Displaying publications 1 - 20 of 150 in total

Abstract:
Sort:
  1. Looi ML, Karsani SA, Rahman MA, Dali AZ, Ali SA, Ngah WZ, et al.
    J Biosci, 2009 Dec;34(6):917-25.
    PMID: 20093745
    Although cervical cancer is preventable with early detection, it remains the second most common malignancy among women. An understanding of how proteins change in their expression during a particular diseased state such as cervical cancer will contribute to an understanding of how the disease develops and progresses. Potentially, it may also lead to the ability to predict the occurrence of the disease. With this in mind, we aimed to identify differentially expressed proteins in the plasma of cervical cancer patients. Plasma from control, cervical intraepithelial neoplasia (CIN) grade 3 and squamous cell carcinoma (SCC) stage IV subjects was resolved by two-dimensional gel electrophoresis and the resulting proteome profiles compared. Differentially expressed protein spots were then identified by mass spectrometry. Eighteen proteins were found to be differentially expressed in the plasma of CIN 3 and SCC stage IV samples when compared with that of controls. Competitive ELISA further validated the expression of cytokeratin 19 and tetranectin. Functional analyses of these differentially expressed proteins will provide further insight into their potential role(s) in cervical cancer-specific monitoring and therapeutics.
    Matched MeSH terms: Proteome/analysis*
  2. Yasmin AR, Omar AR, Farhanah MI, Hiscox AJ, Yeap SK
    Avian Dis, 2019 06 01;63(2):275-288.
    PMID: 31251527 DOI: 10.1637/11936-072418-Reg.1
    Chicken dendritic cells (DCs) have been demonstrated to be susceptible to infectious bursal disease virus (IBDV), a causative agent of acute and immunosuppressed disease in young chicks known as infectious bursal disease. Further functional characterization of IBDV-infected DCs of chickens is required to provide a better understanding on the influence of the virus on chicken bone marrow-derived dendritic cells (BM-DCs) following very virulent (vv) IBDV infection. Membrane proteins of BM-DCs were extracted and the proteins were further denatured and reduced before performing labeling with isobaric tags for relative and absolute quantitation. The differential expression protein profiles were identified and quantified using liquid chromatography coupled with tandem mass spectrometry, and later validated using flow cytometry and real-time reverse transcriptase PCR. The analysis has identified 134 differentially regulated proteins from a total of 283 proteins (cutoff values of ≤0.67, ≥1.5, and ProtScore >1.3 at 95% confidence interval), which produced high-yield membrane fractions. The entry of vvIBDV into the plasma membrane of BM-DCs was observed at 3 hr postinfection by the disruption of several important protein molecule functions, namely apoptosis, RNA/DNA/protein synthesis, and transport and cellular organization, without the activation of proteins associated with signaling. At the later stage of infection, vvIBDV induced expression of several proteins, namely CD200 receptor 1-A, integrin alpha-5, HSP-90, cathepsin, lysosomal-associated membrane protein, and Ras-related proteins, which play crucial roles in signaling, apoptosis, stress response, and antigen processing as well as in secretion of danger-associated proteins. These findings collectively indicated that the chicken DCs are expressing various receptors regarded as potential targets for pathogen interaction during viral infection. Therefore, fundamental study of the interaction of DCs and IBDV will provide valuable information in understanding the role of professional antigen-presenting cells in chickens and their molecular interactions during IBDV infection and vaccination.
    Matched MeSH terms: Proteome
  3. Cappellini E, Welker F, Pandolfi L, Ramos-Madrigal J, Samodova D, Rüther PL, et al.
    Nature, 2019 10;574(7776):103-107.
    PMID: 31511700 DOI: 10.1038/s41586-019-1555-y
    The sequencing of ancient DNA has enabled the reconstruction of speciation, migration and admixture events for extinct taxa1. However, the irreversible post-mortem degradation2 of ancient DNA has so far limited its recovery-outside permafrost areas-to specimens that are not older than approximately 0.5 million years (Myr)3. By contrast, tandem mass spectrometry has enabled the sequencing of approximately 1.5-Myr-old collagen type I4, and suggested the presence of protein residues in fossils of the Cretaceous period5-although with limited phylogenetic use6. In the absence of molecular evidence, the speciation of several extinct species of the Early and Middle Pleistocene epoch remains contentious. Here we address the phylogenetic relationships of the Eurasian Rhinocerotidae of the Pleistocene epoch7-9, using the proteome of dental enamel from a Stephanorhinus tooth that is approximately 1.77-Myr old, recovered from the archaeological site of Dmanisi (South Caucasus, Georgia)10. Molecular phylogenetic analyses place this Stephanorhinus as a sister group to the clade formed by the woolly rhinoceros (Coelodonta antiquitatis) and Merck's rhinoceros (Stephanorhinus kirchbergensis). We show that Coelodonta evolved from an early Stephanorhinus lineage, and that this latter genus includes at least two distinct evolutionary lines. The genus Stephanorhinus is therefore currently paraphyletic, and its systematic revision is needed. We demonstrate that sequencing the proteome of Early Pleistocene dental enamel overcomes the limitations of phylogenetic inference based on ancient collagen or DNA. Our approach also provides additional information about the sex and taxonomic assignment of other specimens from Dmanisi. Our findings reveal that proteomic investigation of ancient dental enamel-which is the hardest tissue in vertebrates11, and is highly abundant in the fossil record-can push the reconstruction of molecular evolution further back into the Early Pleistocene epoch, beyond the currently known limits of ancient DNA preservation.
    Matched MeSH terms: Proteome/analysis; Proteome/genetics*
  4. Al-Maleki AR, Mariappan V, Vellasamy KM, Shankar EM, Tay ST, Vadivelu J
    J Proteomics, 2014 Jun 25;106:205-20.
    PMID: 24742602 DOI: 10.1016/j.jprot.2014.04.005
    Colony morphology variation is a characteristic of Burkholderia pseudomallei primary clinical isolates, associated with variations in expression of virulence factors. Here, we performed comparative investigations on adhesion, invasion, plaque-forming abilities and protein profiles of B. pseudomallei wild-type (WT) and a small colony variant (SCV). The percentage of SCV adherence to A549 cells was significantly higher (2.73%) than WT (1.91%). In contrast, WT was significantly more efficient (0.63%) than SCV (0.31%) in invasiveness and in inducing cellular damage. Using 2-DE and MALDI TOF/TOF, 263 and 258 protein spots were detected in WT and SCV, respectively. Comparatively, 49 proteins were differentially expressed in SCV when compared with WT. Of these, 31 proteins were up-regulated, namely, nucleoside diphosphate kinase (Ndk), phosphoglycerate kinase (Pgk), thioredoxin (TrxA), putative ferritin DPS-family DNA-binding protein (DPS) and oxidoreductase (AhpC) that are known to be involved in adhesion, intracellular survival and persistence. However, among the 18 down-regulated proteins, enolase (Eno), elongation factor (EF-Tu) and universal stress-related proteins were associated with invasion and virulence. Differences observed in these protein profiles provide ample clues to their association with the morphotypic and phenotypic characteristics of colony variants, providing additional insights into the potential association of B. pseudomallei colony morphotypes with disease pathogenesis.
    Matched MeSH terms: Proteome
  5. Vellasamy KM, Mariappan V, Hashim OH, Vadivelu J
    Electrophoresis, 2011 Jan;32(2):310-20.
    PMID: 21254130 DOI: 10.1002/elps.201000355
    Bacterial secreted proteins are known to be involved in virulence and may mediate important host-pathogen interactions. In this study, when the stationary phase culture supernatant of Burkholderia pseudomallei was subjected to 2-DE, 113 protein spots were detected. Fifty-four of the secreted proteins, which included metabolic enzymes, transcription/translation regulators, potential virulence factors, chaperones, transport regulators, and hypothetical proteins, were identified using MS and database search. Twelve of these proteins were apparently reactive to antisera of mice that were immunised with B. pseudomallei secreted proteins. These proteins might be excellent candidates to be used as diagnostic markers or putative candidate vaccines against B. pseudomallei infections.
    Matched MeSH terms: Proteome/analysis
  6. Mariappan V, Vellasamy KM, Thimma JS, Hashim OH, Vadivelu J
    Vaccine, 2010 Feb 3;28(5):1318-24.
    PMID: 19944788 DOI: 10.1016/j.vaccine.2009.11.027
    Burkholderia cepacia is an opportunistic human pathogen associated with lung infections. Secretory proteins of B. cepacia are known to be involved in virulence and may mediate important host-pathogen interactions. In the present study, secretory proteins isolated from B. cepacia culture supernatant were separated using two-dimensional gel electrophoresis, followed by Western blot analysis to identify the immunogenic proteins. Mice antibodies raised to B. cepacia inactivated whole bacteria, outer membrane protein and culture filtrate antigen detected 74, 104 and 32 immunogenic proteins, respectively. Eighteen of these immunogenic proteins which reacted with all three antibodies were identified and might be potential molecules as a diagnostic marker or a putative candidate vaccine against B. cepacia infections.
    Matched MeSH terms: Proteome/immunology*; Proteome/secretion
  7. Mariappan V, Vellasamy KM, Vadivelu J
    Sci Rep, 2017 08 21;7(1):9015.
    PMID: 28827633 DOI: 10.1038/s41598-017-09373-0
    Little is known about the evolution, adaptation and pathogenesis of Burkholderia pseudomallei within host during acute melioidosis infection. Melioidosis is a potential life threatening disease contracted through inhalation, ingestion, inoculation or direct entry of the organism into the blood stream via wounds or skin abrasions from contaminated soil and water. Environmental B. pseudomallei strain (Bp MARAN ), isolated during a melioidosis outbreak in Pahang, Malaysia was injected intra-peritoneally into a mouse and passaged strain was recovered from spleen (Bpmouse-adapted). A gel-based comparative proteomics profiling approach was used, to map and identify differentially expressed proteins (fold-change ≥ 2; p-value ≤ 0.05) between the strains. A total of 730 and 685 spots were visualised in the Bp MARAN and Bpmouse-adapted strains, respectively. Of the 730 spots (Bp MARAN as reference gel), 87 spots were differentially regulated (44 up- and 43 down-regulated). The identified proteins were classified as proteins related to metabolism, stress response, virulence, signal transduction, or adhesion. In comparison, it was found that those proteins related to adhesins, virulence factors and stress- response were up-regulated and could possibly explain the adaptation of the bacteria in the host. Investigating the differentially expressed proteins may provide better perspective of bacterial factors which aid survivability of B. pseudomallei in host.
    Matched MeSH terms: Proteome/analysis*
  8. Al-Maleki AR, Loke MF, Lui SY, Ramli NSK, Khosravi Y, Ng CG, et al.
    Cell. Microbiol., 2017 12;19(12).
    PMID: 28776327 DOI: 10.1111/cmi.12771
    Outer inflammatory protein A (OipA) is an important virulence factor associated with gastric cancer and ulcer development; however, the results have not been well established and turned out to be controversial. This study aims to elucidate the role of OipA in Helicobacter pylori infection using clinical strains harbouring oipA "on" and "off" motifs. Proteomics analysis was performed on AGS cell pre-infection and postinfection with H. pylori oipA "on" and "off" strains, using liquid chromatography/mass spectrometry. AGS apoptosis and cell cycle assays were performed. Moreover, expression of vacuolating cytotoxin A (VacA) was screened using Western blotting. AGS proteins that have been suggested previously to play a role or associated with gastric disease were down-regulated postinfection with oipA "off" strains comparing to oipA "on" strains. Furthermore, oipA "off" and ΔoipA cause higher level of AGS cells apoptosis and G0/G1 cell-cycle arrest than oipA "on" strains. Interestingly, deletion of oipA increased bacterial VacA production. The capability of H. pylori to induce apoptosis and suppress expression of proteins having roles in human disease in the absence of oipA suggests that strains not expressing OipA may be less virulent or may even be protective against carcinogenesis compared those expressing OipA. This potentially explains the higher incidence of gastric cancer in East Asia where oipA "on" strains predominates.
    Matched MeSH terms: Proteome/analysis
  9. Al-Maleki AR, Mariappan V, Vellasamy KM, Tay ST, Vadivelu J
    PLoS One, 2015;10(5):e0127398.
    PMID: 25996927 DOI: 10.1371/journal.pone.0127398
    Burkholderia pseudomallei primary diagnostic cultures demonstrate colony morphology variation associated with expression of virulence and adaptation proteins. This study aims to examine the ability of B. pseudomallei colony variants (wild type [WT] and small colony variant [SCV]) to survive and replicate intracellularly in A549 cells and to identify the alterations in the protein expression of these variants, post-exposure to the A549 cells. Intracellular survival and cytotoxicity assays were performed followed by proteomics analysis using two-dimensional gel electrophoresis. B. pseudomallei SCV survive longer than the WT. During post-exposure, among 259 and 260 protein spots of SCV and WT, respectively, 19 were differentially expressed. Among SCV post-exposure up-regulated proteins, glyceraldehyde 3-phosphate dehydrogenase, fructose-bisphosphate aldolase (CbbA) and betaine aldehyde dehydrogenase were associated with adhesion and virulence. Among the down-regulated proteins, enolase (Eno) is implicated in adhesion and virulence. Additionally, post-exposure expression profiles of both variants were compared with pre-exposure. In WT pre- vs post-exposure, 36 proteins were differentially expressed. Of the up-regulated proteins, translocator protein, Eno, nucleoside diphosphate kinase (Ndk), ferritin Dps-family DNA binding protein and peptidyl-prolyl cis-trans isomerase B were implicated in invasion and virulence. In SCV pre- vs post-exposure, 27 proteins were differentially expressed. Among the up-regulated proteins, flagellin, Eno, CbbA, Ndk and phenylacetate-coenzyme A ligase have similarly been implicated in adhesion, invasion. Protein profiles differences post-exposure provide insights into association between morphotypic and phenotypic characteristics of colony variants, strengthening the role of B. pseudomallei morphotypes in pathogenesis of melioidosis.
    Matched MeSH terms: Proteome*
  10. Hamezah HS, Durani LW, Yanagisawa D, Ibrahim NF, Aizat WM, Makpol S, et al.
    J Alzheimers Dis, 2019;72(1):229-246.
    PMID: 31594216 DOI: 10.3233/JAD-181171
    Tocotrienol-rich fraction (TRF) is a mixture of vitamin E analogs derived from palm oil. We previously demonstrated that supplementation with TRF improved cognitive function and modulated amyloid pathology in AβPP/PS1 mice brains. The current study was designed to examine proteomic profiles underlying the therapeutic effect of TRF in the brain. Proteomic analyses were performed on samples of hippocampus, medial prefrontal cortex (mPFC), and striatum using liquid chromatography coupled to Q Exactive HF Orbitrap mass spectrometry. From these analyses, we profiled a total of 5,847 proteins of which 155 proteins were differentially expressed between AβPP/PS1 and wild-type mice. TRF supplementation of these mice altered the expression of 255 proteins in the hippocampus, mPFC, and striatum. TRF also negatively modulated the expression of amyloid beta A4 protein and receptor-type tyrosine-protein phosphatase alpha protein in the hippocampus. The expression of proteins in metabolic pathways, oxidative phosphorylation, and those involved in Alzheimer's disease were altered in the brains of AβPP/PS1 mice that received TRF supplementation.
    Matched MeSH terms: Proteome/genetics; Proteome/metabolism*
  11. Hamezah HS, Durani LW, Yanagisawa D, Ibrahim NF, Aizat WM, Bellier JP, et al.
    Exp Gerontol, 2018 Oct 01;111:53-64.
    PMID: 29981398 DOI: 10.1016/j.exger.2018.07.002
    Decrease in multiple functions occurs in the brain with aging, all of which can contribute to age-related cognitive and locomotor impairments. Brain atrophy specifically in hippocampus, medial prefrontal cortex (mPFC), and striatum, can contribute to this age-associated decline in function. Our recent metabolomics analysis showed age-related changes in these brain regions. To further understand the aging processes, analysis using a proteomics approach was carried out. This study was conducted to identify proteome profiles in the hippocampus, mPFC, and striatum of 14-, 18-, 23-, and 27-month-old rats. Proteomics analysis using ultrahigh performance liquid chromatography coupled with Q Exactive HF Orbitrap mass spectrometry identified 1074 proteins in the hippocampus, 871 proteins in the mPFC, and 241 proteins in the striatum. Of these proteins, 97 in the hippocampus, 25 in mPFC, and 5 in striatum were differentially expressed with age. The altered proteins were classified into three ontologies (cellular component, molecular function, and biological process) containing 44, 38, and 35 functional groups in the hippocampus, mPFC, and striatum, respectively. Most of these altered proteins participate in oxidative phosphorylation (e.g. cytochrome c oxidase and ATP synthase), glutathione metabolism (e.g. peroxiredoxins), or calcium signaling pathway (e.g. protein S100B and calmodulin). The most prominent changes were observed in the oldest animals. These results suggest that alterations in oxidative phosphorylation, glutathione metabolism, and calcium signaling pathway are involved in cognitive and locomotor impairments in aging.
    Matched MeSH terms: Proteome
  12. Zhu W, Zheng W, Hu X, Xu X, Zhang L, Tian J
    Biochim Biophys Acta Proteins Proteom, 2017 Apr;1865(4):404-413.
    PMID: 28087425 DOI: 10.1016/j.bbapap.2017.01.004
    Lonicera japonica Thunb., also known as Jin Yin Hua and Japanese honeysuckle, is used as a herbal medicine in Asian countries. Its flowers have been used in folk medicine in the clinic and in making food or healthy beverages for over 1500years in China. To investigate the molecular processes involved in L. japonica development from buds to flowers exposed to UV radiation, a comparative proteomics analysis was performed. Fifty-four proteins were identified as differentially expressed, including 42 that had increased expression and 12 that had decreased expression. The levels of the proteins related to glycolysis, TCA/organic acid transformation, major carbohydrate metabolism, oxidative pentose phosphate, stress, secondary metabolism, hormone, and mitochondrial electron transport were increased during flower opening process after exposure to UV radiation. Six metabolites in L. japonica buds and flowers were identified and relatively quantified using LC-MS/MS. The antioxidant activity was performed using a 1,1-diphenyl-2-picrylhydrazyl assay, which revealed that L. japonica buds had more activity than the UV irradiated flowers. This suggests that UV-B radiation induces production of endogenous ethylene in L. japonica buds, thus facilitating blossoming of the buds and activating the antioxidant system. Additionally, the higher metabolite contents and antioxidant properties of L. japonica buds indicate that the L. japonica bud stage may be a more optimal time to harvest than the flower stage when using for medicinal properties.
    Matched MeSH terms: Proteome/biosynthesis*
  13. Tan NJ, Daim LD, Jamil AA, Mohtarrudin N, Thilakavathy K
    Electrophoresis, 2017 03;38(5):633-644.
    PMID: 27992069 DOI: 10.1002/elps.201600377
    Effective protein extraction is essential especially in producing a well-resolved proteome on 2D gels. A well-resolved placental cotyledon proteome, with good reproducibility, have allowed researchers to study the proteins underlying the physiology and pathophysiology of pregnancy. The aim of this study is to determine the best protein extraction protocol for the extraction of protein from placental cotyledons tissues for a two-dimensional gel electrophoresis (2D-GE). Based on widely used protein extraction strategies, 12 different extraction methodologies were carefully selected, which included one chemical extraction, two mechanical extraction coupled protein precipitations, and nine chemical extraction coupled protein precipitations. Extracted proteins were resolved in a one-dimensional gel electrophoresis and 2D-GE; then, it was compared with set criteria: extraction efficacy, protein resolution, reproducibility, and recovery efficiency. Our results revealed that a better profile was obtained by chemical extraction in comparison to mechanical extraction. We further compared chemical extraction coupled protein precipitation methodologies, where the DNase/lithium chloride-dense sucrose homogenization coupled dichloromethane-methanol precipitation (DNase/LiCl-DSH-D/MPE) method showed good protein extraction efficiency. This, however, was carried out with the best protein resolution and proteome reproducibility on 2D-gels. DNase/LiCl-DSH-D/MPE was efficient in the extraction of proteins from placental cotyledons tissues. In addition, this methodology could hypothetically allow the protein extraction of any tissue that contains highly abundant lipid and glycogen.
    Matched MeSH terms: Proteome/analysis*; Proteome/isolation & purification*; Proteome/chemistry
  14. Chew SY, Brown AJP, Lau BYC, Cheah YK, Ho KL, Sandai D, et al.
    J Biomed Sci, 2021 Jan 02;28(1):1.
    PMID: 33388061 DOI: 10.1186/s12929-020-00700-8
    BACKGROUND: Emergence of Candida glabrata, which causes potential life-threatening invasive candidiasis, has been widely associated with high morbidity and mortality. In order to cause disease in vivo, a robust and highly efficient metabolic adaptation is crucial for the survival of this fungal pathogen in human host. In fact, reprogramming of the carbon metabolism is believed to be indispensable for phagocytosed C. glabrata within glucose deprivation condition during infection.

    METHODS: In this study, the metabolic responses of C. glabrata under acetate growth condition was explored using high-throughput transcriptomic and proteomic approaches.

    RESULTS: Collectively, a total of 1482 transcripts (26.96%) and 242 proteins (24.69%) were significantly up- or down-regulated. Both transcriptome and proteome data revealed that the regulation of alternative carbon metabolism in C. glabrata resembled other fungal pathogens such as Candida albicans and Cryptococcus neoformans, with up-regulation of many proteins and transcripts from the glyoxylate cycle and gluconeogenesis, namely isocitrate lyase (ICL1), malate synthase (MLS1), phosphoenolpyruvate carboxykinase (PCK1) and fructose 1,6-biphosphatase (FBP1). In the absence of glucose, C. glabrata shifted its metabolism from glucose catabolism to anabolism of glucose intermediates from the available carbon source. This observation essentially suggests that the glyoxylate cycle and gluconeogenesis are potentially critical for the survival of phagocytosed C. glabrata within the glucose-deficient macrophages.

    CONCLUSION: Here, we presented the first global metabolic responses of C. glabrata to alternative carbon source using transcriptomic and proteomic approaches. These findings implicated that reprogramming of the alternative carbon metabolism during glucose deprivation could enhance the survival and persistence of C. glabrata within the host.

    Matched MeSH terms: Proteome/metabolism*
  15. Munusamy K, Loke MF, Vadivelu J, Tay ST
    Microb Pathog, 2021 Mar;152:104614.
    PMID: 33202254 DOI: 10.1016/j.micpath.2020.104614
    Candidiasis is the most common fungal infection associated with high morbidity and mortality among immunocompromised patients. The ability to form biofilm is essential for Candida albicans pathogenesis and drug resistance. In this study, the planktonic cell and biofilm proteomes of C. albicans SC5314 strain analyzed using Liquid Chromatography-Mass Spectrometry (LC-MS) were compared. In total, 280 and 449 proteins are annotated from the planktonic cell and biofilm proteomes, respectively. The biofilm proteome demonstrated significantly higher proportion of proteins associated with the endomembrane system, mitochondrion and cytoplasm than planktonic proteome. Among proteins detected, 143 and 207 biological processes are annotated, of which, 38 and 102 are specific to the planktonic cell and biofilm proteomes, respectively, while 105 are common biological processes. The specific biological processes of C. albicans planktonic cell proteome are associated with cell polarity, energy metabolism and nucleotide (purine) metabolism, oxido-reduction coenzyme metabolic process, monosaccharide and amino acid (methionine) biosynthesis, regulation of anatomical structure morphogenesis and cell cycling, and single organism reproduction. Meanwhile, regulation of cellular macromolecule biosynthesis and metabolism, transcription and gene expression are major biological processes specifically associated with C. albicans biofilm proteome. Biosynthesis of leucine, isoleucine, and thiocysteine are highlighted as planktonic-related pathways, whereas folate metabolism, fatty acid metabolism and biosynthesis of amino acids (lysine, serine and glycine) are highlighted as biofilm-related pathways. In summary, LC-MS-based proteomic analysis reveals different adaptative strategies of C. albicans via specific biological and metabolic processes for planktonic cell and biofilm lifestyles. The mass spectrometry data are available via ProteomeXchange with identifiers PXD007830 (for biofilm proteome) and PXD007831 (for planktonic cell proteome).
    Matched MeSH terms: Proteome
  16. Tan CH, Tan KY, Tan NH
    J Proteomics, 2016 07 20;144:33-8.
    PMID: 27282922 DOI: 10.1016/j.jprot.2016.06.004
    Recent advances in proteomics enable deep profiling of the compositional details of snake venoms for improved understanding on envenomation pathophysiology and immunological neutralization. In this study, the venom of Australian tiger snake (Notechis scutatus) was trypsin-digested in solution and subjected to nano-ESI-LCMS/MS. Applying a relative quantitative proteomic approach, the findings revealed a proteome comprising 42 toxin subtypes clustered into 12 protein families. Phospholipases A2 constitute the most abundant toxins (74.5% of total venom proteins) followed by Kunitz serine protease inhibitors (6.9%), snake venom serine proteases (5.9%), alpha-neurotoxins (5.6%) and several toxins of lower abundance. The proteome correlates with N. scutatus envenoming effects including pre-synaptic and post-synaptic neurotoxicity and consumptive coagulopathy. The venom is highly lethal in mice (intravenous median lethal dose=0.09μg/g). BioCSL Sea Snake Antivenom, raised against the venoms of beaked sea snake (Hydrophis schistosus) and N. scutatus (added for enhanced immunogenicity), neutralized the lethal effect of N. scutatus venom (potency=2.95mg/ml) much more effectively than the targeted H.schistosus venom (potency=0.48mg/ml). The combined venom immunogen may have improved the neutralization against phospholipases A2 which are abundant in both venoms, but not short-neurotoxins which are predominant only in H. schistosus venom.

    SIGNIFICANCE: A shotgun proteomic approach adopted in this study revealed the compositional details of the venom of common tiger snake from Australia, Notechis scutatus. The proteomic findings provided additional information on the relative abundances of toxins and the detection of proteins of minor expression unreported previously. The potent lethal effect of the venom was neutralized by bioCSL Sea Snake Antivenom, an anticipated finding due to the fact that the Sea Snake Antivenom is actually bivalent in nature, being raised against a mix of venoms of the beaked sea snake (Hydrophis schistosus) and N. scutatus. However, it is surprising to note that bioCSL Sea Snake Antivenom neutralized N. scutatus venom much more effectively compared to the targeted sea snake venom by a marked difference in potency of approximately 6-fold. This phenomenon may be explained by the main difference in the proteomes of the two venoms, where H. schistosus venom is dominated by short-neurotoxins in high abundance - this is a poorly immunogenic toxin group that has been increasingly recognized in the venoms of a few cobras. Further investigations should be directed toward strategies to improve the neutralization of short-neurotoxins, in line with the envisioned production of an effective pan-regional elapid antivenom.

    Matched MeSH terms: Proteome/analysis
  17. Yap MK, Fung SY, Tan KY, Tan NH
    Acta Trop, 2014 May;133:15-25.
    PMID: 24508616 DOI: 10.1016/j.actatropica.2014.01.014
    The proteome of Naja sumatrana (Equatorial spitting cobra) venom was investigated by shotgun analysis and a combination of ion-exchange chromatography and reverse phase HPLC. Shotgun analysis revealed the presence of 39 proteins in the venom while the chromatographic approach identified 37 venom proteins. The results indicated that, like other Asiatic cobra venoms, N. sumatrana contains large number of three finger toxins and phospholipases A2, which together constitute 92.1% by weight of venom protein. However, only eight of the toxins can be considered as major venom toxins. These include two phospholipases A2, three neurotoxins (two long neurotoxins and a short neurotoxin) and three cardiotoxins. The eight major toxins have relative abundance of 1.6-27.2% venom proteins and together account for 89.8% (by weight) of total venom protein. Other venom proteins identified include Zn-metalloproteinase-disintegrin, Thaicobrin, CRISP, natriuretic peptide, complement depleting factors, cobra venom factors, venom nerve growth factor and cobra serum albumin. The proteome of N. sumatrana venom is similar to proteome of other Asiatic cobra venoms but differs from that of African spitting cobra venom. Our results confirm that the main toxic action of N. sumatrana venom is neurotoxic but the large amount of cardiotoxins and phospholipases A2 are likely to contribute significantly to the overall pathophysiological action of the venom. The differences in toxin distribution between N. sumatrana venom and African spitting cobra venoms suggest possible differences in the pathophysiological actions of N. sumatrana venom and the African spitting cobra venoms, and explain why antivenom raised against Asiatic cobra venom is not effective against African spitting cobra venoms.
    Matched MeSH terms: Proteome/analysis*
  18. Tan CH, Tan KY, Fung SY, Tan NH
    BMC Genomics, 2015;16:687.
    PMID: 26358635 DOI: 10.1186/s12864-015-1828-2
    The king cobra (Ophiophagus hannah) is widely distributed throughout many parts of Asia. This study aims to investigate the complexity of Malaysian Ophiophagus hannah (MOh) venom for a better understanding of king cobra venom variation and its envenoming pathophysiology. The venom gland transcriptome was investigated using the Illumina HiSeq™ platform, while the venom proteome was profiled by 1D-SDS-PAGE-nano-ESI-LCMS/MS.
    Matched MeSH terms: Proteome*
  19. Tan CH, Tan KY, Lim SE, Tan NH
    J Proteomics, 2015 Aug 3;126:121-30.
    PMID: 26047715 DOI: 10.1016/j.jprot.2015.05.035
    The venom proteome of Hydrophis schistosus (syn: Enhydrina schistosa) captured in Malaysian waters was investigated using reverse-phase HPLC, SDS-PAGE and high-resolution liquid chromatography-tandem mass spectrometry. The findings revealed a minimalist profile with only 18 venom proteins. These proteins belong to 5 toxin families: three-finger toxin (3FTx), phospholipase A2 (PLA2), cysteine-rich secretory protein (CRISP), snake venom metalloprotease (SVMP) and L-amino acid oxidase (LAAO). The 3FTxs (3 short neurotoxins and 4 long neurotoxins) constitute 70.5% of total venom protein, 55.8% being short neurotoxins and 14.7% long neurotoxins. The PLA2 family consists of four basic (21.4%) and three acidic (6.1%) isoforms. The minor proteins include one CRISP (1.3%), two SVMPs (0.5%) and one LAAO (0.2%). This is the first report of the presence of long neurotoxins, CRISP and LAAO in H. schistosus venom. The neurotoxins and the basic PLA2 are highly lethal in mice with an intravenous median lethal dose of <0.2 μg/g. Cross-neutralization by heterologous elapid antivenoms (Naja kaouthia monovalent antivenom and Neuro polyvalent antivenom) was moderate against the long neurotoxin and basic PLA2, but weak against the short neurotoxin, indicating that the latter is the limiting factor to be overcome for improving the antivenom cross-neutralization efficacy.
    Matched MeSH terms: Proteome/metabolism*
  20. Tang EL, Tan CH, Fung SY, Tan NH
    J Proteomics, 2016 10 04;148:44-56.
    PMID: 27418434 DOI: 10.1016/j.jprot.2016.07.006
    The venom of Malayan pit viper (Calloselasma rhodostoma) is highly toxic but also valuable in drug discovery. However, a comprehensive proteome of the venom that details its toxin composition and abundance is lacking. This study aimed to unravel the venom complexity through a multi-step venomic approach. At least 96 distinct proteins (29 basic, 67 acidic) in 11 families were identified from the venom. The venom consists of mainly snake venom metalloproteinases (SVMP, 41.17% of total venom proteins), within which the P-I (kistomin, 20.4%) and P-II (rhodostoxin, 19.8%) classes predominate. This is followed by C-type lectins (snaclec, 26.3%), snake venom serine protease (SVSP, 14.9%), L-amino acid oxidase (7.0%), phospholipase A2 (4.4%), cysteine-rich secretory protein (2.5%), and five minor toxins (nerve growth factor, neurotrophin, phospholipase B, 5' nucleotidase and phosphodiesterase, totaling 2.6%) not reported in the proteome hitherto. Importantly, all principal hemotoxins unveiled correlate with the syndrome: SVSP ancrod causes venom-induced consumptive coagulopathy, aggravated by thrombocytopenia caused by snaclec rhodocytin, a platelet aggregation inducer, while P-II rhodostoxin mediates hemorrhage, exacerbated by P-I kistomin and snaclec rhodocetin that inhibit platelet plug formation. These toxins exist in multiple isoforms and/or complex subunits, deserving further characterization for the development of an effective, polyspecific regional antivenom.

    BIOLOGICAL SIGNIFICANCE: Advents in proteomics and bioinformatics have vigorously propelled the scientific discoveries of toxins from various lineages of venomous snakes. The Malayan pit viper, Calloselasma rhodostoma, is a medically important species in Southeast Asia as its bite can cause envenomation, while the venom is also a source of bioactive compounds for drug discovery. Detailed profiling of the venom, however, is inadequate possibly due to the complex nature of the venom and technical limitation in separating the constituents into details. Integrating a multi-step fractionation method, this study successfully revealed a comprehensive and quantitative profile of the composition of the venom of this medically important venomous snake. The relative abundance of the various venom proteins is determined in a global profile, providing useful information for understanding the pathogenic roles of the different toxins in C. rhodostoma envenomation. Notably, the principal hemotoxins were identified in great details, including the variety of toxin subunits and isoforms. The findings indicate that these toxins are the principal targets for effective antivenom neutralization, and should be addressed in the production of a pan-regional polyspecific antivenom. In addition, minor toxin components not reported previously in the venom were also detected in this study, enriching the current toxin database for the venomous snakes.

    Matched MeSH terms: Proteome/analysis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links