Displaying publications 1 - 20 of 134 in total

Abstract:
Sort:
  1. de Cruz CR, Yamamoto FY, Ju M, Chen K, Velasquez A, Gatlin DM
    Fish Shellfish Immunol, 2020 Mar;98:868-874.
    PMID: 31751660 DOI: 10.1016/j.fsi.2019.11.046
    Fishmeal is being increasingly replaced in aquatic animal diets with alternative plant protein feedstuffs such as soybean meal which have lower concentrations of nucleotides; therefore, supplemental sources of exogenous nucleotides in diets could become increasingly important. A 9-week feeding trial was conducted with triplicate groups of juvenile hybrid striped bass (average initial body weight ± standard deviation, 5.6 ± 0.1 g) to determine the effects of supplementing single purified nucleotides on the growth performance and immune parameters. The basal diet, which utilized menhaden fishmeal (25%) and soybean meal (75%) as protein sources, contained 44% protein, 10% lipid and an estimated digestible energy level of 3.5 kcal g-1. Single additions of 5'- adenosine monophosphate (AMP), 5'- uridine monophosphate (UMP), 5'- cytidine monophosphate (CMP), 5'- guanosine monophosphate (GMP), and 5'- inosine monophosphate (IMP) disodium salts (Chem-Impex International, Wood Dale, Illinois, USA) were evaluated with each nucleotide added to the basal diet at 0.5% of dry weight at the expense of cellulose. A positive control diet in this trial was a diet containing 5'- AMP from Sigma-Aldrich also supplemented at 0.5% by weight. Results showed significantly (P  0.05) was detected in whole-body proximate composition and protein retention of fish fed any of the dietary treatments. The respiratory burst of whole blood phagocytes also was significantly (P 
    Matched MeSH terms: Salts
  2. Zubir NA, Yacou C, Motuzas J, Zhang X, Diniz da Costa JC
    Sci Rep, 2014;4:4594.
    PMID: 24699690 DOI: 10.1038/srep04594
    Graphene oxide-iron oxide (GO-Fe3O4) nanocomposites were synthesised by co-precipitating iron salts onto GO sheets in basic solution. The results showed that formation of two distinct structures was dependent upon the GO loading. The first structure corresponds to a low GO loading up to 10 wt%, associated with the beneficial intercalation of GO within Fe3O4 nanoparticles and resulting in higher surface area up to 409 m(2) g(-1). High GO loading beyond 10 wt% led to the aggregation of Fe3O4 nanoparticles and the undesirable stacking of GO sheets. The presence of strong interfacial interactions (Fe-O-C bonds) between both components at low GO loading lead to 20% higher degradation of Acid Orange 7 than the Fe3O4 nanoparticles in heterogeneous Fenton-like reaction. This behaviour was attributed to synergistic structural and functional effect of the combined GO and Fe3O4 nanoparticles.
    Matched MeSH terms: Salts
  3. Zghaibi N, Omar R, Kamal SMM, Biak DRA, Harun R
    Molecules, 2020 Feb 12;25(4).
    PMID: 32059440 DOI: 10.3390/molecules25040784
    The kinetics of lipid extraction utilizing microwave-assisted extraction (MAE) from Nannochloropsis sp. microalgae were studied using a low cost and green solvent, namely brine (NaCl) solution. The kinetic modelling of the lipid extraction was performed to evaluate the mechanism of the lipid mass transfer using different extraction models, including Fick's Law, First and Second-order Rate Law and the Patricelli mathematical model. The Patricelli mathematical model described the kinetics of lipid extraction well, with the highest average values of determination coefficient (R2 ≥ 0.952) and the lowest average values of mean relative percentage deviation (MRPD ≤ 8.666%). The lipid analysis indicated a positive influence of the microwave temperature and time on the quantity and quality of extracted lipids. SEM analysis of spent microalgae clearly shows an increase in the distorted cell with increase microwave temperature and time, which could be directly correlated to the mechanism of the MAE-brine technique.
    Matched MeSH terms: Salts/chemistry*
  4. Zarinah, Z., Maaruf, A.G., Nazaruddin, R., Wong, W.W.W., Xuebing, X.
    MyJurnal
    Some vegetable oils contain natural antioxidants such as beta carotene and vitamin E namely alpha tocopherol. The objective of this study was to screening the value of α-tocopherol, β-carotene, antioxidant capacity, antimicrobial activity and toxicological properties of roasted pili nut oil (RPNO) and unroasted pili nut oil (UPNO). The result showed that RPNO contained higher amount of vitamin E and less amount of beta carotene compared to UPNO. RPNO and UPNO scavenged DPPH radicals by 24.66% and 9.52% at concentration of 140 μg/ml. The total phenolic compound (TPC) in UPNO and RPNO were about 19.96 ± 0.52 mg/kg and 12.43 ± 0.69 mg/kg respectively. It was observed that bacteria species exhibited different sensitivities towards RPNO, UPNO, Gentamycin, Ampicillin and Chloramphenicol. Bacillus cereus 14570 was the most sensitive bacterium and all strains of Staphylococcus aureus tested were resistant against both samples RPNO and UPNO. An in vitro toxicological study based on the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) cytotoxicity assay was also performed. In vitro cytotoxicity indicated that both RPNO and UPNO had no effect against HeLa (cervical cancer cell), MCF-7 (breast cancer cell) and HT-29 (human colon adenocarcinoma cell) cell lines tested.
    Matched MeSH terms: Tetrazolium Salts
  5. Zakaria N, Mahdzir MA, Yusoff M, Mohd Arshad N, Awang K, Nagoor NH
    Molecules, 2018 Oct 23;23(11).
    PMID: 30360475 DOI: 10.3390/molecules23112733
    BACKGROUND: Pinnatane A from the bark of Walsura pinnata was investigated for its anti-cancer properties by analyzing the cytotoxic activities and cell cycle arrest mechanism induced in two different liver cancer cell lines.

    METHODS: A 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was used to analyze the pinnatane A selectivity in inducing cell death in cancer and normal cells. Various biological assays were carried out to analyze the anti-cancer properties of pinnatane A, such as a live/dead assay for cell death microscopic visualization, cell cycle analysis using propidium iodide (PI) to identify the cell cycle arrest phase, annexin V-fluorescein isothiocyanate (annexin V-FITC)/PI flow cytometry assay to measure percentage of cell populations at different stages of apoptosis and necrosis, and DNA fragmentation assay to verify the late stage of apoptosis.

    RESULTS: The MTT assay identified pinnatane A prominent dose- and time-dependent cytotoxicity effects in Hep3B and HepG2 cells, with minimal effect on normal cells. The live/dead assay showed significant cell death, while cell cycle analysis showed arrest at the G₀/G₁ phase in both cell lines. Annexin V-FITC/PI flow cytometry and DNA fragmentation assays identified apoptotic cell death in Hep3B and necrotic cell death in HepG2 cell lines.

    CONCLUSIONS: Pinnatane A has the potential for further development as a chemotherapeutic agent prominently against human liver cells.

    Matched MeSH terms: Tetrazolium Salts
  6. Yeo SK, Liong MT
    Int J Food Sci Nutr, 2012 Nov;63(7):821-31.
    PMID: 22264088 DOI: 10.3109/09637486.2011.652942
    The objective of this study was to evaluate the effects of ultraviolet (UV) radiation (UVB; 90 J/m²) on growth, bioconversion of isoflavones and probiotic properties of parent and subsequent passages of L. casei FTDC 2113. UV radiation significantly enhanced (P < 0.05) the growth of parent cells in mannitol-soymilk fermented at 37°C for 24 h. This had led to an enhanced intracellular and extracellular β-glucosidase activity with a subsequent increase in bioconversion of isoflavones in mannitol-soymilk (P < 0.05). UV radiation also promoted (P < 0.05) the tolerance of parent cells towards acidic condition (pH 2 and 3) and intestinal bile salts (oxgall, taurocholic and cholic acid). In addition, parent treated cells also exhibited better (P < 0.05) adhesion ability to mucin and antimicrobial activity compared to that of the control. All these positive effects of UV radiation were only prevalent in the parent cells without inheritance by first, second and third passage of cells. Although temporary, our results suggested that UV radiation could enhance the bioactive and probiotic potentials of L. casei FTDC 2113, and thus could be applied for the production of probiotic products with enhanced bioactivity.
    Matched MeSH terms: Bile Acids and Salts/metabolism
  7. Yap YH, Say YH
    Cancer Lett, 2011 Jul 1;306(1):111-9.
    PMID: 21439722 DOI: 10.1016/j.canlet.2011.02.040
    Most studies have focused on the role of the cellular prion protein (PrP(C)) in neurodegenerative diseases, whereas the function of this ubiquitous protein outside the nervous system remains elusive. Therefore, the anti-apoptotic property of PrP(C) in oral squamous cell carcinoma (HSC-2) and colon adenocarcinoma (LS 174T) was evaluated in this study, by stable shRNA knockdown and overexpression, respectively. PrP(C) confers resistance against oxidative stress-apoptosis as indicated by MTT assay, Annexin V-FITC/PI and DCFH-DA staining, but this property is abolished upon N-glycosylation inhibition by tunicamycin. Our results indicate that the inhibition of glycosylation in cancer cells overexpressing PrP(C) could represent a potential therapeutic target.
    Matched MeSH terms: Tetrazolium Salts/pharmacology
  8. Yakasai, H.M., Karamba, K.I., Yasid, N.A., Abd. Rahman, F., Shukor, M.Y., Halmi, M.I.E.
    MyJurnal
    Molybdenum, an emerging pollutant, has being demonstrated recently to be toxic to
    spermatogenesis in several animal model systems. Metal mines especially gold mine often use
    cyanide and hence isolation of metal-reducing and cyanide-degrading bacteria can be useful for
    the bioremediation of these pollutants. Preliminary screening shows that three cyanide-degrading
    bacteria were able to reduce molybdenum to molybdenum blue (Mo-blue) when grown on a
    molybdate low phosphate minimal salts media. Phylogenetic analyses of the 16S rRNA gene of
    the best reducer indicates that it belongs to the Serratia genus. A variety of mathematical models
    such as logistic, Gompertz, Richards, Schnute, Baranyi-Roberts, von Bertalanffy, Buchanan
    three-phase and Huang were used to model molybdenum reduction, and the best model based on
    statistical analysis was modified Gompertz with lowest values for RMSE and AICc, highest
    adjusted R2 values, with Bias Factor and Accuracy Factor nearest to unity (1.0). The reduction
    constants obtained from the model will be used to carry out secondary modelling to study the
    effect of various parameters such as substrate, pH and temperature to molybdenum reduction.
    Matched MeSH terms: Salts
  9. Wibowo TY, Ridzuan Zakaria, Ahmad Zuhairi Abdullah
    Organomontmorillonites were synthesized by grafting cationic surfactants i.e quaternary ammonium compounds into the interlayer space and were characterized using XRD, FTIR and N2 adsorption/ desorption analysis. The organomontmorillonites were applied as catalyst for the esterification of glycerol (GL) with lauric acid (LA). The catalyst which had symmetrical onium salts (tetrabuthylammoniumbromide, TBAB) gave higher activity than that of unsymmetrical onium salts (cetyltrimethylammoniumbromide, CTAB). Over the TBAB-montmorillonite catalyst, glycerol monolaurate was obtained with a selectivity of about 80%, a lauric acid conversion of about 71% and a glycerol monolaurate yield of about 57%.
    Matched MeSH terms: Salts
  10. Wan Mohtar Wan Yusoff, Hutari A, Jaseem WS, Aidil Abdul Hamid
    Sains Malaysiana, 2011;40:1115-1122.
    A total of eight strains of Lactobacillus and two strains of Salmonella were isolated from free-range Malaysian chickens intestine. Evaluation based on in vitro studies included aggregation, co-aggregation, growth with bile salts, tolerance to acidic pH, and inhibitory activity were carried out. The isolated Lactobacillus were Lactobacillus fermentum IA, Lactobacillus fermentum IB, Lactobacillus fermentum IC, Lactobacillus fermentum ID, Lactobacillus salivarius subsp. salicinus IE, Lactobacillus salivarius subsp. salicinus IF, Lactobacillus salivarius subsp. salivarius IG, and Lactobacillus spp. IH. The corresponding isolated Salmonella were Salmonella spp. 3B21 and Salmonella spp. 1A12. The ability of aggregation and also tolerance to pH 2.5 are found in Lactobacillus fermentum ID, Lactobacillus salivarius subsp. salicinus IF, Lactobacillus salivarius subsp. salivarius IG, and Lactobacillus spp. IH. The isolate most resistance to 1% bile salts is Lactobacillus fermentum ID but observed to be weak in inhibitory activity against Salmonella spp. The best co-aggregation and strongest inhibitory activity against Salmonella spp. was observed in Lactobacillus salivarius subsp. salivarius IG. Despite being not so resistant in the presence of bile salts 0.5 and 1% (w/v), the lag time in the presence of bile salts 0.3% (w/v) of Lactobacillus salivarius subsp. salivarius IG and also for Lactobacillus spp. IH are the shortest. Based on good aggregation properties, the best co-aggregation, tolerance to acidic pH 2.5 and bile salts 0.3% (w/v) and strongest inhibitory activity against Salmonella spp., Lactobacillus salivarius subsp. salivarius IG comes out as the best candidate as probiotic for chicken.
    Matched MeSH terms: Bile Acids and Salts
  11. Wahib NB, Abdul Sani SF, Ramli A, Ismail SS, Abdul Jabar MH, Khandaker MU, et al.
    Radiat Environ Biophys, 2020 08;59(3):523-537.
    PMID: 32462382 DOI: 10.1007/s00411-020-00846-x
    Accidents resulting in widespread dispersal of radioactive materials have given rise to a need for materials that are convenient in allowing individual dose assessment. The present study examines natural Dead Sea salt adopted as a model thermoluminescence dosimetry system. Samples were prepared in two different forms, loose-raw and loose-ground, subsequently exposed to 60Co gamma-rays, delivering doses in the range 2-10 Gy. Key thermoluminescence (TL) properties were examined, including glow curves, dose response, sensitivity, reproducibility and fading. Glow curves shapes were found to be independent of given dose, prominent TL peaks for the raw and ground samples appearing in the temperature ranges 361-385 ºC and 366-401 ºC, respectively. The deconvolution of glow curves has been undertaken using GlowFit, resulting in ten overlapping first-order kinetic glow peaks. For both sample forms, the integrated TL yield displays linearity of response with dose, the loose-raw salt showing some 2.5 × the sensitivity of the ground salt. The samples showed similar degrees of fading, with respective residual signals 28 days post-irradiation of 66% and 62% for the ground and raw forms respectively; conversely, confronted by light-induced fading the respective signal losses were 62% and 80%. The effective atomic number of the Dead Sea salt of 16.3 is comparable to that of TLD-200 (Zeff 16.3), suitable as an environmental radiation monitor in accident situations but requiring careful calibration in the reconstruction of soft tissue dose (soft tissue Zeff 7.2). Sample luminescence studies were carried out via Raman and Photoluminescence spectroscopy as well as X-ray diffraction, ionizing radiation dependent variation in lattice structure being found to influence TL response.
    Matched MeSH terms: Salts*
  12. Veno J, Rahman RNZRA, Masomian M, Ali MSM, Kamarudin NHA
    Molecules, 2019 Aug 30;24(17).
    PMID: 31480403 DOI: 10.3390/molecules24173169
    Thermostability remains one of the most desirable traits in many lipases. Numerous studies have revealed promising strategies to improve thermostability and random mutagenesis often leads to unexpected yet interesting findings in engineering stability. Previously, the thermostability of C-terminal truncated cold-adapted lipase from Staphylococcus epidermidis AT2 (rT-M386) was markedly enhanced by directed evolution. The newly evolved mutant, G210C, demonstrated an optimal temperature shift from 25 to 45 °C and stability up to 50 °C. Interestingly, a cysteine residue was randomly introduced on the loop connecting the two lids and accounted for the only cysteine found in the lipase. We further investigated the structural and mechanistic insights that could possibly cause the significant temperature shift. Both rT-M386 and G210C were modeled and simulated at 25 °C and 50 °C. The results clearly portrayed the effect of cysteine substitution primarily on the lid stability. Comparative molecular dynamics simulation analysis revealed that G210C exhibited greater stability than the wild-type at high temperature simulation. The compactness of the G210C lipase structure increased at 50 °C and resulted in enhanced rigidity hence stability. This observation is supported by the improved and stronger non-covalent interactions formed in the protein structure. Our findings suggest that the introduction of a single cysteine residue at the lid region of cold-adapted lipase may result in unexpected increased in thermostability, thus this approach could serve as one of the thermostabilization strategies in engineering lipase stability.
    Matched MeSH terms: Salts/chemistry
  13. Vasavan T, Ferraro E, Ibrahim E, Dixon P, Gorelik J, Williamson C
    Biochim Biophys Acta Mol Basis Dis, 2018 04;1864(4 Pt B):1345-1355.
    PMID: 29317337 DOI: 10.1016/j.bbadis.2017.12.039
    Cardiac dysfunction has an increased prevalence in diseases complicated by liver cirrhosis such as primary biliary cholangitis and primary sclerosing cholangitis. This observation has led to research into the association between abnormalities in bile acid metabolism and cardiac pathology. Approximately 50% of liver cirrhosis cases develop cirrhotic cardiomyopathy. Bile acids are directly implicated in this, causing QT interval prolongation, cardiac hypertrophy, cardiomyocyte apoptosis and abnormal haemodynamics of the heart. Elevated maternal serum bile acids in intrahepatic cholestasis of pregnancy, a disorder which causes an impaired feto-maternal bile acid gradient, have been associated with fatal fetal arrhythmias. The hydrophobicity of individual bile acids in the serum bile acid pool is of relevance, with relatively lipophilic bile acids having a more harmful effect on the heart. Ursodeoxycholic acid can reverse or protect against these detrimental cardiac effects of elevated bile acids.
    Matched MeSH terms: Bile Acids and Salts/blood; Bile Acids and Salts/metabolism*; Bile Acids and Salts/chemistry
  14. Tran HN, Nguyen DT, Le GT, Tomul F, Lima EC, Woo SH, et al.
    J Hazard Mater, 2019 07 05;373:258-270.
    PMID: 30925385 DOI: 10.1016/j.jhazmat.2019.03.018
    An attempt has been made in this review to provide some insights into the possible adsorption mechanisms of hexavalent chromium onto layered double hydroxides-based adsorbents by critically examining the past and present literature. Layered double hydroxides (LDH) nanomaterials are typical dual-electronic adsorbents because they exhibit positively charged external surfaces and abundant interlayer anions. A high positive zeta potential value indicates that LDH has a high affinity to Cr(VI) anions in solution through electrostatic attraction. The host interlayer anions (i.e., Cl-, NO3-, SO42-, and CO32-) provide a high anion exchange capacity (53-520 meq/100 g) which is expected to have an excellent exchangeable capacity to Cr(VI) oxyanions in water. Regarding the adsorption-coupled reduction mechanism, when Cr(VI) anions make contact with the electron-donor groups in the LDH, they are partly reduced to Cr(III) cations. The reduced Cr(III) cations are then adsorbed by LDH via numerous interactions, such as isomorphic substitution and complexation. Nonetheless, the adsorption-coupled reduction mechanism is greatly dependent on: (1) the nature of divalent and trivalent salts utilized in LDH preparation, and the types of interlayer anions (i.e., guest intercalated organic anions), and (3) the adsorption experiment conditions. The low Brunauer-Emmett-Teller specific surface area of LDH (1.80-179 m2/g) suggests that pore filling played an insignificant role in Cr(VI) adsorption. The Langmuir maximum adsorption capacity of LDH (Qomax) toward Cr(VI) was significantly affected by the natures of used inorganic salts and synthetic methods of LDH. The Qomax values range from 16.3 mg/g to 726 mg/g. Almost all adsorption processes of Cr(VI) by LDH-based adsorbent occur spontaneously (ΔG° <0) and endothermically (ΔH° >0) and increase the randomness (ΔS° >0) in the system. Thus, LDH has much potential as a promising material that can effectively remove anion pollutants, especially Cr(VI) anions in industrial wastewater.
    Matched MeSH terms: Salts
  15. Tong ML, Ye BH, Cai JW, Chen XM, Ng SW
    Inorg Chem, 1998 Jun 01;37(11):2645-2650.
    PMID: 11670398
    In the presence of guest 2,4'-bpy molecules or under acidic conditions, three compounds, [Cd(4,4'-bpy)(2)(H(2)O)(2)](ClO(4))(2).(2,4'-bpy)(2).H(2)O (1), [Zn(4,4'-bpy)(2)(H(2)O)(2)](ClO(4))(2).(2,4'-bpy)(2).H(2)O (2), and [Cu(4,4'-bpy)(2)(H(2)O)(2)](ClO(4))(4).(4,4'-H(2)bpy) (3), were obtained from the reactions of the metal salts and 4,4'-bpy in an EtOH-H(2)O mixture. 1 has a 2-D square-grid network structure, crystallizing in the monoclinic space group P2/n, with a = 13.231(3) Å, b = 11.669(2) Å, c = 15.019(3) Å, beta = 112.82(3) degrees, Z = 2; 2 is isomorphous with 1, crystallizing in the monoclinic space group P2/n, with a = 13.150(3) Å, b = 11.368(2) Å, c = 14.745(3) Å, beta = 110.60(3) degrees, Z = 2. The square grids superpose on each other into a channel structure, in which each layer consists of two pairs of shared edges, perfectly square-planar with an M(II) ion and a 4,4'-bpy at each corner and side, respectively. The square cavity has dimensions of 11.669(2) x 11.788(2) and 11.368(2) x 11.488(2) Å for 1 and 2, respectively. Every two guest 2,4'-bpy molecules are clathrated in each hydrophobic host cavity and are further stabilized by pi-pi stacking and hydrogen bonding interactions. The NMR spectra clearly confirm that both 1 and 2 contain 4,4'-bpy and 2,4'-bpy molecules in a 1:1 ratio, which have stacking interaction with each other in the solution. 3 crystallizes in the orthorhombic space group Ibam, with a = 11.1283(5) Å, b = 15.5927(8) Å, c = 22.3178(11) Å, Z = 4. 3 is made up of two-dimensional square [Cu(4)(4,4'-bpy)(4)] grids, where the square cavity has dimensions of 11.13 x 11.16 Å. Each [4,4'-H(2)bpy](2+) cation is clathrated in a square cavity and stacks with one pair of opposite edges of the host square cavity in an offset fashion with the face-to-face distance of ca. 3.95 Å. Within each cavity, the [4,4'-H(2)bpy](2+) cation forms twin three-center hydrogen bonds with two pairs of ClO(4)(-) anions. The results suggest that the guest 2,4'-bpy molecules and protonated [4,4'-H(2)bpy](2+) cations present in the reaction systems serve as structure-directing templates in the formation of the crystal structures and exclude self-inclusion of the networks having larger square cavities.
    Matched MeSH terms: Salts
  16. Thong HK, Mohamad Mahbob H, Sabir Husin Athar PP, Tengku Kamalden TMI
    Cureus, 2020 Dec 19;12(12):e12163.
    PMID: 33489575 DOI: 10.7759/cureus.12163
    Sialolithiasis is a commonly encountered disease of the salivary glands, reported to represent up to 30% of all salivary gland diseases. However, the condition is rarely encountered in the pediatric population. The formation of a salivary stone is believed to be secondary to the deposition of calcium salts around a nidus. The formation of a nidus is commonly associated with desquamated epithelial or sloughing from a recent bacterial infection. Patients with submandibular sialolithiasis usually present with acute swelling over the neck associated with pain, fever, and purulent intraoral discharge. Neglected and poorly treated acute infection may progress to life-threatening abscess formation. Here we are describing our encounter with a 10-year-old boy with recurrent submandibular sialolithiasis. He was initially treated with conservative measures and antibiotics regimen. Failure of medical treatment and recurring symptoms led to submandibular gland excision followed by a full recovery.
    Matched MeSH terms: Salts
  17. Thiagarajan S, Arapoc DJ, Husna Shafie N, Keong YY, Bahari H, Adam Z, et al.
    PMID: 30956678 DOI: 10.1155/2019/2821597
    Lung cancer is the leading cause of cancer related deaths worldwide with about 40% occurring in developing countries. The two varieties of Momordica charantia, which are Chinese and Indian bitter melon, have been subjected to antiproliferative activity in human non-small cell lung cells A549. The A549 cells were treated with hot and cold aqueous extraction for both the bitter melon varieties, and the antiproliferative activity was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The apoptotic mechanism of action on A549 human lung cancer cells was evaluated first morphologically using Hoechst 33358, and cytoskeleton staining using Filamentous-actin (F-actin) cytoskeleton FICT and DAPI followed by caspase-3/7, reactive oxygen species (ROS), and p53 activity. Chinese hot aqueous extraction (CHA) exhibited potent antiproliferative activity against A549 human lung cancer cells. The morphological analysis of mitochondria destruction and the derangement of cytoskeleton showed apoptosis-inducing activity. CHA increased the caspase-3/7 activity by 1.6-fold and the ROS activity by 5-fold. Flow cytometric analysis revealed 34.5% of apoptotic cells significantly (p<0.05) compared to cisplatin-treated A549 human cancer cells. CHA is suggested to induce apoptosis due to their rich bioactive chemical constituents. These findings suggest that the antiproliferative effect of CHA was due to apoptosis via ROS-mediated mitochondria injury.
    Matched MeSH terms: Tetrazolium Salts
  18. Tee WF, Nazaruddin R, Tan YN, Ayob MK
    Food Sci Technol Int, 2014 Sep;20(6):399-404.
    PMID: 23774606 DOI: 10.1177/1082013213488775
    This study investigated the survival of encapsulated potential probiotic Lactobacillus plantarum which isolated from fermented cocoa beans. κ-Carrageenan was used to encapsulate the probiotic. Encapsulation techniques such as emulsification, freeze-drying or extrusion were adopted to encapsulate the probiotic. Freeze-drying and extrusion methods showed higher (p 
    Matched MeSH terms: Bile Acids and Salts/pharmacology*
  19. Tang, J-Y-H., Farhana Sakinah, M.R., Nakaguchi, Y., Nishibuchi, M., Chai, L-C., New, C.Y., et al.
    Food Research, 2018;2(5):447-452.
    MyJurnal
    This goal of this study was to investigate the presence of Vibrio cholerae in street food,
    namely satar and otak-otak, using Loop-Mediated Isothermal Amplification (LAMP),
    multiplex Polymerase Chain Reaction (mPCR) and conventional plating on Thiosulphate
    Citrate Bile-Salt Sucrose (TCBS) agar methods. A total of 78 satar and 35 otak-otak were
    purchased from different districts of Terengganu (Besut, Setiu, Kuala Terengganu and
    Kemaman). V. cholerae was found in satar with LAMP (10.3%), mPCR (10.3%) and
    plating (0%). No V. cholerae was found in otak-otak using the three methods. This might
    be due to V. cholerae able to survive in satar after grilling due to its thickness which may
    contribute to undercooking. This study concluded that low presence of V. cholerae in satar
    and otak-otak can be detected by molecular methods but not the conventional plating
    method. LAMP assay is a useful tool for rapid detection of pathogens in food due to its
    simplicity, highly sensitive and visual interpretation capability. Though the prevalence of
    V. cholerae was low in the samples, proper handling of this food will help in reducing the
    risk of acquiring infection from V. cholerae in contaminated samples.
    Matched MeSH terms: Bile Acids and Salts
  20. Tan SN, Sim SP
    BMC Med Genomics, 2019 01 15;12(1):9.
    PMID: 30646906 DOI: 10.1186/s12920-018-0465-4
    BACKGROUND: It has been found that chronic rhinosinusitis (CRS) increases the risk of developing nasopharyngeal carcinoma (NPC). CRS can be caused by gastro-oesophageal reflux (GOR) that may reach nasopharynx. The major component of refluxate, bile acid (BA) has been found to be carcinogenic and genotoxic. BA-induced apoptosis has been associated with various cancers. We have previously demonstrated that BA induced apoptosis and gene cleavages in nasopharyngeal epithelial cells. Chromosomal cleavage occurs at the early stage of both apoptosis and chromosome rearrangement. It was suggested that chromosome breaks tend to cluster in the region containing matrix association region/scaffold attachment region (MAR/SAR). This study hypothesised that BA may cause chromosome breaks at MAR/SAR leading to chromosome aberrations in NPC. This study targeted the AF9 gene located at 9p22 because 9p22 is a deletion hotspot in NPC.

    METHODS: Potential MAR/SAR sites were predicted in the AF9 gene by using MAR/SAR prediction tools. Normal nasopharyngeal epithelial cells (NP69) and NPC cells (TWO4) were treated with BA at neutral and acidic pH. Inverse-PCR (IPCR) was used to identify chromosome breaks in SAR region (contains MAR/SAR) and non-SAR region (does not contain MAR/SAR). To map the chromosomal breakpoints within the AF9 SAR and non-SAR regions, DNA sequencing was performed.

    RESULTS: In the AF9 SAR region, the gene cleavage frequencies of BA-treated NP69 and TWO4 cells were significantly higher than those of untreated control. As for the AF9 non-SAR region, no significant difference in cleavage frequency was detected between untreated and BA-treated cells. A few breakpoints detected in the SAR region were mapped within the AF9 region that was previously reported to translocate with the mixed lineage leukaemia (MLL) gene in an acute lymphoblastic leukaemia (ALL) patient.

    CONCLUSIONS: Our findings suggest that MAR/SAR may be involved in defining the positions of chromosomal breakages induced by BA. Our report here, for the first time, unravelled the relation of these BA-induced chromosomal breakages to the AF9 chromatin structure.

    Matched MeSH terms: Bile Acids and Salts/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links