Displaying publications 1 - 20 of 77 in total

Abstract:
Sort:
  1. Ramachandran CD, Gholami K, Lam SK, Hoe SZ
    Exp Biol Med (Maywood), 2023 Oct;248(20):1768-1779.
    PMID: 37828834 DOI: 10.1177/15353702231198085
    An increase in blood pressure by a high-salt (HS) diet may change the expression levels of renal epithelial sodium channels (ENaCs) and aquaporins (AQPs). Spontaneously hypertensive rats (SHRs) and Wistar Kyoto (WKY) rats were exposed to HS and regular-salt (RS) diets for 6 weeks. Mean arterial pressure (MAP) and plasma atrial natriuretic peptide (ANP), angiotensin II (Ang II), aldosterone, and arginine vasopressin (AVP) levels were determined. Expression of mRNA levels of ENaCs and AQPs were quantified by real-time PCR. The MAP was higher in SHRs on the HS diet. Plasma Ang II and aldosterone levels were low while plasma ANP level was high in both strains of rats. Renal expression of mRNA levels of α-, β-, and γ-ENaCs was lowered in SHRs on the HS diet. Meanwhile, renal AQP1, AQP2, and AQP7 mRNA expression levels were lowered in both strains of rats on the HS diet. Suppression of mRNA expression levels of ENaC and AQP subunits suggests that the high-salt-induced increase in the MAP of SHR may not be solely due to renal sodium and water retention.
    Matched MeSH terms: Rats, Inbred SHR
  2. Tew WY, Tan CS, Yan CS, Loh HW, Wen X, Wei X, et al.
    Biomed Pharmacother, 2023 Jan;157:114020.
    PMID: 36469968 DOI: 10.1016/j.biopha.2022.114020
    Chrysin, a bioflavonoid belonging to the flavone, occurs naturally in plants such as the passionflower, honey and propolis. Few studies have demonstrated that chrysin can promote vasorelaxant activities in rats' aorta and mesenteric arteries. To date, no research has explored the signalling system routes that chrysin may utilise to produce its vasorelaxant action. Therefore, this study aimed to investigate the underlying mechanisms involved in chrysin-induced vasorelaxant in rats' aortic rings and assess the antihypertensive effect of chrysin in spontaneously hypertensive rats (SHRs). The findings revealed that chrysin utilised both endothelium-dependent and endothelium-independent mechanisms. The presence of L-NAME (endothelial NO synthase inhibitor), ODQ (sGC inhibitor), methylene blue (cGMP lowering agent), 4-AP (voltage-gated potassium channel inhibitor), atropine (muscarinic receptors inhibitor) and propranolol (β-adrenergic receptors inhibitor) significantly reduced the chrysin's vasorelaxant action. Furthermore, chrysin can reduce intracellular Ca2+ levels by limiting the extracellular intake of Ca2+ through voltage-operated calcium channels and blocking the intracellular release of Ca2+ from the sarcoplasmic reticulum via the IP3 receptor. These indicate that chrysin-induced vasorelaxants involved NO/sGC/cGMP signalling cascade, muscarinic and β-adrenergic receptors, also the potassium and calcium channels. Although chrysin had vasorelaxant effects in in vitro studies, the in vivo antihypertensive experiment discovered chrysin does not significantly reduce the blood pressure of SHRs following 21 days of oral treatment. This study proved that chrysin utilised multiple signalling pathways to produce its vasorelaxant effect in the thoracic aorta of rats; however, it had no antihypertensive effect on SHRs.
    Matched MeSH terms: Rats, Inbred SHR
  3. Hsu CK, Chang SJ, Lim LY, Chang HH, Shei-Dei Yang S
    J Vasc Res, 2023;60(3):137-147.
    PMID: 37285812 DOI: 10.1159/000529916
    N-methyl-D-aspartate (NMDA) receptors were found to be dysfunctional in hypertensive rats. Methyl palmitate (MP) has been shown to diminish the nicotine-induced increase in blood flow in the brainstem. The aim of this study was to determine how MP modulated NMDA-induced increased regional cerebral blood flow (rCBF) in normotensive (WKY), spontaneously hypertensive (SHR), and renovascular hypertensive (RHR) rats. The increase in rCBF after the topical application of experimental drugs was measured using laser Doppler flowmetry. Topical NMDA application induced an MK-801-sensitive increase in rCBF in anesthetized WKY rats, which was inhibited by MP pretreatments. This inhibition was prevented by pretreatment with chelerythrine (a PKC inhibitor). The NMDA-induced increase in rCBF was also inhibited by the PKC activator in a concentration-dependent manner. Neither MP nor MK-801 affected the increase in rCBF induced by the topical application of acetylcholine or sodium nitroprusside. Topical application of MP to the parietal cortex of SHRs, on the other hand, increased basal rCBF slightly but significantly. MP enhanced the NMDA-induced increase in rCBF in SHRs and RHRs. These results suggested that MP had a dual effect on the modulation of rCBF. MP appears to play a significant physiological role in CBF regulation.
    Matched MeSH terms: Rats, Inbred SHR
  4. Parn KW, Ling WC, Chin JH, Lee SK
    Nutrients, 2022 Nov 01;14(21).
    PMID: 36364864 DOI: 10.3390/nu14214605
    This study aimed to identify the no-observed-adverse-effect level (NOAEL) of dietary epigallocatechin gallate (EGCG) supplementation and its possible antihypertensive and nutrigenomics effects in modulating intrarenal renin-angiotensin system (RAS) gene expression in spontaneously hypertensive rats (SHR). EGCG (50, 250, 500 or 1000 mg/kg b.w. i.g., once daily) was administered to SHR for 28 days. All the SHR survived with no signs of systemic toxicity. Increased alanine aminotransferase (ALT), aspartate aminotransferase (AST) and thiobarbituric acid reactive substances (TBARS) were evident in SHR supplemented with 500 and 1000 mg/kg b.w. but not in those supplemented with lower doses of EGCG. Subsequently, the NOAEL of EGCG was established at 250 mg/kg b.w., and the same protocol was replicated to assess its effects on blood pressure and renal RAS-related genes in SHR. The systolic blood pressure (SBP) of the EGCG group was consistently lower than the control group. The mRNA levels of cortical Agtr2 and Ace2 and medullary Agtr2, Ace and Mas1 were upregulated while medullary Ren was downregulated in EGCG group. Statistical analysis showed that SBP reduction was associated with the changes in medullary Agtr2, Ace, and Ren. Dietary EGCG supplementation exhibits antihypertensive and nutrigenomics effects through activation of intrarenal Ace and Agtr2 and suppression of Ren mediators, while a high dose of EGCG induced liver damage in SHR. In future clinical studies, liver damage biomarkers should be closely monitored to further establish the safety of the long-term use of EGCG.
    Matched MeSH terms: Rats, Inbred SHR
  5. Kamal MSA, Mediani A, Kasim N, Ismail NH, Satar NA, Azis NA, et al.
    J Pharm Biomed Anal, 2022 Feb 20;210:114579.
    PMID: 35016031 DOI: 10.1016/j.jpba.2021.114579
    Ficus deltoidea var angustifolia (FD-A) reduces blood pressure in spontaneously hypertensive rats (SHR) but the mechanism remains unknown. Changes in urine metabolites following FD-A treatment in SHR were, therefore, examined to identify the mechanism of its antihypertensive action. Male SHR were given either FD-A (1000 mg kg-1 day-1) or losartan (10 mg kg-1 day-1) or 0.5 mL of ethanolic-water (control) daily for 4 weeks. Systolic blood pressure (SBP) was measured every week and urine spectra data acquisition, on urine collected after four weeks of treatment, were compared using multivariate data analysis. SBP in FD-A and losartan treated rats was significantly lower than that in the controls after four weeks of treatment. Urine spectra analysis revealed 24 potential biomarkers with variable importance projections (VIP) above 0.5. These included creatine, hippurate, benzoate, trimethylamine N-oxide, taurine, dimethylamine, homocysteine, allantoin, methylamine, n-phenylacetylglycine, guanidinoacetate, creatinine, lactate, glucarate, kynurenine, ethanolamine, betaine, 3-hydroxybutyrate, glycine, lysine, glutamine, 2-hydroxyphenylacetate, 3-indoxylsulfate and sarcosine. From the profile of these metabolites, it seems that FD-A affects urinary levels of metabolites like taurine, hypotaurine, glycine, serine, threonine, alanine, aspartate and glutamine. Alterations in these and the pathways involved in their metabolism might underlie the molecular mechanism of its antihypertensive action.
    Matched MeSH terms: Rats, Inbred SHR
  6. Tan HJ, Ling WC, Chua AL, Lee SK
    Phytomedicine, 2021 Sep;90:153623.
    PMID: 34303263 DOI: 10.1016/j.phymed.2021.153623
    BACKGROUND: Concurrent use of epigallocatechin-3-gallate (EGCG) and medication may lead to botanical-drug interactions, subsequently therapeutic failure or drug toxicity. It has been reported that EGCG reduces plasma nadolol bioavailability in normotensive models. Nevertheless, evidence on the effects of EGCG on hypertensive model, and the possible underlying mechanism have not been elucidated.

    OBJECTIVES: This study aims (i) to investigate the effects of EGCG on nadolol pharmacokinetics (maximum plasma concentration, time to achieve maximum concentration, area under the time-plasma concentration curve, plasma half-life and total clearance) and subsequently its impact on blood pressure control; and (ii) to identify transcriptional regulatory roles of EGCG on the nadolol intestinal and hepatic drug-transporters in SHR.

    METHODS: Male SHR were pre-treated with a daily dose of EGCG (10 mg/kg body weight, i.g.) for 13 days. On day-14, a single dose of nadolol (10 mg/kg body weight) was given to the rats 30 min after the last dose of EGCG administration. Systolic blood pressure (SBP) was measured at 6-h and 22-h post-nadolol administration. Plasma and urinary nadolol concentrations were quantified using high-performance liquid chromatography, and pharmacokinetic parameters were analyzed by using non-compartmental analysis. Hepatic and ileal Oatp1a5, P-gp, and Oct1 mRNA expressions were determined by real-time PCR.

    RESULTS: SBP of SHR pre-treated with EGCG and received nadolol was significantly higher than those which were not pre-treated with EGCG but received nadolol. Pre-treatment of EGCG resulted in a marked reduction of plasma nadolol maximum concentration (Cmax) and area under the time-plasma concentration curve (AUC) by 53% and 51% compared to its control. The 14-day treatment with oral EGCG led to a significant downregulation of mRNA levels of ileal Oatp1a5, P-gp, and Oct1 genes by 4.03-, 8.01- and 4.03-fold; and hepatic P-gp, and Oct1 genes by 2.61- and 2.66-fold.

    CONCLUSION: These data concluded that exposure to EGCG could lead to reduced nadolol bioavailability and therefore, uncontrolled raised blood pressure and higher risks of cardiovascular events. Our data suggest that the reduced nadolol bioavailability is associated with the downregulation of ileal Oatp1a5 and Oct1 mRNA levels that subsequently lead to poor absorption of nadolol to the systemic circulation.

    Matched MeSH terms: Rats, Inbred SHR
  7. Norasikin Ab Azis, Mohd Saleh Ahmad Kamal, Zurain Radjeni, Ahmed Mediani, Renu Agarwal
    MyJurnal
    Introduction: This study examined the association of losartan induced changes in urinary
    metabolomic profile with the changes in blood pressure (BP) and renin-angiotensinaldosterone system (RAAS) in spontaneously hypertensive rats (SHR). Methods: Male SHR
    were administered with either 0.5 mL of distilled water (control group, n=6) or 10 mg.kg-1 of
    losartan (group 2, n=6) daily by oral gavage for 4 weeks. Body weight, BP, food and water
    intake were measured weekly. At week 4, urine was collected for urinary electrolyte analysis
    and metabolite profiling, after which the animals were euthanised by decapitation and blood
    was collected for analysis of components of RAAS and electrolyte concentrations. Urine
    metabolite profile of SHR was determined using proton nuclear magnetic resonance (
    1H-NMR)
    spectrometry combined with multivariate data analysis. Results: At week 4, losartan-treated
    SHR had significantly lower BP than non-treated SHR. There were no differences in water
    and food intake, body weight, serum and urinary electrolyte concentrations or in their urinary
    excretions between the two groups. No differences were evident in the components of RAAS
    except that the angiotensinogen level was significantly higher in losartan-treated SHR
    compared to non-treated SHR. Orthogonal partial least squares discriminant analysis (OPLSDA) showed clear separation of urinary metabolites between control and losartan-treated
    SHR. Losartan-treated SHR group was separated from the control group by changes in the
    intermediates involved in glycine, serine and threonine metabolism. Conclusion:
    Antihypertensive effect of losartan in SHR seems to be associated with changes in urinary
    metabolite profile, particularly involving the metabolism of glycine, serine and threonine.
    Matched MeSH terms: Rats, Inbred SHR
  8. Hussin FS, Chay SY, Zarei M, Meor Hussin AS, Ibadullah WZW, Zaharuddin ND, et al.
    Foods, 2020 Dec 09;9(12).
    PMID: 33316941 DOI: 10.3390/foods9121826
    The current study evaluated the γ-aminobutyric acid (GABA) producing ability from three novel strains of lactic acid bacteria (L. plantarum Taj-Apis362, assigned as UPMC90, UPMC91, and UPMC1065) co-cultured with starter culture in a yogurt. A combination of UPMC90 + UPMC91 with starter culture symbiotically revealed the most prominent GABA-producing effect. Response surface methodology revealed the optimized fermentation conditions at 39.0 °C, 7.25 h, and 11.5 mM glutamate substrate concentration to produce GABA-rich yogurt (29.96 mg/100 g) with desirable pH (3.93) and water-holding capacity (63.06%). At 2% glucose to replace pyridoxal-5-phosphate (PLP), a cofactor typically needed during GABA production, GABA content was further enhanced to 59.00 mg/100 g. In vivo study using this sample revealed a blood pressure-lowering efficacy at 0.1 mg/kg GABA dosage (equivalent to 30 mg/kg GABA-rich yogurt) in spontaneously hypertensive rats. An improved method to produce GABA-rich yogurt has been established, involving shorter fermentation time and lower glutamate concentration than previous work, along with glucose induction that omits the use of costly PLP, fostering the potential of developing a GABA-rich functional dairy product through natural fermentation with desirable product quality and antihypertensive property.
    Matched MeSH terms: Rats, Inbred SHR
  9. Al-Akwaa AA, Asmawi MZ, Dewa A, Mahmud R
    Heliyon, 2020 Jul;6(7):e04588.
    PMID: 32775735 DOI: 10.1016/j.heliyon.2020.e04588
    Background: Vitex pubescens has been used traditionally in hypertension treatment but not yet scientifically assessed. The objective of the study is to investigate the antihypertensive and vasorelaxant activities of V. pubescens, study its underlying pharmacological mechanisms, and identify the relevant vasoactive compounds.

    Methods: Successive extractions of V. pubescens leaf were carried out to produce petroleum ether (VPPE), chloroform (VPCE), methanol (VPME), and water (VPWE) extracts. Spontaneously hypertensive rats (SHRs) received a daily oral administration of the extracts (500 mg/kg/day; n = 6) or verapamil (15 mg/kg/day; n = 6) for 2 weeks, while the systolic and diastolic blood pressures were measured using non-invasive tail-cuff method. Vasorelaxation assays of the extracts were later conducted using phenylephrine (PE, 1 μM) pre-contracted aortic ring preparation. Mechanisms of vasorelaxation by the most potent fraction were studied using vasorelaxation assays with selected blockers/inhibitors. GC-MS was conducted to determine the active compounds.

    Results: VPPE elicited the most significant diminution in systolic and diastolic blood pressure of treated SHRs and produced the most significant vasorelaxation in the aortic rings. Vasorelaxant effects of F2-VPPE were significantly reduced in endothelium-denuded aortic rings by glibenclamide (1 μM), whereas calcium chloride and PE-induced contractions were significantly suppressed. Endothelium removal of the aortic rings or incubation with indomethacin (10 μM), atropine (1 μM), methylene blue (10 μM), propranolol (1μM) and L-NAME (10 μM) did not significantly alter F2-VPPE-induced vasorelaxation. Seven compounds were identified using GC-MS, including spathulenol.

    Conclusion: F2-VPPE exerted its endothelium-independent vasorelaxation by inhibition of vascular smooth muscle contraction induced by extracellular Ca+2 influx through trans-membrane Ca+2 channels and/or Ca+2 release from intracellular stores, and by activation of KATP channels. The vasorelaxation effects of V. pubescens could be mediated by the compound, spathulenol.

    Matched MeSH terms: Rats, Inbred SHR
  10. Bello I, Usman NS, Dewa A, Abubakar K, Aminu N, Asmawi MZ, et al.
    J Ethnopharmacol, 2020 Mar 25;250:112461.
    PMID: 31830549 DOI: 10.1016/j.jep.2019.112461
    ETHNOPHARMACOLOGICAL RELEVANCE: Phyllanthus niruri have a long history of use in the traditional treatment of various ailments including hypertension. Literature reports have indicated that it is a potent antihypertensive herbal medication used traditionally.

    AIM OF THE STUDY: This study was carried out to investigate the antihypertensive and vasodilatory activity of four solvents extracts of P. niruri namely; petroleum ether (PEPN), chloroform (CLPN), methanol (MEPN) and water (WEPN), with the aim of elucidating the mechanism of action and identifying the phytochemical constituents.

    MATERIALS AND METHODS: Male Spontaneous Hypertensive Rats (SHRs) were given oral gavage of P. niruri extract daily for two weeks and the blood pressure was recorded in vivo. We also determine the vasodilation effect of the extracts on rings of isolated thoracic aorta pre-contracted with phenylephrine (PE, 1 μM). Endothelium-intact or endothelium-denuded aorta rings were pre-incubated with various antagonists like 1H-[1,2,4] oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ, 10 μM) and Methylene blue (MB 10 μM), sGC inhibitors; Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME, 10 μM) a nitric oxide synthase (NOS) inhibitor; atropine (10 μM), a cholinergic receptor blocker; indomethacin (10 μM), a cyclooxygenase inhibitor and various K+ channel blockers such as glibenclamide (10 μM) and tetraethyl ammonium (TEA 10 μM) for mechanism study.

    RESULTS: SHRs receiving P. niruri extracts showed a significant decrease in their blood pressure (BP) when compared to the baseline value, with PEPN being more potent. The extracts (0.125-4 mg/mL) also induced vasorelaxation on endothelium-intact aorta rings. PEPN elicited the most potent maximum relaxation effect (Rmax). Mechanism assessment of PEPN showed that its relaxation effect is significantly suppressed in endothelium-denuded aorta rings. Pre-incubation of aorta rings with atropine, L-NAME, ODQ, indomethacin, and propranolol also significantly attenuated its relaxation effect. Conversely, incubation with TEA and glibenclamide did not show a significant effect on PEPN-induced relaxation.

    CONCLUSION: This study indicates that the antihypertensive activity of P. niruri extract is mediated by vasoactive phytoconstituents that dilate the arterial wall via endothelium-dependent pathways and β-adrenoceptor activity which, in turn, cause vasorelaxation and reduce blood pressure.

    Matched MeSH terms: Rats, Inbred SHR
  11. Hussein FA, Chay SY, Ghanisma SBM, Zarei M, Auwal SM, Hamid AA, et al.
    J Dairy Sci, 2020 Mar;103(3):2053-2064.
    PMID: 31882211 DOI: 10.3168/jds.2019-17462
    We evaluated the acute (single-dose) and subacute (repeated-dose) oral toxicity of alcalase-hydrolyzed whey protein concentrate. Our acute study revealed no death or treatment-related complications, and the median lethal dose of whey protein concentrate hydrolysate was >2,500 mg/kg. In the subacute study, when the hydrolysate was fed at 3 different concentrations (200, 400, and 800 mg/kg), no groups showed toxicity changes compared with controls. Then, whey protein concentrate hydrolysate was orally administered to spontaneously hypertensive rats. Results revealed significant reductions in blood pressure in a dose-dependent manner, and dosing at 400 mg/kg led to significant blood pressure reduction (-47.8 mm Hg) compared with controls (blood pressure maintained) and the findings of previous work (-21 mm Hg). Eight peptides-RHPEYAVSVLLR, GGAPPAGRL, GPPLPRL, ELKPTPEGDL, VLSELPEP, DAQSAPLRVY, RDMPIQAF, and LEQVLPRD-were sequentially identified and characterized. Of the peptides, VLSELPEP and LEQVLPRD showed the most prominent in vitro angiotensin-I converting enzyme inhibition with half-maximal inhibitory concentrations of 0.049 and 0.043 mM, respectively. These findings establish strong evidence for the in vitro and in vivo potential of whey protein concentrate hydrolysate to act as a safe, natural functional food ingredient that exerts antihypertensive activity.
    Matched MeSH terms: Rats, Inbred SHR
  12. Razali N, Dewa A, Asmawi MZ, Mohamed N, Manshor NM
    J Integr Med, 2020 Jan;18(1):46-58.
    PMID: 31882255 DOI: 10.1016/j.joim.2019.12.003
    OBJECTIVE: To evaluate vasorelaxant and vasoconstriction effects of Zingiber officinale var. rubrum (ZOVR) on live rats and isolated aortic rings of spontaneously hypertensive rats (SHRs).

    METHODS: Extracts of ZOVR were subjected to in-vivo antihypertensive screening using noninvasive blood pressures in SHRs. The most potent extract, ZOVR petroleum ether extract (ZOP) was then fractionated using n-hexane, chloroform and water. Isolated thoracic aortic rings were harvested and subjected to vascular relaxation studies of n-hexane fraction of ZOP (HFZOP) with incubation of different antagonists such as Nω-nitro-l-arginine methyl ester (L-NAME, 10 µmol/L), indomethacin (10 µmol/L), methylene blue (10 µmol/L), atropine (1 µmol/L), glibenclamide (10 µmol/L), prazosin (0.01 µmol/L), and propranolol (1 µmol/L).

    RESULTS: During the screening of various ZOVR extracts, ZOP produced the most reduction in blood pressures of SHRs and so did HFZOP. HFZOP significantly decreased phenylephrine-induced contraction and enhanced acetylcholine-induced relaxation. L-NAME, indomethacin, methylene blue, atropine, and glibenclamide significantly potentiated the vasorelaxant effects of HFZOP. Propranolol and prazosin did not alter the vasorelaxant effects of HFZOP. HFZOP significantly suppressed the Ca2+-dependent contraction and influenced the ratio of the responses to phenylephrine in Ca2+-free medium.

    CONCLUSION: This study demonstrates that ZOP may exert an antihypertensive effect in the SHR model. Its possible vascular relaxation mechanisms involve nitric oxide and prostacyclin release, activation of cGMP-KATP channels, stimulation of muscarinic receptors, and transmembrane calcium channel or Ca2+ release from intracellular stores. Possible active compounds that contribute to the vasorelaxant effects are 6-gingerol, 8-gingerol and 6-shogaol.

    Matched MeSH terms: Rats, Inbred SHR
  13. Afzal S, Abdul Sattar M, Johns EJ, Eseyin OA
    PLoS One, 2020;15(11):e0229803.
    PMID: 33170841 DOI: 10.1371/journal.pone.0229803
    Pioglitazone, a therapeutic drug for diabetes, possesses full PPAR-γ agonist activity and increase circulating adiponectin plasma concentration. Plasma adiponectin concentration decreases in hypertensive patients with renal dysfunctions. Present study investigated the reno-protective, altered excretory functions and renal haemodynamic responses to adrenergic agonists and ANG II following separate and combined therapy with pioglitazone in diabetic model of hypertensive rats. Pioglitazone was given orally [10mg/kg/day] for 28 days and adiponectin intraperitoneally [2.5μg/kg/day] for last 7 days. Groups of SHR received either pioglitazone or adiponectin in combination. A group of Wistar Kyoto rats [WKY] served as normotensive controls, whereas streptozotocin administered SHRs served as diabetic hypertensive rats. Metabolic data and plasma samples were taken on day 0, 8, 21 and 28. In acute studies, the renal vasoconstrictor actions of Angiotensin II [ANGII], noradrenaline [NA], phenylephrine [PE] and methoxamine [ME] were determined. Diabetic SHRs control had a higher basal mean arterial blood pressure than the WKY, lower RCBP and plasma adiponectin, higher creatinine clearance and urinary sodium excretion compared to WKY [all P<0.05] which were normalized by the individual drug treatments and to greater degree following combined treatment. Responses to intra-renal administration of NA, PE, ME and ANGII were larger in diabetic SHR than WKY and SHRs [P<0.05]. Adiponectin significantly blunted responses to NA, PE, ME and ANG II in diabetic treated SHRs by 40%, whereas the pioglitazone combined therapy with adiponectin further attenuated the responses to adrenergic agonists by 65%. [all P <0.05]. These findings suggest that adiponectin possesses renoprotective effects and improves renal haemodynamics through adiponectin receptors and PPAR-γ in diabetic SHRs, suggesting that synergism exists between adiponectin and pioglitazone. A cross-talk relationship also supposed to exists between adiponectin receptors, PPAR-γ and alpha adrenoceptors in renal vasculature of diabetic SHRs.
    Matched MeSH terms: Rats, Inbred SHR
  14. Azis NA, Agarwal R, Ismail NM, Ismail NH, Kamal MSA, Radjeni Z, et al.
    Mol Biol Rep, 2019 Jun;46(3):2841-2849.
    PMID: 30977084 DOI: 10.1007/s11033-019-04730-w
    This study investigated the effects of a standardised ethanol and water extract of Ficus deltoidea var. Kunstleri (FDK) on blood pressure, renin-angiotensin-aldosterone system (RAAS), endothelial function and antioxidant system in spontaneously hypertensive rats (SHR). Seven groups of male SHR were administered orally in volumes of 0.5 mL of either FDK at doses of 500, 800, 1000 and 1300 mg kg- 1, or captopril at 50 mg kg- 1 or losartan at 10 mg kg- 1 body weight once daily for 4 weeks or 0.5 mL distilled water. Body weight, systolic blood pressures (SBP) and heart rate (HR) were measured every week. 24-hour urine samples were collected at weeks 0 and 4 for electrolyte analysis. At week 4, sera from rats in the control and 1000 mg kg- 1 of FDK treated groups were analyzed for electrolytes and components of RAAS, endothelial function and anti-oxidant capacity. SBP at week 4 was significantly lower in all treatment groups, including captopril and losartan, when compared to that of the controls. Compared to the controls, ACE activity and concentrations of angiotensin I, angiotensin II and aldosterone were lower whereas concentrations of angiotensinogen and angiotensin converting enzyme 2 were higher in FDK treated rats. Concentration of eNOS and total anti-oxidant capacity were higher in FDK treated rats. Urine calcium excretion was higher in FDK treated rats. In conclusion, it appears that ethanol and water extract of FDK decreases blood pressure in SHR, which might involve mechanisms that include RAAS, anti-oxidant and endothelial system.
    Matched MeSH terms: Rats, Inbred SHR
  15. Kamal MSA, Ismail NH, Satar NA, Azis NA, Radjeni Z, Mohammad Noor HS, et al.
    Clin Exp Hypertens, 2019;41(5):444-451.
    PMID: 30648895 DOI: 10.1080/10641963.2018.1506467
    Ficus deltoidea is used in Malay traditional medicine for the treatment of a number of disorders, including hypertension. There is, however, no scientific evidence on its anti-hypertensive effects. This study, therefore, investigated the effects of a standardized ethanolic-water extract of Ficus deltoidea Angustifolia (FD-A) on blood pressure (BP) in spontaneously hypertensive rats (SHR). Male SHR with systolic BP of >150 were divided into 4 groups (n = 8) and given either FD-A (800 or 1000 mg kg-1 day-1) or losartan (10 mg kg-1 day-1) or 0.5 ml of distilled water (control) daily for 28 days. BP, body weight, food and water intake, serum and urinary electrolytes, endothelin-1 (ET-1), total antioxidant capacity (TAC) and components of the renin-angiotensin-aldosterone system were measured. Data were analyzed using ANOVA with statistical significance set at p SHR. This effect does not seem to involve the renin-angiotensin-aldosterone-system but might involve some other mechanisms. Abbreviations: FD-A: Ficus deltoidea Angustifolia; ACE: Angiotensin-converting enzyme; SHR: Spontaneously hypertensive rats; SBP: Systolic blood pressure; DBP: Diastolic blood pressure; AUC: Area under curve; RAAS: Renin Angiotensin Aldosterone System.
    Matched MeSH terms: Rats, Inbred SHR
  16. Hashim Fauzy F, Mohd Zainudin M, Ismawi HR, Elshami TFT
    PMID: 31485247 DOI: 10.1155/2019/7198592
    Piper sarmentosum is a tropical plant in Southeast Asia known for its traditional use in curing various ailments including hypertension. Previous research works have provided evidence for the herb's antihypertensive property. However, the exact mechanisms involved are still in question. The present study investigated the effects of Piper sarmentosum leaves aqueous extract (PSAE) treatment on vascular endothelin system in spontaneously hypertensive rats (SHRs). Four groups of SHRs were treated for 28 consecutive days, with negative and positive control groups receiving distilled water and 3 mg/kg perindopril, respectively. Another two groups are the treatment groups, which received PSAE and combination of 1.5 mg/kg perindopril and PSAE. Weekly measurements of blood pressure showed that PSAE significantly reduced the systolic, diastolic, and mean arterial pressures (P < 0.05) of the rats. PSAE also increased mesenteric artery nitric oxide (NO) level (P < 0.05) and reduced endothelin-1 (ET-1) level (P < 0.05) in the treatment groups. Our results demonstrate that oral administration of PSAE reduced blood pressure in SHRs by reducing the ET-1 level while increasing NO production.
    Matched MeSH terms: Rats, Inbred SHR
  17. Chay SY, Salleh A, Sulaiman NF, Zainal Abidin N, Hanafi MA, Zarei M, et al.
    Food Funct, 2018 Mar 01;9(3):1657-1671.
    PMID: 29469915 DOI: 10.1039/c7fo01769c
    Winged bean seed (WBS) is an underutilized tropical crop. The current study evaluates its potential to reduce blood pressure (BP) in spontaneously hypertensive rats and finds that it reduces BP significantly, in a dose-dependent manner. Five peptides with the sequences, RGVFPCLK, TQLDLPTQ, EPALVP, MRSVVT and DMKP, have been characterized in terms of their stability against ACE via in vitro and in silico modelling. All peptides exhibited IC50 values between 0.019 and 6.885 mM and various inhibitory modes, including substrate, prodrug and true inhibitor modes. The toxicity status of non-Current Good Manufacturing Practice (non-CGMP) peptides is evaluated and the results show that such peptides are toxic, and thus are not suitable to be tested in animals, particularly in repeated-dose studies. In short, WBS hydrolysate demonstrated in vitro ACE inhibitory properties and in vivo blood pressure lowering efficacy in rat models, fostering its potential as a functional food ingredient. Non-CGMP grade peptides are toxic and unfit for testing in animal models.
    Matched MeSH terms: Rats, Inbred SHR
  18. Ch'ng YS, Loh YC, Tan CS, Ahmad M, Asmawi MZ, Wan Omar WM, et al.
    J Med Food, 2018 Mar;21(3):289-301.
    PMID: 29420109 DOI: 10.1089/jmf.2017.4008
    The seeds of Swietenia macrophylla King (SM) (Meliaceae) are used as a folk medicine for the treatment of hypertension in Malaysia. However, the antihypertensive and vasorelaxant effects of SM seeds are still not widely studied. Thus, this study was designed to investigate the in vivo antihypertensive effects and in vitro mechanism of vasorelaxation of a 50% ethanolic SM seed extract (SM50) and the fingerprint of SM50 was developed through tri-step Fourier transform infrared (FTIR) spectroscopy. The vasorelaxant activity and the underlying mechanisms of SM50 were evaluated on thoracic aortic rings isolated from Sprague-Dawley rats in the presence of antagonists. The pharmacological effect of SM50 was investigated by oral administration of spontaneously hypertensive rats (SHRs) with three different doses of SM50 (1000, 500, and 250 mg/kg/day) for 4 weeks and their systolic blood pressure (SBP) and diastolic blood pressure (DBP) values were measured weekly using tail-cuff method. The tri-step FTIR macro-fingerprint of SM50 showed that SM50 contains stachyose, flavonoids, limonoids, and ester, which may contribute to its vasorelaxant effect. The results showed that the vasorelaxant activity of SM50 was mostly attributed to channel-linked receptors pathways through the blockage of voltage-operated calcium channels (VOCC). SM50 also acts as both potassium channels opener and inositol triphosphate receptor (IP3R) inhibitor, followed by β2-adrenergic pathway, and ultimately mediated through the nitric oxide/soluble guanylyl cyclase/cyclic 3',5'-guanosine monophosphate (NO/sGC/cGMP) signaling pathways. The treatment of SM50 also significantly decreased the SBP and DBP in SHRs. In conclusion, the antihypertensive mechanism of SM50 was mediated by VOCC, K+ channels, IP3R, G-protein-coupled β2-adrenergic receptor, and followed by NO/sGC/cGMP signaling mechanism pathways in descending order. The data suggested that SM50 has the potential to be used as a herbal medicament to treat hypertension.
    Matched MeSH terms: Rats, Inbred SHR
  19. Malina Jasamai, Nurul Hanis Samsudin, Norazrina Azmi, Endang Kumolosasi
    Sains Malaysiana, 2018;47:1221-1226.
    Durian or scientifically known as Durio zibethinus is one of the most well-known seasonal fruits in the Southeast Asia
    region. However, its safe consumption in individuals with hypertension is still controversial. This study was conducted
    to investigate the effect of durian on blood pressure of spontaneously hypertensive rat model. Four groups of rats (n=5)
    were fed with either a low dose durian (26 g/kg), a high dose durian (52 g/kg), sugar solution (8 mL/kg) which has
    similar sugar composition in the durian as placebo control, and distilled water as vehicle control (8 mL/kg) for 14 days.
    The durian doses for rats were obtained by converting from human doses. Baseline reading of blood pressure and heart
    rate were recorded before the first oral administration of durian. The blood pressure and heart rate were also measured
    1 h after the durian oral administration on day 1, 3, 7 and 14 of the experiment. In conclusion, durian fruit possessed
    an acute effect on the blood pressure of hypertensive rats but heart rate was unaffected. High dose administration of
    durian led to significant elevation of blood pressure after 1 h of consumption. Meanwhile, low dose of durian (26 g/kg)
    caused an insignificant reduction in systolic and diastolic blood pressure. Tolerance to the durian fruit was observed after
    three to seven days of the oral administration and low dose consumption of durian fruit was safe in the hypertensive rat.
    Matched MeSH terms: Rats, Inbred SHR
  20. Auwal SM, Zarei M, Tan CP, Basri M, Saari N
    Nanomaterials (Basel), 2017 Dec 02;7(12).
    PMID: 29207480 DOI: 10.3390/nano7120421
    Recent biotechnological advances in the food industry have led to the enzymatic production of angiotensin I-converting enzyme (ACE)-inhibitory biopeptides with a strong blood pressure lowering effect from different food proteins. However, the safe oral administration of biopeptides is impeded by their enzymatic degradation due to gastrointestinal digestion. Consequently, nanoparticle (NP)-based delivery systems are used to overcome these gastrointestinal barriers to maintain the improved bioavailability and efficacy of the encapsulated biopeptides. In the present study, the ACE-inhibitory biopeptides were generated from stone fish (Actinopyga lecanora) protein using bromelain and stabilized by their encapsulation in chitosan (chit) nanoparticles (NPs). The nanoparticles were characterized for in vitro physicochemical properties and their antihypertensive effect was then evaluated on spontaneously hypertensive rats (SHRs). The results of a physicochemical characterization showed a small particle size of 162.70 nm, a polydispersity index (pdi) value of 0.28, a zeta potential of 48.78 mV, a high encapsulation efficiency of 75.36%, a high melting temperature of 146.78 °C and an in vitro sustained release of the biopeptides. The results of the in vivo efficacy indicated a dose-dependent blood pressure lowering effect of the biopeptide-loaded nanoparticles that was significantly higher (p < 0.05) compared with the un-encapsulated biopeptides. Moreover, the results of a morphological examination using transmission electron microscopy (TEM) demonstrated the nanoparticles as homogenous and spherical. Thus, the ACE-inhibitory biopeptides stabilized by chitosan nanoparticles can effectively reduce blood pressure for an extended period of time in hypertensive individuals.
    Matched MeSH terms: Rats, Inbred SHR
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links