Displaying publications 1 - 20 of 35 in total

Abstract:
Sort:
  1. Segasothy M
    Med J Malaysia, 1982 Dec;37(4):384.
    PMID: 7167095
    Matched MeSH terms: Quinazolines/adverse effects*
  2. Liam CK, Pang YK, Leow CH
    Respirology, 2006 May;11(3):287-91.
    PMID: 16635086
    To describe the efficacy of monotherapy with the epidermal growth factor receptor-tyrosine kinase inhibitor, gefitinib in patients with locally advanced and metastatic primary lung adenocarcinoma.
    Matched MeSH terms: Quinazolines/administration & dosage; Quinazolines/therapeutic use*
  3. Nair A, Gupta R, Vasanti S
    Pharm Dev Technol, 2007;12(6):621-5.
    PMID: 18161635
    The present study is an attempt to formulate a controlled-release matrix tablet formulation for alfuzosin hydrochloride by using low viscous hydroxy propyl methyl cellulose (HPMC K-100 and HPMC 15cps) and its comparison with marketed product. Different batches of tablets containing 10 mg of alfuzosin were prepared by direct compression technique and evaluated for their physical properties, drug content, and in vitro drug release. All the formulations had a good physical integrity, and the drug content between the batches did not vary by more than 1%. Drug release from the matrix tablets was carried out for 12 hr and showed that the release rate was not highly significant with different ratios of HPMC K-100 and HPMC15cps. Similar dissolution profiles were observed between formulation F3 and the marketed product throughout the study period. The calculated regression coefficients showed a higher r2 value with zero-order kinetics and Higuchi model in all the cases. Although both the models could be applicable, zero-order kinetics seems to be better. Hence, it can be concluded that the use of low viscous hydrophilic polymer of different grades (HPMC K-100 and HPMC 15cps) can control the alfuzosin release for a period of 12 hr and was comparable to the marketed product.
    Matched MeSH terms: Quinazolines/chemistry*
  4. Lee CH, Liam CK, Pang YK, Chua KT, Lim BK, Lai NL
    Lung Cancer, 2011 Nov;74(2):349-51.
    PMID: 21920622 DOI: 10.1016/j.lungcan.2011.08.008
    We report a woman presenting with respiratory failure due to a right-sided pleural effusion, lung metastases and lymphangitis carcinomatosis from advanced lung adenocarcinoma in the third trimester of pregnancy, who showed good response to EGFR tyrosine kinase inhibitor.
    Matched MeSH terms: Quinazolines/administration & dosage*; Quinazolines/pharmacology
  5. Ong CK, Tan WC, Chan LC, Abdul Razak M
    Med J Malaysia, 2012 Apr;67(2):222-3.
    PMID: 22822651 MyJurnal
    Epidermal growth factor receptor (EGFR)--tyrosine kinase inhibitors (TKI) like erlotinib and gefitinib have been approved as monotherapy for the treatment of patients with locally advanced or metastatic non small cell lung cancer (NSCLC) after failure of at least one prior chemotherapy regimen. The use of EGFR-TKI is associated with unique and dramatic dermatologic side effects. We report 2 patients with NSCLC developing a typical acneiform (papulo-pustular) eruption shortly after initiation of EGFR-TKI.
    Matched MeSH terms: Quinazolines/adverse effects*
  6. Wu YL, Kim JH, Park K, Zaatar A, Klingelschmitt G, Ng C
    Lung Cancer, 2012 Aug;77(2):339-45.
    PMID: 22494567 DOI: 10.1016/j.lungcan.2012.03.012
    Maintenance therapy, commenced immediately after the completion of first-line chemotherapy, is a promising strategy for improving treatment outcomes in patients with non-small-cell lung cancer (NSCLC). The global phase III SequentiAl Tarceva in UnResectable NSCLC (SATURN) study evaluated the efficacy and safety of the epidermal growth factor receptor (EGFR) tyrosine-kinase inhibitor erlotinib as maintenance treatment in NSCLC patients without progression after first-line chemotherapy. We report a retrospective subanalysis of Asian patients enrolled in SATURN. Patients with advanced NSCLC with no evidence of progression after four cycles of chemotherapy were randomized to receive erlotinib 150 mg/day or placebo, until progressive disease or limiting toxicity. The co-primary endpoints of SATURN were progression-free survival (PFS) in all patients and in those with positive EGFR immunohistochemistry (IHC) status. Secondary endpoints included overall survival (OS), disease control rate, safety, quality of life (QoL) and biomarker analyses. In total, 126 patients from East and South-East Asian centers were randomized (14% of the intent-to-treat population): 88 from Korea, 28 from China and 10 from Malaysia; one patient was excluded from this analysis due to Indian ethnicity. PFS was significantly prolonged in the erlotinib treatment arm, both overall (hazard ratio [HR]: 0.57; p=0.0067) and in patients with EGFR IHC-positive disease (HR=0.50; p=0.0057). There was a trend towards an increase in OS, which reached statistical significance in the EGFR IHC-positive subgroup (p=0.0233). The overall response rate was significantly higher with erlotinib compared with placebo (24% versus 5%; p=0.0025). Erlotinib was generally well tolerated and had no negative impact on QoL in this subpopulation. The most common treatment-related adverse events were rash, diarrhea and pruritus. Erlotinib was effective and well tolerated in Asian patients, producing benefits consistent with those observed in the overall SATURN population. Maintenance treatment with erlotinib appears to be a useful option for the management of Asian patients with advanced NSCLC without progression after first-line chemotherapy.
    Matched MeSH terms: Quinazolines/adverse effects; Quinazolines/therapeutic use*
  7. Liam CK, Ruthranesan M, Lee CH, Pang YK, Chua KT, Lim BK
    Asia Pac J Clin Oncol, 2012 Sep;8(3):267-74.
    PMID: 22897510 DOI: 10.1111/j.1743-7563.2011.01509.x
    To evaluate the response and progression-free survival (PFS) of Malaysian patients with advanced lung adenocarcinoma and unknown epidermal growth factor receptor (EGFR) mutation status treated with gefitinib.
    Matched MeSH terms: Quinazolines/therapeutic use*
  8. Faraj FL, Zahedifard M, Paydar M, Looi CY, Abdul Majid N, Ali HM, et al.
    ScientificWorldJournal, 2014;2014:212096.
    PMID: 25548779 DOI: 10.1155/2014/212096
    Two new synthesized and characterized quinazoline Schiff bases 1 and 2 were investigated for anticancer activity against MCF-7 human breast cancer cell line. Compounds 1 and 2 demonstrated a remarkable antiproliferative effect, with an IC50 value of 6.246×10(-6) mol/L and 5.910×10(-6) mol/L, respectively, after 72 hours of treatment. Most apoptosis morphological features in treated MCF-7 cells were observed by AO/PI staining. The results of cell cycle analysis indicate that compounds did not induce S and M phase arrest in cell after 24 hours of treatment. Furthermore, MCF-7 cells treated with 1 and 2 subjected to apoptosis death, as exhibited by perturbation of mitochondrial membrane potential and cytochrome c release as well as increase in ROS formation. We also found activation of caspases-3/7, -8, and -9 in compounds 1 and 2. Moreover, inhibition of NF-κB translocation in MCF-7 cells treated by compound 1 significantly exhibited the association of extrinsic apoptosis pathway. Acute toxicity results demonstrated the nontoxic nature of the compounds in mice. Our results showed significant activity towards MCF-7 cells via either intrinsic or extrinsic mitochondrial pathway and are potential candidate for further in vivo and clinical breast cancer studies.
    Matched MeSH terms: Quinazolines/chemical synthesis*; Quinazolines/pharmacology*; Quinazolines/toxicity; Quinazolines/chemistry
  9. Loh SW, Ng WL, Yeo KS, Lim YY, Ea CK
    PLoS One, 2014;9(7):e103915.
    PMID: 25079219 DOI: 10.1371/journal.pone.0103915
    H3K9 methylation is one of the essential histone post-translational modifications for heterochromatin formation and transcriptional repression. Recently, several studies have demonstrated that H3K9 methylation negatively regulates the type I interferon response.
    Matched MeSH terms: Quinazolines/pharmacology*
  10. Adam F, Arafath MA, Rosenani AH, Razali MR
    Acta Crystallogr E Crystallogr Commun, 2015 Dec 1;71(Pt 12):o971-2.
    PMID: 26870556 DOI: 10.1107/S2056989015021180
    In the mol-ecule of the title compound, C21H17N3O2, the 5,6-di-hydro-benzimidazo[1,2-c]quinazoline moiety is disordered over two orientations about a pseudo-mirror plane, with a refined occupancy ratio of 0.863 (2):0.137 (2). The dihedral angles formed by the benzimidazole ring system and the benzene ring of the quinazoline group are 14.28 (5) and 4.7 (3)° for the major and minor disorder components, respectively. An intra-molecular O-H⋯O hydrogen bond is present. In the crystal, mol-ecules are linked by O-H⋯N hydrogen bonds, forming chains running parallel to [10-1].
    Matched MeSH terms: Quinazolines
  11. Agbo EN, Makhafola TJ, Choong YS, Mphahlele MJ, Ramasami P
    Molecules, 2015 Dec 25;21(1):E28.
    PMID: 26712730 DOI: 10.3390/molecules21010028
    Suzuki-Miyaura cross-coupling of 6-bromo-2-styrylquinazolin-4(3H)-ones with arylboronic acids afforded a series of novel 6-aryl-2-styrylquinazolin-4(3H)-ones. These compounds were evaluated for potential anticancer properties against the human renal (TK-10), melanoma (UACC-62) and breast cancer (MCF-7) cell lines. Their antimicrobial properties were also evaluated against six Gram-positive and four Gram-negative bacteria, as well as two strains of fungi. Molecular docking studies (in silico) were conducted on compounds 5a, b, d and 6a, b, d-f to recognize the hypothetical binding motif of the title compounds within the active site of the dihydrofolate reductase and thymidylate synthase enzymes.
    Matched MeSH terms: Quinazolines/chemical synthesis*; Quinazolines/pharmacology*; Quinazolines/chemistry
  12. Hong W, Wang Y, Chang Z, Yang Y, Pu J, Sun T, et al.
    Sci Rep, 2015;5:15328.
    PMID: 26471125 DOI: 10.1038/srep15328
    It is an urgent need to develop new drugs for Mycobacterium tuberculosis (Mtb), and the enzyme, dihydrofolate reductase (DHFR) is a recognised drug target. The crystal structures of methotrexate binding to mt- and h-DHFR separately indicate that the glycerol (GOL) binding site is likely to be critical for the function of mt-DHFR selective inhibitors. We have used in silico methods to screen NCI small molecule database and a group of related compounds were obtained that inhibit mt-DHFR activity and showed bactericidal effects against a test Mtb strain. The binding poses were then analysed and the influence of GOL binding site was studied by using molecular modelling. By comparing the chemical structures, 4 compounds that might be able to occupy the GOL binding site were identified. However, these compounds contain large hydrophobic side chains. As the GOL binding site is more hydrophilic, molecular modelling indicated that these compounds were failed to occupy the GOL site. The most potent inhibitor (compound 6) demonstrated limited selectivity for mt-DHFR, but did contain a novel central core (7H-pyrrolo[3,2-f]quinazoline-1,3-diamine), which may significantly expand the chemical space of novel mt-DHFR inhibitors. Collectively, these observations will inform future medicinal chemistry efforts to improve the selectivity of compounds against mt-DHFR.
    Matched MeSH terms: Quinazolines
  13. Kabir MZ, Mukarram AK, Mohamad SB, Alias Z, Tayyab S
    J. Photochem. Photobiol. B, Biol., 2016 Jul;160:229-39.
    PMID: 27128364 DOI: 10.1016/j.jphotobiol.2016.04.005
    Interaction of a promising anticancer drug, lapatinib (LAP) with the major transport protein in human blood circulation, human serum albumin (HSA) was investigated using fluorescence and circular dichroism (CD) spectroscopy as well as molecular docking analysis. LAP-HSA complex formation was evident from the involvement of static quenching mechanism, as revealed by the fluorescence quenching data analysis. The binding constant, Ka value in the range of 1.49-1.01×10(5)M(-1), obtained at three different temperatures was suggestive of the intermediate binding affinity between LAP and HSA. Thermodynamic analysis of the binding data (∆H=-9.75kJmol(-1) and ∆S=+65.21Jmol(-1)K(-1)) suggested involvement of both hydrophobic interactions and hydrogen bonding in LAP-HSA interaction, which were in line with the molecular docking results. LAP binding to HSA led to the secondary and the tertiary structural alterations in the protein as evident from the far-UV and the near-UV CD spectral analysis, respectively. Microenvironmental perturbation around Trp and Tyr residues in HSA upon LAP binding was confirmed from the three-dimensional fluorescence spectral results. LAP binding to HSA improved the thermal stability of the protein. LAP was found to bind preferentially to the site III in subdomain IB on HSA, as probed by the competitive drug displacement results and supported by the molecular docking results. The effect of metal ions on the binding constant between LAP and HSA was also investigated and the results showed a decrease in the binding constant in the presence of these metal ions.
    Matched MeSH terms: Quinazolines/metabolism*; Quinazolines/chemistry
  14. Kabir MZ, Feroz SR, Mukarram AK, Alias Z, Mohamad SB, Tayyab S
    J Biomol Struct Dyn, 2016 Aug;34(8):1693-704.
    PMID: 26331959 DOI: 10.1080/07391102.2015.1089187
    Interaction of a tyrosine kinase inhibitor, vandetanib (VDB), with the major transport protein in the human blood circulation, human serum albumin (HSA), was investigated using fluorescence spectroscopy, circular dichroism (CD) spectroscopy, and molecular docking analysis. The binding constant of the VDB-HSA system, as determined by fluorescence quenching titration method was found in the range, 8.92-6.89 × 10(3 )M(-1) at three different temperatures, suggesting moderate binding affinity. Furthermore, decrease in the binding constant with increasing temperature revealed involvement of static quenching mechanism, thus affirming the formation of the VDB-HSA complex. Thermodynamic analysis of the binding reaction between VDB and HSA yielded positive ΔS (52.76 J mol(-1) K(-1)) and negative ΔH (-6.57 kJ mol(-1)) values, which suggested involvement of hydrophobic interactions and hydrogen bonding in stabilizing the VDB-HSA complex. Far-UV and near-UV CD spectral results suggested alterations in both secondary and tertiary structures of HSA upon VDB-binding. Three-dimensional fluorescence spectral results also showed significant microenvironmental changes around the Trp residue of HSA consequent to the complex formation. Use of site-specific marker ligands, such as phenylbutazone (site I marker) and diazepam (site II marker) in competitive ligand displacement experiments indicated location of the VDB binding site on HSA as Sudlow's site I (subdomain IIA), which was further established by molecular docking results. Presence of some common metal ions, such as Ca(2+), Zn(2+), Cu(2+), Ba(2+), Mg(2+), and Mn(2+) in the reaction mixture produced smaller but significant alterations in the binding affinity of VDB to HSA.
    Matched MeSH terms: Quinazolines/metabolism; Quinazolines/pharmacology; Quinazolines/chemistry*
  15. Bashir ES, Kwan AK, Chan CY, Mun Keong K
    J Orthop Surg (Hong Kong), 2016 12;24(3):421-423.
    PMID: 28031519
    Gefitinib inhibits the epidermal growth factor receptor tyrosine kinase and improves survival in patients with non-small-cell lung cancer. We report 2 patients with extensive lytic bony metastasis in the spine and pelvis secondary to advanced pulmonary adenocarcinoma who were treated with gefitinib and had remarkable bone formation in the lytic bone lesions in the spine and pelvis. Surgery for stabilisation was avoided.
    Matched MeSH terms: Quinazolines/therapeutic use*
  16. Rothan HA, Amini E, Faraj FL, Golpich M, Teoh TC, Gholami K, et al.
    Sci Rep, 2017 03 30;7:45540.
    PMID: 28358047 DOI: 10.1038/srep45540
    N-methyl-D-aspartate receptors (NMDAR) play a central role in epileptogensis and NMDAR antagonists have been shown to have antiepileptic effects in animals and humans. Despite significant progress in the development of antiepileptic therapies over the previous 3 decades, a need still exists for novel therapies. We screened an in-house library of small molecules targeting the NMDA receptor. A novel indolyl compound, 2-(1,1-Dimethyl-1,3-dihydro-benzo[e]indol-2-ylidene)-malonaldehyde, (DDBM) showed the best binding with the NMDA receptor and computational docking data showed that DDBM antagonised the binding sites of the NMDA receptor at lower docking energies compared to other molecules. Using a rat electroconvulsive shock (ECS) model of epilepsy we showed that DDBM decreased seizure duration and improved the histological outcomes. Our data show for the first time that indolyls like DDBM have robust anticonvulsive activity and have the potential to be developed as novel anticonvulsants.
    Matched MeSH terms: Quinazolines/chemical synthesis
  17. Bozdag M, Alafeefy AM, Altamimi AM, Carta F, Supuran CT, Vullo D
    Bioorg Med Chem, 2017 05 15;25(10):2782-2788.
    PMID: 28389112 DOI: 10.1016/j.bmc.2017.03.054
    We report a series of novel metanilamide-based derivatives 3a-q bearing the 2-mercapto-4-oxo-4H-quinazolin-3-yl moiety as tail. All compounds were synthesized by means of straightforward condensation procedures and were investigated in vitro for their inhibition potency against the human (h) carbonic anhydrase (CA; EC 4.2.1.1.1) isoforms I, II, IX and XII. Among all compounds tested the 6-iodo 3g and the 7-fluoro 3i derivatives were the most potent inhibitors against the tumor associated CA IX and XII isoform (KIs 1.5 and 2.7nM respectively for the hCA IX and KIs 0.57 and 1.9nM respectively for the hCA XII). The kinetic data reported here strongly support compounds of this type for their future development as radiotracers in tumor pathologies which are strictly dependent on the enzymatic activity of the hCA IX and XII isoforms.
    Matched MeSH terms: Quinazolines/chemistry
  18. Mphahlele MJ, Paumo HK, Choong YS
    Pharmaceuticals (Basel), 2017 Nov 20;10(4).
    PMID: 29156606 DOI: 10.3390/ph10040087
    Series of the 2-unsubstituted and 2-(4-chlorophenyl)-substituted 4-anilino-6-bromoquinazolines and their 6-(4-fluorophenyl)-substituted derivatives were evaluated for in vitro cytotoxicity against MCF-7 and HeLa cells. The 2-unsubstituted 4-anilino-6-bromoquinazolines lacked activity, whereas most of their 2-(4-chlorophenyl) substituted derivatives were found to exhibit significant cytotoxicity and selectivity against HeLa cells. Replacement of bromine with 4-fluorophenyl group for the 2-unsubstituted 4-anilinoquinazolines resulted in superior activity against HeLa cells compared to Gefitinib. The presence of a 4-fluorophenyl group in the 2-(4-chlorophenyl) substituted derivatives led to increased cytotoxicity against HeLa cells, except for the 3-chloroanilino derivative. The most active compounds, namely, 3g, 3l, and 4l, were found to exhibit a moderate to significant inhibitory effect against epidermal growth factor receptor tyrosine kinase (EGFR-TK). The EGFR molecular docking model suggested that these compounds are nicely bound to the region of EGFR.
    Matched MeSH terms: Quinazolines
  19. Yahya MFZR, Alias Z, Karsani SA
    Folia Microbiol (Praha), 2018 Jan;63(1):23-30.
    PMID: 28540585 DOI: 10.1007/s12223-017-0532-9
    Biofilms are complex microbial communities that tend to attach to either biotic or abiotic surface. Enclosed in a self-produced extracellular polymeric substance (EPS) matrix, the biofilms often cause persistent infections. The objective of this study was to investigate the antibiofilm activity of dimethyl sulfoxide (DMSO) and afatinib against Gram-negative pathogens. Test microorganisms used in this study were Escherichia coli ATCC 1299, Pseudomonas aeruginosa ATCC 10145, and Salmonella typhimurium ATCC 14028. Biofilms were developed in 96-well microplate at 37°C for 24 h. Following removal of non-adherent cells, analysis of biofilm viability, biofilm biomass, and extracellular polymeric substances (EPS) matrix were performed using resazurin assay, crystal violet assay, and attenuated total reflectance fourier transform infrared (ATR-FTIR) spectroscopy, respectively. Bradford protein assay was conducted to determine the total amount of EPS proteins. The results demonstrated that both 32% DMSO alone and its combination with 3.2 μg/mL afatinib were effective in killing biofilm cells and reducing biofilm biomass. IR spectral variations of EPS matrix of biofilms in the range between 1700 and 900 cm-1 were also observed. Reduction in EPS proteins verified the chemical modifications of EPS matrix. In conclusion, 32% DMSO alone and its combination with 3.2 μg/mL afatinib showed remarkable antibiofilm activities against Gram-negative pathogens. It was suggested that the biofilm inhibition was mediated by the chemical modification of EPS matrix.
    Matched MeSH terms: Quinazolines/pharmacology*
  20. Soria JC, Ohe Y, Vansteenkiste J, Reungwetwattana T, Chewaskulyong B, Lee KH, et al.
    N Engl J Med, 2018 01 11;378(2):113-125.
    PMID: 29151359 DOI: 10.1056/NEJMoa1713137
    BACKGROUND: Osimertinib is an oral, third-generation, irreversible epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) that selectively inhibits both EGFR-TKI-sensitizing and EGFR T790M resistance mutations. We compared osimertinib with standard EGFR-TKIs in patients with previously untreated, EGFR mutation-positive advanced non-small-cell lung cancer (NSCLC).

    METHODS: In this double-blind, phase 3 trial, we randomly assigned 556 patients with previously untreated, EGFR mutation-positive (exon 19 deletion or L858R) advanced NSCLC in a 1:1 ratio to receive either osimertinib (at a dose of 80 mg once daily) or a standard EGFR-TKI (gefitinib at a dose of 250 mg once daily or erlotinib at a dose of 150 mg once daily). The primary end point was investigator-assessed progression-free survival.

    RESULTS: The median progression-free survival was significantly longer with osimertinib than with standard EGFR-TKIs (18.9 months vs. 10.2 months; hazard ratio for disease progression or death, 0.46; 95% confidence interval [CI], 0.37 to 0.57; P<0.001). The objective response rate was similar in the two groups: 80% with osimertinib and 76% with standard EGFR-TKIs (odds ratio, 1.27; 95% CI, 0.85 to 1.90; P=0.24). The median duration of response was 17.2 months (95% CI, 13.8 to 22.0) with osimertinib versus 8.5 months (95% CI, 7.3 to 9.8) with standard EGFR-TKIs. Data on overall survival were immature at the interim analysis (25% maturity). The survival rate at 18 months was 83% (95% CI, 78 to 87) with osimertinib and 71% (95% CI, 65 to 76) with standard EGFR-TKIs (hazard ratio for death, 0.63; 95% CI, 0.45 to 0.88; P=0.007 [nonsignificant in the interim analysis]). Adverse events of grade 3 or higher were less frequent with osimertinib than with standard EGFR-TKIs (34% vs. 45%).

    CONCLUSIONS: Osimertinib showed efficacy superior to that of standard EGFR-TKIs in the first-line treatment of EGFR mutation-positive advanced NSCLC, with a similar safety profile and lower rates of serious adverse events. (Funded by AstraZeneca; FLAURA ClinicalTrials.gov number, NCT02296125 .).

    Matched MeSH terms: Quinazolines/therapeutic use
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links