The reactions of 2-chloropyrimidine with methylamine, ethylamine and piperidine gave the corresponding 2-N-methylamino-, 2-N-ethylamino- and 2N- piperidinopyrimidines, respectively. The fluorescence properties of these alkylamino derivatives in chloroform, ethyl acetate, carbon tetrachloride, acetone, ether, ethanol and methanol were studied. All the alkylamino derivatives showed the highest fluorescence intensity in polar protic solvents; thus 2-N-methylaminopyrimidine (highest fluorescence intensity at 377 nm when excited at 282 nm) and 2-N-ethylaminopyrimidine (highest fluorescence intensity at 375 nm, when excited at 286 nm) showed the highest fluorescence in methanol. In ethanol, 2-N-piperidinopyrimidine showed a fluorescence peak at 403 nm when excited at 360 nm and in chloroform it fluoresced at 392 nm when excited at 356 nm.
Imatinib, an ABL tyrosine-kinase inhibitor, shows promise in restoring endothelial barrier function in patients with COVID-19, thus, preventing cytokine leakage from the alveolar compartment to the systemic compartment. COVID-19 is characterized by an alveolar cytokine storm, and imatinib has been shown to strengthen the endothelial barrier and mitigate alveolar inflammatory responses by modulating NF-κB signaling. Incorporating imatinib into COVID-19 treatment strategies offers a novel approach to safeguard the endothelial barrier and address the complex pathophysiology of the disease, including its potential implications in long COVID. Given that endothelial dysfunction plays a central role in COVID-19 progression and long COVID development, protecting the endothelial barrier during acute infection is crucial in preventing the persistent endothelial dysfunction associated with long COVID.
Matched MeSH terms: Pyrimidines/pharmacology; Pyrimidines/therapeutic use
We have performed computational molecular modelling to study the polarization switching and hysteresis loop behaviours of DNA and RNA nucleobases using the PM3 semi-empirical quantum mechanical approaches. All the nucleobases: adenine (A), thymine (T), guanine (G), cytosine (C), and uracil (U) were modelled. Our study indicates that all the nucleobases exhibit a zero-field polarization due to the presence of polar atoms or molecules such as amidogen and carbonyl. The shape of polarization P versus an applied electric field E hysteresis loop is square, implying typical ferroelectrics behaviour. The total energy U as a function of an applied electric field E exhibits a butterfly-like loop. The presence of zero-field polarization and ferroelectrics hysteresis loop behaviours in nucleobases may support the hypothesis of the existence of bioferroelectricity in DNA and RNA. We also found an interesting relationship between the minimum electric field required for switching [Formula: see text] and the ratio of the topological polar surface area (TPSA) to the total surface area (TSA) of a nucleobase. In particular, the [Formula: see text] of a nucleobase is inversely proportional to the TPSA/TSA ratio. This work may provide useful information for understanding the possible existence of ferroelectricity in biomaterials.
Azoxystrobin (AZ) is a broad-spectrum synthetic fungicide widely used in agriculture globally. However, there are concerns about its fate and effects in the environment. It is reportedly transformed into azoxystrobin acid as a major metabolite by environmental microorganisms. Bacillus licheniformis strain TAB7 is used as a compost deodorant in commercial compost and has been found to degrade some phenolic and agrochemicals compounds. In this article, we report its ability to degrade azoxystrobin by novel degradation pathway. Biotransformation analysis followed by identification by electrospray ionization-mass spectrometry (MS), high-resolution MS, and nuclear magnetic resonance spectroscopy identified methyl (E)-3-amino-2-(2-((6-(2-cyanophenoxy)pyrimidin-4-yl)oxy)phenyl)acrylate, or (E)-azoxystrobin amine in short, and (Z) isomers of AZ and azoxystrobin amine as the metabolites of (E)-AZ by TAB7. Bioassay testing using Magnaporthe oryzae showed that although 40 μg/mL of (E)-AZ inhibited 59.5 ± 3.5% of the electron transfer activity between mitochondrial Complexes I and III in M. oryzae, the same concentration of (E)-azoxystrobin amine inhibited only 36.7 ± 15.1% of the activity, and a concentration of 80 μg/mL was needed for an inhibition rate of 56.8 ± 7.4%, suggesting that (E)-azoxystrobin amine is less toxic than the parent compound. To our knowledge, this is the first study identifying azoxystrobin amine as a less-toxic metabolite from bacterial AZ degradation and reporting on the enzymatic isomerization of (E)-AZ to (Z)-AZ, to some extent, by TAB7. Although the fate of AZ in the soil microcosm supplemented with TAB7 will be needed, our findings broaden our knowledge of possible AZ biotransformation products.
Pazopanib is a relatively new compound to be introduced into the chemotherapy field. It is thought to have decent anti-angiogenic properties, which gives an additional hope for the treatment of certain types of cancers. A systematic review solely discussing about pazopanib and its anti-angiogenic effect is yet to be published to date, despite several relevant clinical trials being conducted over the recent years. In this review, we aim to investigate the mechanism of pazopanib's anti-angiogenic effect and its effectiveness in treating several cancers. We have included, in this study, findings from electronically searchable data from randomized clinical trials, clinical studies, cohort studies and other relevant articles. A total of 352 studies were included in this review. From the studies, the effect of pazopanib in various cancers or models was observed and recorded. Study quality is indefinite, with a few decent quality articles. The most elaborately studied cancers include renal cell carcinoma, solid tumors, advanced solid tumors, soft tissue sarcoma, breast cancer and gynecological cancers. In addition, several less commonly studied cancers are included in the studies as well. Pazopanib had demonstrated its anti-angiogenic effect based on favorable results observed in cancers, which are caused by angiogenesis-related mechanisms, such as renal cell carcinoma, solid tumors, advanced solid tumors and soft tissue sarcoma. This review was conducted to study, analyze and review the anti-angiogenic properties of pazopanib in various cancers. The results obtained can provide a decent reference when considering treatment options for angiogenesis-related malignancies. Furthermore, the definite observations of the anti-angiogenic effects of pazopanib could provide newer insights leading to the future development of drugs of the same mechanism with increased efficiency and reduced adverse effects.
Novel ethyl-4-(aryl)-6-methyl-2-(oxo/thio)-3,4-dihydro-1H-pyrimidine-5-carboxylates were synthesized from one-pot, three-component Biginelli reaction of aryl aldehydes, ethyl acetoacetate and urea/ thiourea by catalytic action of silica supported Bismuth(III) triflate, a Lewis acid. All the synthesized compounds were structurally characterized by spectral (IR, 1H NMR & 13C NMR spectroscopic and Mass spectrometric) and elemental (C, H & N) analyses. The present protocol has deserved novel as, formed the products in high yields with short reaction times, involved eco-friendly methodology and reusable heterogeneous Lewis acid catalyst. The title compounds were screened for in vitro DPPH free radical scavenging antioxidant activity and identified 4i, 4j, 4h & 4f as potential antioxidants. The obtained in vitro results were correlated with molecular docking, ADMET, QSAR, Bioactivity & toxicity risk studies and molecular finger print properties and found that in silico binding affinities were identified in good correlation with in vitro antioxidant activity and studied the structure activity relationship. The molecular docking study has disclosed strong hydrogen bonding interactions of title compounds with aspartic acid (ASP197) aminoacid residue of 2HCK, a complex enzyme of haematopoietic cell kinase and quercetin. Results of toxicology study evaluated for potential risks of compounds have revealed title compounds as safer drugs. In ultimate the study has established ligand's antioxidant potentiality as they effectively binds with ASP197 amino acid of Chain A hence confirms the inhibition of growth of reactive oxygen species in vivo. In addition, the title compounds have been identified as potential blood-brain barrier penetrable entities and efficient central nervous system (CNS) active neuro-protective antioxidant agents.
Novel thiazolopyrimidine derivatives have been synthesized via microwave assisted, domino cascade methodology in ionic liquid and evaluated in vitro for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities. Among the newly synthesized compounds 6d, 6a, 6e and 6b displayed higher AChE inhibitory activity than standard drug, galanthamine, with IC50 values of 0.53, 1.47, 1.62 and 2.05μM, respectively. Interestingly, all the compounds except for 6m-r and 6x displayed higher BChE inhibitory potentials than galanthamine with IC50 values ranging from 1.09 to 18.56μM. Molecular docking simulations for 6d possessing the most potent AChE and BChE inhibitory activities, disclosed its binding interactions at the active site gorge of AChE and BChE enzymes.
In the title mol-ecular salt, 2C6H10N3O+·C8H4O42-, the N atom of each of the two 2-amino-4-meth-oxy-6-methyl-pyrimidine mol-ecules lying between the amine and methyl groups has been protonated. The dihedral angles between the pyrimidine rings of the cations and the benzene ring of the succinate dianion are 5.04 (8) and 7.95 (8)°. Each of the cations is linked to the anion through a pair of N-H⋯O(carboxyl-ate) hydrogen bonds, forming cyclic R22(8) ring motifs which are then linked through inversion-related N-H⋯O hydrogen bonds, giving a central R24(8) motif. Peripheral amine N-H⋯O hydrogen-bonding inter-actions on either side of the succinate anion, also through centrosymmetric R22(8) extensions, form one-dimensional ribbons extending along [211]. The crystal structure also features π-π stacking inter-actions between the aromatic rings of the pyrimidine cations [minimum ring centroid separation = 3.6337 (9) Å]. The inter-molecular inter-actions were also investigated using Hirshfeld surface studies and two-dimensional fingerprint images.
In our previous report, we have identified 3,4-dihydropyrimidine scaffold as promising class of urease inhibitor in a structure based virtual screen (SBVS) experiment. In present study, we attempted to optimize the scaffold by varying C-5 substituent. The elongation of the C-5 chain was achieved by the reaction of C-5 ester with hydrazine leading to C-5 carbohydrazides which were further used as building blocks for the synthesis of fifteen new compounds having diverse moieties. A significantly higher in vitro urease inhibitory activity with IC50 values in submicromolar range was observed for semithiocarbazide derivatives (4a-c, 0.58-0.79µM) and isatin Schiff base derivative 5a (0.23µM). Docking analysis suggests that the synthesized compounds were anchored well in the catalytic site and extending to the entrance of binding pocket and thus restrict the mobility of the flap by interacting with its key amino acid residues. The overall results of urease inhibition have shown that these compounds can be further optimized and developed as lead urease inhibitors.
Hypertension is a widespread and frequently progressive ailment that imparts a foremost threat for cardiovascular and renal disorders. Mammoth efforts are needed for the synthesis of innovative antihypertensive agents to combat this lethal disease. Chalcones have shown antihypertensive activity through inhibition of Angiotensin Converting Enzyme (ACE). Hence, a series of chalcone analogues is synthesized and used as precursor for the synthesis of novel series of pyrimidines. Precursor chalcones were prepared by reacting aldehydes and ketones in presence of sodium hydroxide followed by synthesis of corresponding pyrimidines by reaction with urea in presence of potassium hydroxide. Both groups were then evaluated for their effects on ACE. The results depicted that pyrimidines were more active than chalcones with methoxy (C5 and P5) substitution showing best results to inhibit ACE. Given that chalcone analogues and pyrimidines show a potential as the angiotensin converting enzyme inhibitors.
A series of hitherto unreported pyrido-pyrimidine-2-ones/pyrimidine-2-thiones were synthesized under microwave assisted solvent free reaction conditions in excellent yields and evaluated in vitro for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes inhibitory activity. Among the pyridopyrimidine derivatives, 7e and 7l displayed 2.5- and 1.5-fold higher enzyme inhibitory activities against AChE as compared to standard drug, galanthamine, with IC50 of 0.80 and 1.37 μM, respectively. Interestingly, all the compounds except 6k, 7j and 7k displayed higher inhibitory potential against BChE enzyme in comparison to standard with IC50 ranging from 1.18 to 18.90 μM. Molecular modeling simulations of 7e and 7l was performed using three-dimensional structure of Torpedo californica AChE (TcAChE) and human butyrylcholinesterase (hBChE) enzymes to disclose binding interaction and orientation of these molecule into the active site gorge of respective receptors.
Sildenafil analogues have been found adulterated in herbal preparations and food products that claim to have natural aphrodisiacs. In this study, a gas chromatography-mass spectrometry (GC-MS) assay was developed for the screening and identification of thioketone analogues of sildenafil. Thiopyrazolopyrimidine, a precursor or a cleavage product of thioketone analogue, exhibited characteristic fragment ions of m/z 328 and m/z 299 was found to be the best marker to screen the presence of general thioketone analogues. Identification by GC-MS assay was rapid and specific as all the studied thioketones showed characteristic mass fragmentations including their intact molecular ions. The developed GC-MS assay had successfully identified thiosildenafil, thiohomosildenafil and thiodimethylsildenafil in herbal preparation and food products.
Imatinib inhibits Bcr-Abl, c-KIT and PDGFR kinases. It is approved for the treatment of chronic myeloid leukemia (CML), gastrointestinal stromal tumors (GIST) and has further therapeutic potential. Male ICR mice were given imatinib PO (50 or 25 mg/kg, 5 doses every 2 h); euthanized 2 h after the last dose administration; plasma, liver, brain, spleen and kidney were collected and imatinib concentration measured by an optimized HPLC method for quantification in tissues. Methanol (1:1 v/v plasma) and pH 4, 40:30:30 (v/v/v) water-methanol-acetonitrile at 5 ml/g (brain) and 10 ml/g (spleen, kidney, liver) ratio was added to the samples, homogenized, sonicated, centrifuged (15,000 rpm, 5 min, 2 degrees C) and the supernatant injected into an Inertsil CN-3 column (4.6 mm x 150 mm, 5 microm) using 64:35:1 (v/v/v) water-methanol-triethylamine (pH 4.8), flow rate 1 ml/min, 25 degrees C. Imatinib eluted at 7.5 min (268 nm). Linearity: 0.1-50 microg/ml; precision, accuracy, inter- and intra-day variability was within 15%. Recovery was above 95% (plasma), 80% (brain) and 90% (kidney, liver, spleen). Imatinib tissue concentrations were 6-8 folds higher than plasma except brain, where the ratio decreased from 0.24 to 0.08 suggesting limited brain penetration, likely due to blood brain barrier efflux transporters. The extensive distribution supports the expansion of therapeutic applications.
New 5-aminopyrazoles 2a-c were prepared in high yields from the reaction of known α,α-dicyanoketene-N,S-acetals 1a-c with hydrazine hydrate under reflux in ethanol. These compounds were utilized as intermediates to synthesize pyrazolo[1,5-a]-pyrimidines 3a-c, 4a-d, 5a-c, and 6a-c, as well as pyrazolo[5,1-c][1,2,4]triazines 7a-c and 8a-c, by the reaction of 2-[bis(methylthio)methylene]malononitrile, α,α-dicyanoketene-N,S-acetals 1a-b, acetylacetone, acetoacetanilide as well as acetylacetone, and malononitrile, respectively. Furthermore, cyclization of 2a-c with pentan-2,5-dione yielded the corresponding 5-pyrrolylpyrazoles 9a-c. Moreover, fusion of 2a-c with acetic anhydride resulted in the corresponding 1-acetyl-1H-pyrazoles 10a-c. The antibacterial activity and cytotoxicity against Vero cells of several selected compounds are also reported.
Imatinib is an efficacious anticancer drug with a spectrum of potential antitumour applications limited by poor biodistribution at therapeutic concentrations to the tissues of interest. We assess the pharmacokinetic and tissue distribution profile of imatinib in a liposome formulation. Its single dose (6.25 mg x kg(-1)) in a liposome formulation was administered iv to male mice. Imatinib concentration was measured in plasma, spleen, liver, kidney and brain using a HPLC assay. Non-compartmental pharmacokinetic approach was used to assess the disposition parameters. The plasma disposition profile was biphasic with a plateau-like second phase. The AUC(0-->infinity) was 11.24 microg x h x mL(-1), the elimination rate constant (k(el)) was 0.348 h(-1) and the elimination half life (t(1/2)) was 2.0 h. The mean residence time (MRT) was 2.59 h, V(SS) was 1.44 L x kg(-1) and clearance was 0.56 L x h x kg(-1). Liver achieved the highest tissue exposure: CMAX = 18.72 microg x mL(-1); AUC(0-->infinity)= 58.18 microg x h x mL(-1) and longest t(1/2) (4.29 h) and MRT (5.31 h). Kidney and spleen AUC(0-->infinity) were 47.98 microg x h x mL(-1) and 23.46 microg x h x mL(-1), respectively. Half-life was 1.83 h for the kidney and 3.37 h for the spleen. Imatinib penetrated into the brain reaching approximately 1 microg x g(-1). Upon correction by organ blood flow the spleen showed the largest uptake efficiency. Liposomal imatinib presented extensive biodistribution. The drug uptake kinetics showed mechanism differences amongst the tissues. These findings encourage the development of novel imatinib formulations to treat other cancers.
We describe here the synthesis of dihydropyrimidines derivatives 3a-p, and evaluation of their α-glucosidase enzyme inhibition activities. Compounds 3b (IC50=62.4±1.5 μM), 3c (IC50=25.3±1.26 μM), 3d (IC50=12.4±0.15 μM), 3e (IC50=22.9±0.25 μM), 3g (IC50=23.8±0.17 μM), 3h (IC50=163.3±5.1 μM), 3i (IC50=30.6±0.6 μM), 3m (IC50=26.4±0.34 μM), and 3o (IC50=136.1±6.63 μM) were found to be potent α-glucosidase inhibitors in comparison to the standard drug acarbose (IC50=840±1.73 μM). The compounds were also evaluated for their in vitro cytotoxic activity against PC-3, HeLa, and MCF-3 cancer cell lines, and 3T3 mouse fibroblast cell line. All compounds were found to be non cytotoxic, except compounds 3f and 3m (IC50=17.79±0.66-20.44±0.30 μM), which showed a weak cytotoxic activity against the HeLa, and 3T3 cell lines. In molecular docking simulation study, all the compounds were docked into the active site of the predicted homology model of α-glucosidase enzyme. From the docking result, it was observed that most of the synthesized compounds showed interaction through carbonyl oxygen atom and polar phenyl ring with active site residues of the enzyme.
Molecular structure and properties of 1-(2-hydroxy-4,5-dimethylphenyl)ethanone were experimentally investigated by X-ray diffraction technique and vibrational spectroscopy. Experimental results on the molecular structure of the reported compound were supported with computational studies using the density functional theory (DFT), with the Becke-3-Lee-Yang-Parr (B3LYP) functional and the 6-311+G(3df,p) basis set. Potential energy distribution (PED) and potential energy surface (PES) analyses were performed to identify characteristic frequencies and reliable conformational analysis correspondingly. The compound crystallizes in monoclinic space group C2/c with the CO up-OH down conformation. There is a good agreement between the experimentally determined geometrical parameters and vibrational frequencies of the compound to those predicted theoretically.
The synthesis and spectral characterization of the 5-(2,6-dichlorobenzylidene)pyrimidine-2,4,6(1H,3H,5H)-trione;3 was reported. The solid state molecular structure of 3 was studied using X-ray crystallography. The relative stabilities of the seven possible isomers of 3 were calculated by DFT/B3LYP method using 6-311 G(d,p) basis set. The calculated total energies and thermodynamic parameters were used to predict the relative stabilities of these isomers. The effect of solvent polarity on the relative stability of these isomers was studied at the same level of theory using PCM. It was found that the keto form, (T0), is the most stable isomer both in the gaseous state and solution. In solution, the calculated total energies of all isomers are decreased indicating that all isomers are stabilized by the solvent effect. The vibrational spectra of the most stable isomer, 3(T0) are calculated using the same level of theory and the results are compared with the experimentally measured FTIR spectra. Good correlation was obtained between the experimental and calculated vibrational frequencies (R(2)=0.9992). The electronic spectra of 3(T0) in gas phase as well as in solutions were calculated using the TD-DFT method. All the predicted electronic transitions showed very little spectral shifts and increase in the intensity of absorption due to solvent effect. Also the (1)H- and (13)C-NMR chemical shifts of the stable isomer were calculated and the results were correlated with the experimental data. Good correlations between the experimental and calculated chemical shifts were obtained.