Displaying publications 1 - 20 of 211 in total

Abstract:
Sort:
  1. Zainuddin A, Makpol S, Chua KH, Abdul Rahim N, Yusof YA, Ngah WZ
    Med J Malaysia, 2008 Jul;63 Suppl A:73-4.
    PMID: 19024990
    Validation of housekeeping gene is important for accurate quantitation of RNA in real time RT-PCR technique. The purpose of this study was to determine the validity of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as a housekeeping gene for quantitative real time RT-PCR assessment in human skin fibroblast senescent model. The cells were divided into different treatment groups; young (passage 4), senescent (passage 30), treatment with H2O2 and treatment with A-tocotrienol prior to H2O2 treatment. Our results showed that the expression level of GAPDH was constant with different treatment groups. Therefore, we concluded that GAPDH was suitable to be used as housekeeping gene in human skin fibroblast senescent model.
    Matched MeSH terms: Tocotrienols/metabolism*
  2. Zainal Z, Rahim AA, Radhakrishnan AK, Chang SK, Khaza'ai H
    Sci Rep, 2019 11 14;9(1):16793.
    PMID: 31727971 DOI: 10.1038/s41598-019-53424-7
    The tocotrienol-rich fraction (TRF) from palm oil contains vitamin E, which possesses potent antioxidant and anti-inflammatory activities. Rheumatoid arthritis (RA) is a chronic joint inflammatory disease characterised by severe joint pain, cartilage destruction, and bone erosion owing to the effects of various pro-inflammatory mediators and cytokines. Here, we investigated the therapeutic effects of TRF in a rat model of collagen-induced arthritis (CIA). Arthritis was induced by a single intradermal injection of collagen type II in Dark Agouti (DA) rats. Rats were then treated with or without TRF by oral gavage from day 28 after the first collagen injection. Arthritic rats supplemented with TRF showed decreased articular index scores, ankle circumferences, paw volumes, and radiographic scores when compared with untreated rats. The untreated arthritic rats showed higher plasma C-reactive protein levels (p 
    Matched MeSH terms: Tocotrienols/administration & dosage*; Tocotrienols/pharmacology
  3. Zainal Z, Abdul Rahim A, Khaza'ai H, Chang SK
    Int J Mol Sci, 2019 Apr 10;20(7).
    PMID: 30974772 DOI: 10.3390/ijms20071764
    Synthetic therapeutic drugs for asthma, a chronic airway inflammation characterised by strong eosinophil, mast cell, and lymphocyte infiltration, mucus hyper-production, and airway hyper-responsiveness, exhibit numerous side effects. Alternatively, the high antioxidant potential of palm oil phytonutrients, including vitamin E (tocotrienol-rich fractions; TRF) and carotene, may be beneficial for alleviating asthma. Here, we determined the therapeutic efficacy of TRF, carotene, and dexamethasone in ovalbumin-challenged allergic asthma in Brown Norway rats. Asthmatic symptoms fully developed within 8 days after the second sensitization, and were preserved throughout the time course via intranasal ovalbumin re-challenge. Asthmatic rats were then orally administered 30 mg/kg body weight TRF or carotene. TRF-treated animals exhibited reduced inflammatory cells in bronchial alveolar lavage fluid. TRF- and carotene-treated rats exhibited notable white blood cell reduction comparable to that from dexamethasone. TRF- and carotene-treatment also downregulated pro-inflammatory markers (IL-β, IL-6, TNF-α), coincident with anti-inflammatory marker IL-4 and IL-13 upregulation. Treatment significantly reduced asthmatic rat plasma CRP and IgE, signifying improved systemic inflammation. Asthmatic lung histology displayed severe edema and inflammatory cell infiltration in the bronchial wall, whereas treated animals retained healthy, normal-appearing lungs. The phytonutrients tocotrienol and carotene thus exhibit potential benefits for consumption as nutritional adjuncts in asthmatic disease.
    Matched MeSH terms: Tocotrienols/pharmacology*
  4. Zahara AM, Lee CC, Fatimah IS, Poh BK, Khairul O, Das S, et al.
    Clin Ter, 2010;161(2):121-4.
    PMID: 20499024
    Intake of the antioxidant vitamins C and E lowers the oxidative stress. The study aimed to determine plasma concentrations of vitamin C and tocotrienols after supplementation of both vitamins in young male adults.
    Matched MeSH terms: Tocotrienols/blood*
  5. Yusof KM, Makpol S, Fen LS, Jamal R, Wan Ngah WZ
    J Nat Med, 2019 Sep;73(4):745-760.
    PMID: 31177355 DOI: 10.1007/s11418-019-01323-6
    Our previous study reported that combined treatment of γ-tocotrienol with 6-gingerol showed promising anticancer effects by synergistically inhibiting proliferation of human colorectal cancer cell lines. This study aimed to identify and elucidate molecular mechanisms involved in the suppression of SW837 colorectal cancer cells modulated by combined treatment of γ-tocotrienol and 6-gingerol. Total RNA from both untreated and treated cells was prepared for transcriptome analysis using RNA sequencing techniques. We performed high-throughput sequencing at approximately 30-60 million coverage on both untreated and 6G + γT3-treated cells. The results showed that cancer-specific differential gene expression occurred and functional enrichment pathway analysis suggested that more than one pathway was modulated in 6G + γT3-treated cells. Combined treatment with 6G + γT3 augmented its chemotherapeutic effect by interfering with the cell cycle process, downregulating the Wnt signalling pathway and inducing apoptosis mainly through caspase-independent programmed cell death through mitochondrial dysfunction, activation of ER-UPR, disruption of DNA repair mechanisms and inactivation of the cell cycle process through the downregulation of main genes in proliferation such as FOXM1 and its downstream genes. The combined treatment exerted its cytotoxic effect through upregulation of genes in stress response activation and cytostatic effects demonstrated by downregulation of main regulator genes in the cell cycle. Selected genes involved in particular pathways including ATF6, DDIT3, GADD34, FOXM1, CDK1 and p21 displayed concordant patterns of gene expression between RNA sequencing and RT-qPCR. This study provides new insights into combined treatment with bioactive compounds not only in terms of its pleiotropic effects that enhance multiple pathways but also specific target genes that could be exploited for therapeutic purposes, especially in suppressing cancer cell growth.
    Matched MeSH terms: Tocotrienols/pharmacology*
  6. Yuhaniza Shafinie Kamsani, Mohd Hamim Rajikin
    This review summarizes the impact of tocotrienols (TCTs) as antioxidants in minimizing
    oxidative stress (OS), particularly in embryos exposed to OS causing agents. OS level is
    increased, for example, by nicotine, a major alkaloid content in cigarette, which is also a source
    of exogenous reactive oxygen species (ROS). Increased nicotine-induced OS increases cell
    stress response, which is a common trigger leading to embryonic cell death. Having more
    profound anti-oxidative stress effects than its counterpart tocopherol, TCTs improve blastocyst
    implantation, foetal growth, pregnancy outcome and survival of the neonates affected by
    nicotine. In reversing cell developmental arrest caused by nicotine-induced OS, TCTs enhances
    PDK-1 expression in the P13K/Akt pathway and permit embryonic development beyond the 4-
    cell stage with the production of more morulae. At the cytoskeletal level, TCTs increase the
    number of nicotine-induced apoptotic cells, through caspase 8 activation in the mitochondria.
    TCTs facilitate rough endoplasmic reticulum (rER) stress-mediated apoptosis and autophagy,
    resulting from nicotine-induced OS. Reduced vesicular population in TCT supplemented
    oocytes on the other hand may suggest reduced secretion of apoptotic cell bodies thus probably
    minimizing vesicular apoptosis during oocyte maturation. Further extensive research is
    required to develop TCTs as a tool in specific therapeutic approaches to overcome the
    detrimental effects of OS.
    Matched MeSH terms: Tocotrienols
  7. Yuhaniza Shafinie Kamsani, Mohd Hamim Rajikin
    MyJurnal
    This review summarizes the impact of tocotrienols (TCTs) as antioxidants in minimizing oxidative stress (OS), particularly in embryos exposed to OS causing agents. OS level is increased, for example, by nicotine, a major alkaloid content in cigarette, which is also a source of exogenous reactive oxygen species (ROS). Increased nicotine-induced OS increases cell stress response, which is a common trigger leading to embryonic cell death. Having more profound anti-oxidative stress effects than its counterpart tocopherol, TCTs improve blastocyst implantation, foetal growth, pregnancy outcome and survival of the neonates affected by nicotine. In reversing cell developmental arrest caused by nicotine-induced OS, TCTs enhances PDK-1 expression in the P13K/Akt pathway and permit embryonic development beyond the 4-cell stage with the production of more morulae. At the cytoskeletal level, TCTs increase the number of nicotine-induced apoptotic cells, through caspase 8 activation in the mitochondria. TCTs facilitate rough endoplasmic reticulum (rER) stress-mediated apoptosis and autophagy, resulting from nicotine-induced OS. Reduced vesicular population in TCT supplemented oocytes on the other hand may suggest reduced secretion of apoptotic cell bodies thus probably minimizing vesicular apoptosis during oocyte maturation. Further extensive research is required to develop TCTs as a tool in specific therapeutic approaches to overcome the detrimental effects of OS.
    Matched MeSH terms: Tocotrienols
  8. Yap SP, Yuen KH
    Int J Pharm, 2004 Aug 20;281(1-2):67-78.
    PMID: 15288344
    A single dose comparative bioavailability study was conducted to evaluate the bioavailability of tocotrienols from two self-emulsifying formulations, one of which produced an emulsion that readily lipolysed under in vitro condition (SES-A), while the other produced a finer dispersion with negligible lipolysis (SES-B) in comparison with that of a non-self-emulsifying formulation in soya oil. The study was conducted according to a three-way crossover design using six healthy human volunteers. Statistically significant differences were observed between the logarithmic transformed peak plasma concentration (Cmax) and total area under the plasma concentration-time curve (AUC(0-infinity)) values of both SES-A and -B compared to NSES-C indicating that SES-A and -B achieved a higher extent of absorption compared to NSES-C. Moreover, the 90% confidence interval of the AUC(0-infinity) values of both SES-A and -B over those of NSES-C were between 2-3 suggesting an increase in bioavailability of about two-three times compared to NSES-C. Both SES-A and -B also achieved a faster onset of absorption. However, both SES-A and -B had comparable bioavailability, despite the fact that SES-B was able to form emulsions with smaller droplet size. Thus, it appeared that both droplet sizes as well as the rate and extent of lipolysis of the emulsion products formed were important for enhancing the bioavailability of the tocotrienols from the self-emulsifying systems.
    Matched MeSH terms: Tocotrienols/administration & dosage; Tocotrienols/metabolism; Tocotrienols/pharmacokinetics*
  9. Yap SP, Yuen KH, Lim AB
    J Pharm Pharmacol, 2003 Jan;55(1):53-8.
    PMID: 12625867
    A study was conducted to evaluate the bioavailability of alpha-, gamma- and delta-tocotrienols administered via oral, intravenous, intramuscular and intraperitoneal routes in rats. Three separate experiments, each conducted according to a two-way crossover design, were carried out to compare intravenous and oral, intramuscular and oral, and intraperitoneal and oral administration. Oral absorption of all three tocotrienols was found to be incomplete. Of the three tocotrienols, alpha-tocotrienol had the highest oral bioavailability, at about 27.7+/-9.2%, compared with gamma- and delta-tocotrienols, which had values of 9.1+/-2.4% and 8.5+/-3.5%, respectively. Such biodiscrimination was also observed in their total clearance rates (estimated from the intravenous data). alpha-Tocotrienol showed the lowest clearance rate at about 0.16 L kg(-1) h(-1), whereas that of delta- and gamma-tocotrienols was quite similar, with values of 0.24 and 0.23 L kg(-1) h(-1), respectively. Interestingly, all three tocotrienols were found to be negligibly absorbed when administered intraperitoneally and intramuscularly. Thus, these two routes of administration should be avoided when evaluating the biological activities of the tocotrienols in whole animal experiments.
    Matched MeSH terms: Tocotrienols
  10. Yap SP, Yuen KH, Wong JW
    J Pharm Pharmacol, 2001 Jan;53(1):67-71.
    PMID: 11206194
    We have investigated the pharmacokinetics and bioavailability of alpha-, gamma- and delta-tocotrienols under fed and fasted conditions in eight healthy volunteers. The volunteers were administered a single oral dose of mixed tocotrienols (300 mg) under fed or fasted conditions. The bioavailability of tocotrienols under the two conditions was compared using the parameters peak plasma concentration (Cmax), time to reach peak plasma concentration (Tmax) and total area under the plasma concentration-time curve (AUC(o-infinity)). A statistically significant difference was observed between the fed and fasted logarithmic transformed values of Cmax (P < 0.01) and AUC(0-infinity) (P < 0.01) for all three tocotrienols. In addition, the 90% confidence intervals for the ratio of the logarithmic transformed AUC(0-infinity) values of alpha-, gamma- and delta-tocotrienols under the fed state over those of the fasted state were found to lie between 2.24-3.40, 2.05-4.09 and 1.59-3.81, respectively, while those of the Cmax were between 2.28-4.39, 2.31-5.87 and 1.52-4.05, respectively. However, no statistically significant difference was observed between the fed and fasted Tmax values of the three homologues. The mean apparent elimination half-life (t(1/2)) of alpha-, gamma- and delta-tocotrienols was estimated to be 4.4, 4.3 and 2.3 h, respectively, being between 4.5- to 8.7-fold shorter than that reported for alpha-tocopherol. No statistically significant difference was observed between the fed and fasted t(1/2) values. The mean apparent volume of distribution (Vd/f) values under the fed state were significantly smaller than those of the fasted state, which could be attributed to increased absorption of the tocotrienols in the fed state.
    Matched MeSH terms: Tocotrienols
  11. Yam ML, Abdul Hafid SR, Cheng HM, Nesaretnam K
    Lipids, 2009 Sep;44(9):787-97.
    PMID: 19655189 DOI: 10.1007/s11745-009-3326-2
    Tocotrienols are powerful chain breaking antioxidant. Moreover, they are now known to exhibit various non-antioxidant properties such as anti-cancer, neuroprotective and hypocholesterolemic functions. This study was undertaken to investigate the anti-inflammatory effects of tocotrienol-rich fraction (TRF) and individual tocotrienol isoforms namely delta-, gamma-, and alpha-tocotrienol on lipopolysaccharide-stimulated RAW264.7 macrophages. The widely studied vitamin E form, alpha-tocopherol, was used as comparison. Stimulation of RAW264.7 with lipopolysaccharide induced the release of various inflammatory markers. 10 mcirog/ml of TRF and all tocotrienol isoforms significantly inhibited the production of interleukin-6 and nitric oxide. However, only alpha-tocotrienol demonstrated a significant effect in lowering tumor necrosis factor-alpha production. Besides, TRF and all tocotrienol isoforms except gamma-tocotrienol reduced prostaglandin E(2) release. It was accompanied by the down-regulation of cyclooxygenase-2 gene expression by all vitamin E forms except alpha-tocopherol. Collectively, the data suggested that tocotrienols are better anti-inflammatory agents than alpha-tocopherol and the most effective form is delta-tocotrienol.
    Matched MeSH terms: Tocotrienols/pharmacology*; Tocotrienols/chemistry
  12. Wong YF, Makahleh A, Saad B, Ibrahim MN, Rahim AA, Brosse N
    Talanta, 2014 Dec;130:299-306.
    PMID: 25159413 DOI: 10.1016/j.talanta.2014.07.021
    A sensitive and rapid reversed-phase ultra performance liquid chromatographic (UPLC) method for the simultaneous determination of tocopherols (α-, β-, γ-, δ-), tocotrienols (α-, β-, γ-, δ-), α-tocopherol acetate and α-tocopherol nicotinate is described. The separation was achieved using a Kinetex pentafluorophenyl (PFP) column (150 × 2.1mm, 2.6 µm) with both photodiode array (PDA) and fluorescence (FL) detectors that were connected in series. Column was thermostated at 42°C. Under a gradient system consisting of methanol and water at a constant flow rate of 0.38 mL min(-1), all the ten analytes were well separated in less than 9.5 min. The method was validated in terms of linearity, limits of detection and quantitation, precision and recoveries. Calibration curves of the ten compounds were well correlated (r(2)>0.999) within the range of 100 to 25,000 μg L(-1) for α-tocopherol acetate and α-tocopherol nicotinate, 10 to 25,000 μg L(-1) for α-tocotrienol and 5 to 25,000 μg L(-1) for the other components. The method is simple and sensitive with detection limits (S/N, 3) of 1.0 to 3.0 μg L(-1) (FL detection) and 30 to 74 μg L(-1) (PDA detection). Relative standard deviations for intra- and inter-day retention times (<1%) and peak areas (≤ 4%) were obtained. The method was successfully applied to the determination of vitamin E in vegetable oils (extra virgin olive, virgin olive, pomace olive, blended virgin and refined olive, sunflower, soybean, palm olein, carotino, crude palm, walnut, rice bran and grape seed), margarines and supplements.
    Matched MeSH terms: Tocotrienols/analysis*; Tocotrienols/isolation & purification
  13. Wong SK, Chin KY, Suhaimi FH, Ahmad F, Ima-Nirwana S
    Bone, 2018 11;116:8-21.
    PMID: 29990585 DOI: 10.1016/j.bone.2018.07.003
    Metabolic syndrome (MetS) is associated with osteoporosis due to the underlying inflammatory and hormonal changes. Annatto tocotrienol has been shown to improve medical complications associated with MetS or bone loss in animal studies. This study aimed to investigate the effects of annatto tocotrienol as a single treatment for MetS and osteoporosis in high-carbohydrate high-fat (HCHF) diet-induced MetS animals. Three-month-old male Wistar rats were randomly divided into five groups. The baseline group was euthanized at the onset of the study. The normal group received standard rat chow and tap water. The remaining groups received HCHF diet and treated with three different regimens orally daily: (a) tocopherol-stripped corn oil (the vehicle of tocotrienol), (b) 60 mg/kg annatto tocotrienol, and (c) 100 mg/kg annatto tocotrienol. At the end of the study, measurements of MetS parameters, body compositions, and bone mineral density were performed in animals before sacrifice. Upon euthanasia, blood and femur of the rats were harvested for the evaluations of bone microstructure, biomechanical strength, remodelling activities, hormonal changes, and inflammatory response. Treatment with annatto tocotrienol improved all MetS parameters (except abdominal obesity), trabecular bone microstructure, bone strength, increased osteoclast number, normalized hormonal changes and inflammatory response in the HCHF animals. In conclusion, annatto tocotrienol is a potential agent for managing MetS and osteoporosis concurrently. The beneficial effects of annatto tocotrienol may be attributed to its ability to prevent the hormonal changes and pro-inflammatory state in animals with MetS.
    Matched MeSH terms: Tocotrienols/administration & dosage; Tocotrienols/pharmacology; Tocotrienols/therapeutic use*
  14. Wong SK, Chin KY, Ima-Nirwana S
    PMID: 31505801 DOI: 10.3390/ijerph16183313
    A positive association between metabolic syndrome (MetS) and osteoporosis has been demonstrated in previous animal studies. The mechanisms of MetS in orchestrating the bone remodelling process have traditionally focused on the interactions between mature osteoblasts and osteoclasts, while the role of osteocytes is unexplored. Our earlier studies demonstrated the bone-promoting effects of tocotrienol using a rat model of osteoporosis induced by MetS. This study aimed to investigate the expression of osteocyte-derived peptides in the bone of rats with MetS-induced osteoporosis treated with tocotrienol. Age-matched male Wistar rats (12-week-old; n = 42) were divided into seven experimental groups. Two groups served as the baseline and normal group, respectively. The other five groups were fed with a high-carbohydrate high-fat (HCHF) diet to induce MetS. The five groups of HCHF animals were treated with tocopherol-stripped corn oil (vehicle), annatto tocotrienol (60 and 100 mg/kg), and palm tocotrienol (60 and 100 mg/kg) starting from week 8. At the end of the study, the rats were sacrificed and their right tibias were harvested. Protein was extracted from the metaphyseal region of the proximal right tibia and levels of bone peptides, including osteoprotegerin (OPG), soluble receptor activator of nuclear factor-kappa B ligand (sRANKL), sclerostin (SOST), Dickkopf-related protein 1 (DKK-1), fibroblast growth factor-23 (FGF-23), and parathyroid hormone (PTH), were measured. The vehicle-treated animals displayed higher levels of sRANKL, SOST, DKK-1, FGF-23, and PTH as compared to the normal animals. Oral supplementation of annatto and palm tocotrienol (60 and 100 mg/kg) reduced the levels of sRANKL and FGF-23 in the HCHF animals. Only 100 mg/kg annatto and palm tocotrienol lowered SOST and DKK-1 levels in the HCHF animals. In conclusion, tocotrienol exerts potential skeletal-promoting benefit by modulating the levels of osteocytes-derived bone-related peptides.
    Matched MeSH terms: Tocotrienols/pharmacology*
  15. Wong RS, Radhakrishnan AK
    Nutr Rev, 2012 Sep;70(9):483-90.
    PMID: 22946849 DOI: 10.1111/j.1753-4887.2012.00512.x
    The vitamin E family consists of eight isomers known as alpha-, beta-, gamma-, and delta-tocopherols and alpha-, beta-, gamma-, and delta-tocotrienols. Numerous studies focused on the health benefits of these isomers have been performed since the discovery of vitamin E in 1922. Recent discoveries on the potential therapeutic applications of tocotrienols have revolutionized vitamin E research. Nevertheless, despite the abundance of literature, only 1% of vitamin E research has been conducted on tocotrienols. Many new advances suggest that the use of tocotrienols for health improvement or therapeutic purposes is promising. Although the mechanisms of action of tocotrienols in certain disease conditions have been explored, more detailed investigations into the fundamentals of the health-promoting effects of these molecules must be elucidated before they can be recommended for health improvement or for the treatment or prevention of disease. Furthermore, many of the studies on the effects of tocotrienols have been carried out using cell lines and animal models. The effects in humans must be well established before tocotrienols are used as therapeutic agents in various disease conditions, hence the need for more evidence-based human clinical trials.
    Matched MeSH terms: Tocotrienols/therapeutic use*
  16. Wong RS, Radhakrishnan AK, Ibrahim TA, Cheong SK
    Microsc Microanal, 2012 Jun;18(3):462-9.
    PMID: 22640960 DOI: 10.1017/S1431927612000177
    Tocotrienols are isomers of the vitamin E family, which have been reported to exert cytotoxic effects in various cancer cells. Although there have been some reports on the effects of tocotrienols in leukemic cells, ultrastructural evidence of tocotrienol-induced apoptotic cell death in leukemic cells is lacking. The present study investigated the effects of three isomers of tocotrienols (alpha, delta, and gamma) on a human T lymphoblastic leukemic cell line (CEM-SS). Cell viability assays showed that all three isomers had cytotoxic effects (p < 0.05) on CEM-SS cells with delta-tocotrienol being the most potent. Transmission electron microscopy showed that the cytotoxic effects by delta- and gamma-tocotrienols were through the induction of an apoptotic pathway as demonstrated by the classical ultrastructural apoptotic changes characterized by peripheral nuclear chromatin condensation and nuclear fragmentation. These findings were confirmed biochemically by the demonstration of phosphatidylserine externalization via flow cytometry analysis. This is the first study showing classical ultrastructural apoptotic changes induced by delta- and gamma-tocotrienols in human T lymphoblastic leukemic cells.
    Matched MeSH terms: Tocotrienols
  17. Weng-Yew W, Selvaduray KR, Ming CH, Nesaretnam K
    Nutr Cancer, 2009;61(3):367-73.
    PMID: 19373610 DOI: 10.1080/01635580802582736
    Previous studies have revealed that tocotrienol-rich fractions (TRF) from palm oil inhibit the proliferation and the growth of solid tumors. The anticancer activity of TRF is said to be caused by several mechanisms, one of which is antiangiogenesis. In this study, we looked at the antiangiogenic effects of TRF. In vitro investigations of the antiangiogenic activities of TRF, delta-tocotrienol (deltaT3), and alpha-tocopherol (alphaToc) were carried out in human umbilical vein endothelial cells (HUVEC). TRF and deltaT3 significantly inhibited cell proliferation from 4 microg/ml onward (P < 0.05). Cell migration was inhibited the most by deltaT3 at 12 microg/ml. Anti-angiogenic properties of TRF were carried out further in vivo using the chick embryo chorioallantoic membrane (CAM) assay and BALB/c mice model. TRF at 200 microg/ml reduced the vascular network on CAM. TRF treatment of 1 mg/mouse significantly reduced 4T1 tumor volume in BALB/c mice. TRF significantly reduced serum vascular endothelial growth factor (VEGF) level in BALB/c mice. In conclusion, this study showed that palm tocotrienols exhibit anti-angiogenic properties that may assist in tumor regression.
    Matched MeSH terms: Tocotrienols/pharmacology*
  18. Wan Nazaimoon WM, Khalid BA
    Malays J Pathol, 2002 Dec;24(2):77-82.
    PMID: 12887164
    This study determined the effects of palm vitamin E (TRF) diet on the levels of blood glucose, glycated hemoglobin (gHb), serum advanced glycosylation end-products (AGE) and malondialdehyde (MDA) of diabetic Sprague-Dawley rats. The rats received either control (normal rat chow), TRF diet (normal chow fortified with TRF at 1 g/kg) or Vitamin C diet (vitamin E-deficient but contained vitamin C at 45 g/kg). The animals were maintained on the respective diet for 4 weeks, made diabetic with streptozotocin (STZ), then followed-up for a further 8 weeks. At week-4, mean serum AGE levels of rats given TRF diet (0.7 +/- 0.3 units/ml) were significantly lower than those of control or Vitamin C diet rats (p pounds 0.03). The levels increased after STZ and became comparable to the other groups. At week 12, blood glucose (20.9 +/- 6.9 mM) and gHb (10.0 +/- 1.6%) of rats on TRF diet remained significantly low compared to that of control or Vitamin C diet rats (p pounds 0.03). MDA however, was not affected and remained comparable between groups throughout the study. This study showed that TRF may be a useful antioxidant; effectively prevented increase in AGE in normal rats, and caused decrease in blood glucose and gHb in diabetic rats. Further studies are needed to elucidate the mechanisms of action of TRF.
    Matched MeSH terms: Tocotrienols/administration & dosage*
  19. Wan Nasri WN, Makpol S, Mazlan M, Tooyama I, Wan Ngah WZ, Damanhuri HA
    J Alzheimers Dis, 2019;70(s1):S239-S254.
    PMID: 30507571 DOI: 10.3233/JAD-180496
    Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by loss of memory and other cognitive abilities. AD is associated with aggregation of amyloid-β (Aβ) deposited in the hippocampal brain region. Our previous work has shown that tocotrienol rich fraction (TRF) supplementation was able to attenuate the blood oxidative status, improve behavior, and reduce fibrillary-type Aβ deposition in the hippocampus of an AD mouse model. In the present study, we investigate the effect of 6 months of TRF supplementation on transcriptome profile in the hippocampus of APPswe/PS1dE9 double transgenic mice. TRF supplementation can alleviate AD conditions by modulating several important genes in AD. Moreover, TRF supplementation attenuated the affected biological process and pathways that were upregulated in the AD mouse model. Our findings indicate that TRF supplementation can modulate hippocampal gene expression as well as biological processes that can potentially delay the progression of AD.
    Matched MeSH terms: Tocotrienols
  20. Wan Hasan WN, Abd Ghafar N, Chin KY, Ima-Nirwana S
    Drug Des Devel Ther, 2018;12:1715-1726.
    PMID: 29942115 DOI: 10.2147/DDDT.S168935
    PURPOSE: Annatto-derived tocotrienol (AnTT) has been shown to improve bone formation in animal models of osteoporosis. However, detailed studies of the effects of AnTT on preosteoblastic cells were limited. This study was conducted to investigate the osteogenic effect of AnTT on preosteoblast MC3T3-E1 cells in a time-dependent manner.

    MATERIALS AND METHODS: Murine MC3T3-E1 preosteoblastic cells were cultured in the different concentrations of AnTT (0.001-1 µg/mL) up to 24 days. Expression of osteoblastic differentiation markers was measured by qPCR (osterix [OSX], collagen 1 alpha 1 [COL1α1], alkaline phosphatase [ALP], and osteocalcin [OCN]) and by fluorometric assay for ALP activity. Detection of collagen and mineralized nodules was done via Direct Red staining and Alizarin Red staining, respectively.

    RESULTS: The results showed that osteoblastic differentiation-related genes, such as OSX, COL1α1, ALP, and OCN, were significantly increased in the AnTT-treated groups compared to the vehicle group in a time-dependent manner (P<0.05). Type 1 collagen level was increased from day 3 to day 15 in the AnTT-treated groups, while ALP activity was increased from day 9 to day 21 in the AnTT-treated groups (P<0.05). Enhanced mineralization was observed in the AnTT-treated groups via increasing Alizarin Red staining from day 3 to day 21 (P<0.05).

    CONCLUSION: Our results suggest that AnTT enhances the osteogenic activity by promoting the bone formation-related genes and proteins in a temporal and sequential manner.

    Matched MeSH terms: Tocotrienols/isolation & purification; Tocotrienols/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links