow-up period of 4.78 (SD 0.73) years. There was a significant predicted rate of newly detected chronic kidney disease progression in gene-environment interactions between KCNQ1 rs2283228 and two environmental factors (sex and BMI).

    CONCLUSIONS: Our findings suggest that the gene-environment interactions of eNOS rs2070744, PPARGC1A rs8192678, KCNQ1 rs2237895 and KCNQ1 rs2283228 with specific environmental factors could modify the probability for chronic kidney disease.

    Matched MeSH terms: Polymorphism, Single Nucleotide
  13. Tindall SM, Vallières C, Lakhani DH, Islahudin F, Ting KN, Avery SV
    Sci Rep, 2018 02 06;8(1):2464.
    PMID: 29410428 DOI: 10.1038/s41598-018-20816-0
    Antimalarial drug resistance hampers effective malaria treatment. Critical SNPs in a particular, putative amino acid transporter were recently linked to chloroquine (CQ) resistance in malaria parasites. Here, we show that this conserved protein (PF3D7_0629500 in Plasmodium falciparum; AAT1 in P. chabaudi) is a structural homologue of the yeast amino acid transporter Tat2p, which is known to mediate quinine uptake and toxicity. Heterologous expression of PF3D7_0629500 in yeast produced CQ hypersensitivity, coincident with increased CQ uptake. PF3D7_0629500-expressing cultures were also sensitized to related antimalarials; amodiaquine, mefloquine and particularly quinine. Drug sensitivity was reversed by introducing a SNP linked to CQ resistance in the parasite. Like Tat2p, PF3D7_0629500-dependent quinine hypersensitivity was suppressible with tryptophan, consistent with a common transport mechanism. A four-fold increase in quinine uptake by PF3D7_0629500 expressing cells was abolished by the resistance SNP. The parasite protein localised primarily to the yeast plasma membrane. Its expression varied between cells and this heterogeneity was used to show that high-expressing cell subpopulations were the most drug sensitive. The results reveal that the PF3D7_0629500 protein can determine the level of sensitivity to several major quinine-related antimalarials through an amino acid-inhibitable drug transport function. The potential clinical relevance is discussed.
    Matched MeSH terms: Polymorphism, Single Nucleotide
  14. Ruzlan N, Low YSJ, Win W, Azizah Musa N, Ong AL, Chew FT, et al.
    Sci Rep, 2017 Aug 29;7(1):9626.
    PMID: 28852058 DOI: 10.1038/s41598-017-10195-3
    The fructose-1,6-bisphosphate aldolase catalyzed glycolysis branch that forms dihydroxyacetone phosphate and glyceraldehyde-3-phosphate was identified as a key driver of increased oil synthesis in oil palm and was validated in Saccharomyces cerevisiae. Reduction in triose phosphate isomerase (TPI) activity in a yeast knockdown mutant resulted in 19% increase in lipid content, while yeast strains overexpressing oil palm fructose-1,6-bisphosphate aldolase (EgFBA) and glycerol-3-phosphate dehydrogenase (EgG3PDH) showed increased lipid content by 16% and 21%, respectively. Genetic association analysis on oil palm SNPs of EgTPI SD_SNP_000035801 and EgGAPDH SD_SNP_000041011 showed that palms harboring homozygous GG in EgTPI and heterozygous AG in EgGAPDH exhibited higher mesocarp oil content based on dry weight. In addition, AG genotype of the SNP of EgG3PDH SD_SNP_000008411 was associated with higher mean mesocarp oil content, whereas GG genotype of the EgFBA SNP SD_SNP_000007765 was favourable. Additive effects were observed with a combination of favourable alleles in TPI and FBA in Nigerian x AVROS population (family F7) with highest allele frequency GG.GG being associated with a mean increase of 3.77% (p value = 2.3E-16) oil content over the Family 1. An analogous effect was observed in yeast, where overexpressed EgFBA in TPI - resulted in a 30% oil increment. These results provide insights into flux balances in glycolysis leading to higher yield in mesocarp oil-producing fruit.
    Matched MeSH terms: Polymorphism, Single Nucleotide
  15. Zeng C, Guo X, Long J, Kuchenbaecker KB, Droit A, Michailidou K, et al.
    Breast Cancer Res, 2016 06 21;18(1):64.
    PMID: 27459855 DOI: 10.1186/s13058-016-0718-0
    BACKGROUND: Multiple recent genome-wide association studies (GWAS) have identified a single nucleotide polymorphism (SNP), rs10771399, at 12p11 that is associated with breast cancer risk.

    METHOD: We performed a fine-scale mapping study of a 700 kb region including 441 genotyped and more than 1300 imputed genetic variants in 48,155 cases and 43,612 controls of European descent, 6269 cases and 6624 controls of East Asian descent and 1116 cases and 932 controls of African descent in the Breast Cancer Association Consortium (BCAC; http://bcac.ccge.medschl.cam.ac.uk/ ), and in 15,252 BRCA1 mutation carriers in the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Stepwise regression analyses were performed to identify independent association signals. Data from the Encyclopedia of DNA Elements project (ENCODE) and the Cancer Genome Atlas (TCGA) were used for functional annotation.

    RESULTS: Analysis of data from European descendants found evidence for four independent association signals at 12p11, represented by rs7297051 (odds ratio (OR) = 1.09, 95 % confidence interval (CI) = 1.06-1.12; P = 3 × 10(-9)), rs805510 (OR = 1.08, 95 % CI = 1.04-1.12, P = 2 × 10(-5)), and rs1871152 (OR = 1.04, 95 % CI = 1.02-1.06; P = 2 × 10(-4)) identified in the general populations, and rs113824616 (P = 7 × 10(-5)) identified in the meta-analysis of BCAC ER-negative cases and BRCA1 mutation carriers. SNPs rs7297051, rs805510 and rs113824616 were also associated with breast cancer risk at P 

    Matched MeSH terms: Polymorphism, Single Nucleotide
  16. Mohamad Shah NS, Salahshourifar I, Sulong S, Wan Sulaiman WA, Halim AS
    BMC Genet, 2016 Feb 11;17:39.
    PMID: 26868259 DOI: 10.1186/s12863-016-0345-x
    BACKGROUND: Nonsyndromic orofacial clefts are one of the most common birth defects worldwide. It occurs as a result of genetic or environmental factors. This study investigates the genetic contribution to nonsyndromic cleft lip and/or palate through the analysis of family pedigrees. Candidate genes associated with the condition were identified from large extended families from the Malay population.

    RESULTS: A significant nonparametric linkage (NPL) score was detected in family 100. Other suggestive NPL and logarithm of the odds (LOD) scores were attained from families 50, 58, 99 and 100 under autosomal recessive mode. Heterogeneity LOD (HLOD) score ≥ 1 was determined for all families, confirming genetic heterogeneity of the population and indicating that a proportion of families might be linked to each other. Several candidate genes in linkage intervals were determined; LPHN2 at 1p31, SATB2 at 2q33.1-q35, PVRL3 at 3q13.3, COL21A1 at 6p12.1, FOXP2 at 7q22.3-q33, FOXG1 and HECTD1 at 14q12 and TOX3 at 16q12.1.

    CONCLUSIONS: We have identified several novel and known candidate genes for nonsyndromic cleft lip and/or palate through genome-wide linkage analysis. Further analysis of the involvement of these genes in the condition will shed light on the disease mechanism. Comprehensive genetic testing of the candidate genes is warranted.

    Matched MeSH terms: Polymorphism, Single Nucleotide
  17. Matejcic M, de Batlle J, Ricci C, Biessy C, Perrier F, Huybrechts I, et al.
    Int J Cancer, 2017 Mar 15;140(6):1246-1259.
    PMID: 27905104 DOI: 10.1002/ijc.30536
    Epidemiological studies have reported inconsistent findings for the association between B vitamins and breast cancer (BC) risk. We investigated the relationship between biomarkers of folate and vitamin B12 and the risk of BC in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. Plasma concentrations of folate and vitamin B12 were determined in 2,491 BC cases individually matched to 2,521 controls among women who provided baseline blood samples. Multivariable logistic regression models were used to estimate odds ratios by quartiles of either plasma B vitamin. Subgroup analyses by menopausal status, hormone receptor status of breast tumors (estrogen receptor [ER], progesterone receptor [PR] and human epidermal growth factor receptor 2 [HER2]), alcohol intake and MTHFR polymorphisms (677C > T and 1298A > C) were also performed. Plasma levels of folate and vitamin B12 were not significantly associated with the overall risk of BC or by hormone receptor status. A marginally positive association was found between vitamin B12 status and BC risk in women consuming above the median level of alcohol (ORQ4-Q1  = 1.26; 95% CI 1.00-1.58; Ptrend  = 0.05). Vitamin B12 status was also positively associated with BC risk in women with plasma folate levels below the median value (ORQ4-Q1  = 1.29; 95% CI 1.02-1.62; Ptrend  = 0.03). Overall, folate and vitamin B12 status was not clearly associated with BC risk in this prospective cohort study. However, potential interactions between vitamin B12 and alcohol or folate on the risk of BC deserve further investigation.
    Matched MeSH terms: Polymorphism, Single Nucleotide
  18. Au A, Aziz Baba A, Goh AS, Wahid Fadilah SA, Teh A, Rosline H, et al.
    Biomed Pharmacother, 2014 Apr;68(3):343-9.
    PMID: 24581936 DOI: 10.1016/j.biopha.2014.01.009
    The introduction and success of imatinib mesylate (IM) has become a paradigm shift in chronic myeloid leukemia (CML) treatment. However, the high efficacy of IM has been hampered by the issue of clinical resistance that might due to pharmacogenetic variability. In the current study, the contribution of three common single nucleotide polymorphisms (SNPs) of ABCB1 (T1236C, G2677T/A and C3435T) and two SNPs of ABCG2 (G34A and C421A) genes in mediating resistance and/or good response among 215 CML patients on IM therapy were investigated. Among these patients, the frequency distribution of ABCG2 421 CC, CA and AA genotypes were significantly different between IM good response and resistant groups (P=0.01). Resistance was significantly associated with patients who had homozygous ABCB1 1236 CC genotype with OR 2.79 (95%CI: 1.217-6.374, P=0.01). For ABCB1 G2677T/A polymorphism, a better complete cytogenetic remission was observed for patients with variant TT/AT/AA genotype, compared to other genotype groups (OR=0.48, 95%CI: 0.239-0.957, P=0.03). Haplotype analysis revealed that ABCB1 haplotypes (C1236G2677C3435) was statistically linked to higher risk to IM resistance (25.8% vs. 17.4%, P=0.04), while ABCG2 diplotype A34A421 was significantly correlated with IM good response (9.1% vs. 3.9%, P=0.03). In addition, genotypic variant in ABCG2 421C>A was associated with a major molecular response (MMR) (OR=2.20, 95%CI: 1.273-3.811, P=0.004), whereas ABCB1 2677G>T/A variant was associated with a significantly lower molecular response (OR=0.49, 95%CI: 0.248-0.974, P=0.04). However, there was no significant correlation of these SNPs with IM intolerance and IM induced hepatotoxicity. Our results suggest the usefulness of genotyping of these single nucleotide polymorphisms in predicting IM response among CML patients.
    Matched MeSH terms: Polymorphism, Single Nucleotide*
  19. Cheng YC, Stanne TM, Giese AK, Ho WK, Traylor M, Amouyel P, et al.
    Stroke, 2016 Feb;47(2):307-16.
    PMID: 26732560 DOI: 10.1161/STROKEAHA.115.011328
    BACKGROUND AND PURPOSE: Although a genetic contribution to ischemic stroke is well recognized, only a handful of stroke loci have been identified by large-scale genetic association studies to date. Hypothesizing that genetic effects might be stronger for early- versus late-onset stroke, we conducted a 2-stage meta-analysis of genome-wide association studies, focusing on stroke cases with an age of onset <60 years.

    METHODS: The discovery stage of our genome-wide association studies included 4505 cases and 21 968 controls of European, South-Asian, and African ancestry, drawn from 6 studies. In Stage 2, we selected the lead genetic variants at loci with association P<5×10(-6) and performed in silico association analyses in an independent sample of ≤1003 cases and 7745 controls.

    RESULTS: One stroke susceptibility locus at 10q25 reached genome-wide significance in the combined analysis of all samples from the discovery and follow-up stages (rs11196288; odds ratio =1.41; P=9.5×10(-9)). The associated locus is in an intergenic region between TCF7L2 and HABP2. In a further analysis in an independent sample, we found that 2 single nucleotide polymorphisms in high linkage disequilibrium with rs11196288 were significantly associated with total plasma factor VII-activating protease levels, a product of HABP2.

    CONCLUSIONS: HABP2, which encodes an extracellular serine protease involved in coagulation, fibrinolysis, and inflammatory pathways, may be a genetic susceptibility locus for early-onset stroke.

    Matched MeSH terms: Polymorphism, Single Nucleotide
  20. Yap KP, Gan HM, Teh CS, Chai LC, Thong KL
    BMC Genomics, 2014;15:1007.
    PMID: 25412680 DOI: 10.1186/1471-2164-15-1007
    Typhoid fever is an infectious disease of global importance that is caused by Salmonella enterica subsp. enterica serovar Typhi (S. Typhi). This disease causes an estimated 200,000 deaths per year and remains a serious global health threat. S. Typhi is strictly a human pathogen, and some recovered individuals become long-term carriers who continue to shed the bacteria in their faeces, thus becoming main reservoirs of infection.
    Matched MeSH terms: Polymorphism, Single Nucleotide
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links