Displaying publications 1 - 20 of 65 in total

Abstract:
Sort:
  1. Mohd Ridzuan MA, Ruenruetai U, Noor Rain A, Khozirah S, Zakiah I
    Trop Biomed, 2006 Dec;23(2):140-6.
    PMID: 17322815 MyJurnal
    Malaria is a disease which is still endemic and has become a disastrous scourge because of the emergence of antimalarial drug resistant Plasmodium falciparum. A new approach in addressing this is in developing a combination drug. This study is to show the enhancement of antimalarial properties, when single compound, goniothalamin combine with standard drug, chloroquine. Based on 4 Day Test, percentage of parasite growth on treated infected mice were determined. Oral treatment with 1 mg/kg BW of chloroquine on experimental mice suppressed 70% and 76.7% of both Plasmodium yoelii and Plasmodium berghei, respectively. The infection of P. berghei in mice was inhibited less than 50% by goniothalamin individual treatment at all doses in this study. About 27.8% and 18.5% inhibition of infection were observed in P. yoelii infected mice treated with 30 mg/kg and 60 mg/kg of goniothalamin respectively and the suppression exceed more than 50% at higher doses (90 and 120 mg/kg). Combination of 1 mg/kg chloroquine with either 30 mg/kg or 60 mg/kg of goniothalamin decreased the parasitemia of P. yoelii infected mice more than 90% and prolong the survival up to 100% after treatment. Similar treatment to P. berghei infected mice only shows about 60% reduction of parasitemia. The study findings showed that antimalarial property of goniothalamin was enhanced by combination with chloroquine at lower dose of each drug.
    Matched MeSH terms: Pyrones/administration & dosage; Pyrones/pharmacology*
  2. Inayat-Hussain SH, Chan KM, Rajab NF, Din LB, Chow SC, Kizilors A, et al.
    Toxicol Lett, 2010 Mar 1;193(1):108-14.
    PMID: 20026395 DOI: 10.1016/j.toxlet.2009.12.010
    Goniothalamin (GTN) isolated from Goniothalamus sp. has been demonstrated to induce apoptosis in a variety of cancer cell lines including Jurkat T leukemia cells. However, the mechanism of GTN-induced apoptosis upstream of mitochondria is still poorly defined. In this study, GTN caused a decrease in GSH with an elevation of reactive oxygen species as early as 30 min and DNA damage as assessed by Comet assay. Analysis using topoisomerase II processing of supercoiled pBR 322 DNA showed that GTN caused DNA damage via a topoisomerase II-independent pathway suggesting that cellular oxidative stress may contribute to genotoxicity. A 12-fold increase of caspase-2 activity was observed in GTN-treated Jurkat cells after 4h treatment and this was confirmed using Western blotting. Although the caspase-2 inhibitor Z-VDVAD-FMK inhibited the proteolytic activity of caspase-2, apoptosis ensued confirming that caspase-2 activity was not crucial for GTN-induced apoptosis. However, GTN-induced apoptosis was completely abrogated by N-acetylcysteine further confirming the role of oxidative stress. Since cytochrome c release was observed as early as 1h without any appreciable change in Bcl-2 protein expression, we further investigated whether overexpression of Bcl-2 confers resistance in GTN-induced cytotoxicity. Using a panel of Jurkat Bcl-2 transfectants, GTN cytotoxicity was not abrogated in these cells. In conclusion, GTN induces DNA damage and oxidative stress resulting in apoptosis which is independent of both caspase-2 and Bcl-2.
    Matched MeSH terms: Pyrones/toxicity*
  3. Inayat-Hussain SH, Osman AB, Din LB, Taniguchi N
    Toxicol Lett, 2002 May 28;131(3):153-9.
    PMID: 11992734
    Plant styryl-lactone derivatives isolated from Goniothalamus sp. are potential compounds for cancer chemotherapy. In this study, we have examined the mechanisms of apoptosis induced by altholactone, a stryl-lactone isolated from the Malaysian plant G. malayanus on human HL-60 promyelocytic leukemia cells. Flow cytometric analysis of the externalization of phosphatidylserine (PS) using the annexin V/PI method on altholactone treated HL-60 cells showed a concentration-dependent increase of apoptosis from concentrations ranging from 10.8 (2.5 microg/ml) to 172.4 microM (40 microg/ml). Pre-treatment with the antioxidant N-acetylcysteine (1 mM) completely abrogated apoptosis induced by altholactone, suggesting for the involvement of oxidative stress. Further flow cytometric assessment of the level of intracellular peroxides using the fluorescent probe 2',7'-dichlorofluorescein diacetate (DCFH-DA) confirmed that altholactone induced an increase in cellular oxidative stress in HL-60 cells which was suppressed by N-acetylcysteine. In summary, our results demonstrate for the first time that altholactone induced apoptosis in HL-60 cells occurs via oxidative stress.
    Matched MeSH terms: Pyrones/pharmacology
  4. Inayat-Hussain SH, Wong LT, Chan KM, Rajab NF, Din LB, Harun R, et al.
    Toxicol Lett, 2009 Dec 15;191(2-3):118-22.
    PMID: 19698770 DOI: 10.1016/j.toxlet.2009.08.012
    Goniothalamin, a styryllactone, has been shown to induce cytotoxicity via apoptosis in several tumor cell lines. In this study, we have examined the potential role of several genes, which were stably transfected into T-cell lines and which regulate apoptosis in different ways, on goniothalamin-induced cell death. Overexpression of full-length receptor for activated protein C-kinase 1 (RACK-1) and pc3n3, which up-regulates endogenous RACK-1, in both Jurkat and W7.2 T cells resulted in inhibition of goniothalamin-induced cell death as assessed by MTT and clonogenic assays. However, overexpression of rFau (antisense sequence to Finkel-Biskis-Reilly murine sarcoma virus-associated ubiquitously expressed gene) in W7.2 cells did not confer resistance to goniothalamin-induced cell death. Etoposide, a clinically used cytotoxic agent, was equipotent in causing cytotoxicity in all the stable transfectants. Assessment of DNA damage by Comet assay revealed goniothalamin-induced DNA strand breaks as early as 1 h in vector control but this effect was inhibited in RACK-1 and pc3n3 stably transfected W7.2 cells. This data demonstrate that RACK-1 plays a crucial role in regulating cell death signalling pathways induced by goniothalamin.
    Matched MeSH terms: Pyrones/toxicity*
  5. Inayat-Hussain SH, Annuar BO, Din LB, Ali AM, Ross D
    Toxicol In Vitro, 2003 Aug;17(4):433-9.
    PMID: 12849726
    Styryl-lactones such as goniothalamin represent a new class of compounds with potential anti-cancer properties. In this study, we investigated the mechanisms of goniothalamin (GTN), a plant styryl-lactone induced apoptosis in human promyelocytic leukemia HL-60 cells. This plant extract resulted in apoptosis in HL-60 cells as assessed by the externalisation of phosphatidylserine. Using the mitochondrial membrane dye (DIOC(6)) in conjunction with flow cytometry, we found that GTN treated HL-60 cells demonstrated a loss of mitochondrial transmembrane potential (Deltapsi(m)). Further immunoblotting on these cells showed activation of initiator caspase-9 and the executioner caspases-3 and -7. Pretreatment with the pharmacological caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp fluoromethyl ketone (Z-VAD.FMK) abrogated apoptosis as assessed by all of the apoptotic features in this study. In summary, our results demonstrate that goniothalamin-induced apoptosis occurs via the mitochondrial pathway in a caspase dependent manner.
    Matched MeSH terms: Pyrones/pharmacology*
  6. Chan KM, Rajab NF, Siegel D, Din LB, Ross D, Inayat-Hussain SH
    Toxicol. Sci., 2010 Aug;116(2):533-48.
    PMID: 20498002 DOI: 10.1093/toxsci/kfq151
    Goniothalamin (GN), a styryl-lactone isolated from Goniothalamus andersonii, has been demonstrated to possess antirestenostic properties by inducing apoptosis on coronary artery smooth muscle cells (CASMCs). In this study, the molecular mechanisms of GN-induced CASMCs apoptosis were further elucidated. Apoptosis assessment based on the externalization of phosphatidylserine demonstrated that GN induces CASMCs apoptosis in a concentration-dependent manner. The GN-induced DNA damage occurred with concomitant elevation of p53 as early as 2 h, demonstrating an upstream signal for apoptosis. However, the p53 elevation in GN-treated CASMCs was independent of NAD(P)H: quinone oxidoreductase 1 and Mdm-2 expression. An increase in hydrogen peroxide and reduction in free thiols confirmed the role for oxidative stress in GN treatment. Pretreatment with the pan-caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (z-VAD-FMK) that significantly abrogated GN-induced CASMCs apoptosis suggested the involvement of caspase(s). The role of apical caspase-2, -8, and -9 was then investigated, and sequential activation of caspase-2 and -9 but not caspase-8 leading to downstream caspase-3 cleavage was observed in GN-treated CASMCs. Reduction of ATP level and decrease in oxygen consumption further confirmed the role of mitochondria in GN-induced apoptosis in CASMCs. The mitochondrial release of cytochrome c was seen without mitochondrial membrane potential loss and was independent of cardiolipin. These data provide insight into the mechanisms of GN-induced apoptosis, which may have important implications in the development of drug-eluting stents.
    Matched MeSH terms: Pyrones/toxicity*
  7. Anouar el H, Weber JF
    PMID: 23880409 DOI: 10.1016/j.saa.2013.06.114
    Natural styrylpyrones isolated from fungi are known for various biological activities including antioxidant activity by scavenging free radicals. UV/vis spectra play an important role in elucidating chemical structures of these compounds via identification of chromophore units. With the aim of predicting the UV/vis spectra of a series of natural styrylpyrones, we tested TD-DFT, CIS and ZINDO methods in gas and in PCM solvent. The results showed that the individual or combined B3P86 and B3LYP hybrid functionals are suitable to predict the maximum wavelength absorption bands (λmax) for styrylpyrones. The structure property relationship (SPR) study emphasized the role of (i) structural parameters (e.g., hydrogen bond and the length of conjugated double bonds) and (ii) electronic descriptors (e.g., ionization potential, electronic affinity, hardness and electrophilicity) in bathochromic and hypsochromic shifts of maximum wavelength absorption bands (λmax) of styrylpyrone derivatives.
    Matched MeSH terms: Pyrones/chemistry*
  8. Samsiah Jusoh, Laily B. Din, Zuriati Zakaria, Fasihuddin B. Ahmad
    Sains Malaysiana, 2015;44:365-370.
    Phytochemical studies were conducted on the stem bark, stem, root and fruit of Goniothalamus ridleyi (Annonaceae)
    collected at Post Brooke, Gua Musang, Kelantan, Malaysia. Extraction using organic solvent followed by extensive
    purification using standard procedure afforded an epoxystyryllactone, 5-acetoxyisogoniothalamin oxide (1) from the
    stem bark and fruit; a styryllactone, 5-acetoxygoniothalamin (2) and a styrylpyrone, dehydrogoniothalamin (3) from
    the stem and root; a styryllactone, 5-hydroxygoniothalamin (4) from the root and styrylpyrone as well as goniothalamin
    (5) from the fruit. These compounds were characterized using spectroscopic techniques.
    Matched MeSH terms: Pyrones
  9. Fasihuddin B.A., Laily B. Din, Zuriati Zakaria
    Three compounds were isolated and characterized from the roots of Goniothalamus woodii. Based on their spectroscopic data, the compounds were identified as goniothalamin, 5-acetoxygoniothalamin and goniotriol.
    Tiga sebatian telah dipisahkan dan dicamkan daripada akar Goniothalamus woodii. Berdasarkan dari data spektroskopi, sebatian telah dikenalpasti sebagai goniotalamin, 5-asetoksigoniotalamin dan goniotriol.
    Matched MeSH terms: Pyrones
  10. Aryanti Abdullah, Zuriati Zakaria, Fasihuddin Ahmad, Mat-Salleh K, Laily B. Din
    The phytochemical investigation on the fruit peel of Goniothalamus scortechinii (Selayar Raja Ubat) obtained from Gunung Stong, Kelantan has resulted in the isolation of five compounds namely pinocembrine, altholactone, goniofufurone, goniotriol and goniopypyrone. Their structures were determined by extensive ultra violet (UV), infrared (IR), nuclear magnetic resonance (NMR) spectroscopy and gas chromatography-mass spectrum (GCMS) analysis.
    Matched MeSH terms: Pyrones
  11. Jumbri K, Al-Haniff Rozy MF, Ashari SE, Mohamad R, Basri M, Fard Masoumi HR
    PLoS One, 2015;10(12):e0144664.
    PMID: 26657030 DOI: 10.1371/journal.pone.0144664
    Kojic acid is widely used to inhibit the browning effect of tyrosinase in cosmetic and food industries. In this work, synthesis of kojic monooleate ester (KMO) was carried out using lipase-catalysed esterification of kojic acid and oleic acid in a solvent-free system. Response Surface Methodology (RSM) based on central composite rotatable design (CCRD) was used to optimise the main important reaction variables, such as enzyme amount, reaction temperature, substrate molar ratio, and reaction time along with immobilised lipase from Candida Antarctica (Novozym 435) as a biocatalyst. The RSM data indicated that the reaction temperature was less significant in comparison to other factors for the production of a KMO ester. By using this statistical analysis, a quadratic model was developed in order to correlate the preparation variable to the response (reaction yield). The optimum conditions for the enzymatic synthesis of KMO were as follows: an enzyme amount of 2.0 wt%, reaction temperature of 83.69°C, substrate molar ratio of 1:2.37 (mmole kojic acid:oleic acid) and a reaction time of 300.0 min. Under these conditions, the actual yield percentage obtained was 42.09%, which is comparably well with the maximum predicted value of 44.46%. Under the optimal conditions, Novozym 435 could be reused for 5 cycles for KMO production percentage yield of at least 40%. The results demonstrated that statistical analysis using RSM can be used efficiently to optimise the production of a KMO ester. Moreover, the optimum conditions obtained can be applied to scale-up the process and minimise the cost.
    Matched MeSH terms: Pyrones
  12. Kwong HC, Chidan Kumar CS, Mah SH, Chia TS, Quah CK, Loh ZH, et al.
    PLoS One, 2017;12(2):e0170117.
    PMID: 28241010 DOI: 10.1371/journal.pone.0170117
    Biphenyl-based compounds are clinically important for the treatments of hypertension and inflammatory, while many more are under development for pharmaceutical uses. In the present study, a series of 2-([1,1'-biphenyl]-4-yl)-2-oxoethyl benzoates, 2(a-q), and 2-([1,1'-biphenyl]-4-yl)-2-oxoethyl pyridinecarboxylate, 2(r-s) were synthesized by reacting 1-([1,1'-biphenyl]-4-yl)-2-bromoethan-1-one with various carboxylic acids using potassium carbonate in dimethylformamide at ambient temperature. Single-crystal X-ray diffraction studies revealed a more closely packed crystal structure can be produced by introduction of biphenyl moiety. Five of the compounds among the reported series exhibited significant anti-tyrosinase activities, in which 2p, 2r and 2s displayed good inhibitions which are comparable to standard inhibitor kojic acid at concentrations of 100 and 250 μg/mL. The inhibitory effects of these active compounds were further confirmed by computational molecular docking studies and the results revealed the primary binding site is active-site entrance instead of inner copper binding site which acted as the secondary binding site.
    Matched MeSH terms: Pyrones/chemistry
  13. Ali AM, Mackeen MM, Hamid M, Aun QB, Zauyah Y, Azimahtol HL, et al.
    Planta Med, 1997 Feb;63(1):81-3.
    PMID: 9063100
    The cytotoxicity of goniothalamin was found to be strong towards both cancerous (HGC-27, MCF-7, PANC-1, HeLa), and non-cancerous (3T3) cell lines, especially in cases of dividing cells. Drug exposure studies indicated that the cytotoxic action of goniothalamin was time- and dose-dependent. At the ultrastructural level, goniothalamin-induced cytotoxicity revealed a necrotic mode of cell death towards MCF-7 cells.
    Matched MeSH terms: Pyrones/pharmacology*
  14. Moharam BA, Jantan I, Jalil J, Ahmad F
    Phytother Res, 2012 May;26(5):687-91.
    PMID: 22002630 DOI: 10.1002/ptr.3620
    Phytochemical investigation on the bark of Goniothalamus tapis Miq. and G. uvaroides King has resulted in the isolation of eight styryl-lactones, (-)-cryptomeridiol, liriodenine, 3-methyl-1H-benz[f]indole-4,9-dione, (-)-stigmasterol and dimethyl terephthalate. The structures of the compounds were elucidated by spectroscopic techniques. The compounds were evaluated for their effect on platelet-activating factor (PAF) receptor binding on rabbit platelets using (3) H-PAF as a ligand. Among the compounds tested, (-)-cryptomeridiol, (+)-goniothalamin and (+)-isoaltholactone exhibited a significant and concentration-dependent inhibitory effect on PAF receptor binding, with inhibitory concentration (IC)(50) values of 17.5, 19.7 and 46.5 µm, respectively. The inhibitory effects of the first two compounds were comparable to that obtained from the positive control, cedrol. The results indicated that these compounds were strong PAF receptor binding inhibitors.
    Matched MeSH terms: Pyrones/isolation & purification; Pyrones/pharmacology; Pyrones/chemistry
  15. Tanaka S, Yoichi S, Ao L, Matumoto M, Morimoto K, Akimoto N, et al.
    Phytother Res, 2001 Dec;15(8):681-6.
    PMID: 11746860
    In the search for agents effective against immune-mediated disorders and inflammation, we have screened Malaysian medicinal plants for the ability to inhibit the expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) on the surface of murine endothelial cells (F-2), and mouse myeloid leukaemia cells (M1), respectively. Of 41 kinds (29 species, 24 genera, 16 families) of Malaysian plants tested, 10 and 19 plant samples significantly downregulated the expression of ICAM-1 and VCAM-1, respectively. Bioassay-directed fractionation of an extract prepared from the bark of Goniothalamus andersonii showed that its ingredients, goniothalamin (1) and goniodiol (2) inhibited the cell surface expression of both ICAM-1 and VCAM-1. The present results suggest that Malaysian medicinal plants may be abundant natural resources for immunosuppressive and antiinflammatory substances.
    Matched MeSH terms: Pyrones/pharmacology
  16. Jantan I, Raweh SM, Sirat HM, Jamil S, Mohd Yasin YH, Jalil J, et al.
    Phytomedicine, 2008 Apr;15(4):306-9.
    PMID: 17913483
    Twelve compounds isolated from Alpinia mutica Roxb., Kaempferia rotunda Linn., Curcuma xanthorhiza Roxb., Curcuma aromatica Valeton and Zingiber zerumbet Smith (Family: Zingiberaceae) and three synthesized derivatives of xanthorrhizol were evaluated for their ability to inhibit arachidonic acid- (AA), collagen- and ADP-induced platelet aggregation in human whole blood. Antiplatelet activity of the compounds was measured in vitro by the Chrono Log whole blood aggregometer using an electrical impedance method. Among the compounds tested, curcumin from C. aromatica, cardamonin, pinocembrine and 5,6-dehydrokawain from A. mutica and 3-deacetylcrotepoxide from K. rotunda showed strong inhibition on platelet aggregation induced by AA with IC(50) values of less than 84 microM. Curcumin was the most effective antiplatelet compound as it inhibited AA-, collagen- and ADP-induced platelet aggregation with IC(50) values of 37.5, 60.9 and 45.7 microM, respectively.
    Matched MeSH terms: Pyrones/isolation & purification; Pyrones/pharmacology
  17. Chan KL, Sugiyama H, Saito I, Hara M
    Phytochemistry, 1995 Nov;40(5):1373-4.
    PMID: 8534399
    The kapurimycin A3-guanine adduct was formed by alkylation of the antitumour antibiotic with d(CGCG)2. The site of alkylation of the guanine was confirmed by comparative NMR studies with N-7-methyl-guanine in DMSO-d6.
    Matched MeSH terms: Pyrones/pharmacology
  18. Al-Khdhairawi AAQ, Loo JSE, Abd Mutalib N, Abd Latip N, Manshoor N, Abu Bakar H, et al.
    Phytochemistry, 2023 Jul;211:113685.
    PMID: 37088350 DOI: 10.1016/j.phytochem.2023.113685
    Four previously undescribed alkaloids, aspergillinine A-D, and four known diterpene pyrones were isolated from the potato dextrose agar (PDA) culture of Aspergillus sp. HAB10R12. The chemical structures of the isolated compounds were elucidated based on a detailed analysis of their NMR and MS data. The absolute configuration of the isolated compounds was determined by Electronic Circular Dichroism analysis coupled with computational methods. Aspergillinine A represents the first example of a diketopiperazine dipeptide containing the unnatural amino acid N-methyl kynurenine. Its absolute configuration revealed that it adopts a rather unusual conformation. Aspergillinine B represents a previously unencountered skeleton containing an isoindolinone ring. Aspergillinine C and D were similar to previously isolated diketopiperazine alkaloids, namely, lumpidin and brevianamide F, respectively. The diterpene pyrones were isolated twice previously, once from a soil-derived Aspergillus species, and once from the liquid culture of Aspergillus sp. HAB10R12. The alkaloids isolated in this study showed no antiproliferative activity when tested against HepG2 and A549 cancer cell lines.
    Matched MeSH terms: Pyrones/metabolism
  19. Yamamoto T, Tsunematsu Y, Noguchi H, Hotta K, Watanabe K
    Org. Lett., 2015 Oct 16;17(20):4992-5.
    PMID: 26414728 DOI: 10.1021/acs.orglett.5b02435
    Successful activation of the pyranonigrin biosynthetic gene cluster and gene knockout in Aspergillus niger plus in vivo and in vitro assays led to isolation of six new products, including a spiro cyclobutane-containing dimeric compound, which served as the basis for the proposed comprehensive pyranonigrin biosynthetic pathway. Two redox enzymes are key to forming the characteristic fused γ-pyrone core, and a protease homologue performs the exo-methylene formation.
    Matched MeSH terms: Pyrones/isolation & purification; Pyrones/metabolism; Pyrones/pharmacology; Pyrones/chemistry*
  20. Al-Khdhairawi AAQ, Cordell GA, Thomas NF, Shivanagere Nagojappa NB, Weber JF
    Org Biomol Chem, 2019 10 28;17(40):8943-8957.
    PMID: 31482157 DOI: 10.1039/c9ob01501a
    Diterpene pyrones (DTPs) are a group of well-known, mainly fungal, natural products, first isolated in 1966. As the name indicates, they are composed of two main structural features: a diterpenyl moiety and a pyrone ring. Various names have been given to this class of metabolites; however, biogenetic evidence indicates that they originate through the same metabolic pathway. Based on their biosynthesis, which leads to differences in their structural architecture, the DTPs can be classified into three main types. In addition to their intriguing chemistry, these compounds demonstrate a wide range of biological activities rendering them a desirable target for total synthesis. To date, sixty-seven DTPs have been isolated from various fungal species, with one example originating from the plant kingdom. This review aims at unifying the classification of these compounds, in addition to presenting a detailed description of their isolation, bioactivities, biosynthesis, and total synthesis.
    Matched MeSH terms: Pyrones/chemical synthesis; Pyrones/metabolism*; Pyrones/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links