Displaying publications 1 - 20 of 44 in total

Abstract:
Sort:
  1. Anbu JS, Jayaraj P, Varatharajan R, Thomas J, Jisha J, Muthappan M
    Afr J Tradit Complement Altern Med, 2009 Jul 03;6(4):529-33.
    PMID: 20606773
    The ethanol and water extracts of Sansevieria trifasciata leaves showed dose-dependent and significant (P < 0.05) increase in pain threshold in tail-immersion test. Moreover, both the extracts (100 - 200 mg/kg) exhibited a dose-dependent inhibition of writhing and also showed a significant (P < 0.001) inhibition of both phases of the formalin pain test. The ethanol extract (200 mg/kg) significantly (P < 0.01) reversed yeast-induced fever. Preliminary phytochemical screening of the extracts showed the presence of alkaloids, flavonoids, saponins, glycosides, terpenoids, tannins, proteins and carbohydrates.
    Matched MeSH terms: Analgesics, Non-Narcotic/pharmacology*
  2. Akhter S, Basirun WJ, Alias Y, Johan MR, Bagheri S, Shalauddin M, et al.
    Anal Biochem, 2018 06 15;551:29-36.
    PMID: 29753720 DOI: 10.1016/j.ab.2018.05.004
    In the present study, a nanocomposite of f-MWCNTs-chitosan-Co was prepared by the immobilization of Co(II) on f-MWCNTs-chitosan by a self-assembly method and used for the quantitative determination of paracetamol (PR). The composite was characterized by field emission scanning electron microscopy (FESEM) and energy dispersive x-ray analysis (EDX). The electroactivity of cobalt immobilized on f-MWCNTs-chitosan was assessed during the electro-oxidation of paracetamol. The prepared GCE modified f-MWCNTs/CTS-Co showed strong electrocatalytic activity towards the oxidation of PR. The electrochemical performances were investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV). Under favorable experimental conditions, differential pulse voltammetry showed a linear dynamic range between 0.1 and 400 μmol L-1 with a detection limit of 0.01 μmol L-1 for the PR solution. The fabricated sensor exhibited significant selectivity towards PR detection. The fabricated sensor was successfully applied for the determination of PR in commercial tablets and human serum sample.
    Matched MeSH terms: Analgesics, Non-Narcotic/analysis; Analgesics, Non-Narcotic/blood
  3. Shariffuddin II, Teoh WH, Wahab S, Wang CY
    BMC Anesthesiol, 2018 01 05;18(1):3.
    PMID: 29304735 DOI: 10.1186/s12871-017-0464-6
    BACKGROUND: Ambulatory surgery has recently gain popularity, as it is a good method of optimizinghospital resources utilization. To support ambulatory surgery, anaesthetic goals nowrevolve around patients' early recovery with minimal pain and nausea, expedientdischarge home and prompt resumption of activities of daily living. In this study, weevaluated the effect of a single pre-induction dose of dexmedetomidine on anaestheticrequirements, postoperative pain and clinical recovery after ambulatory ureteroscopy andureteric stenting under general anaesthesia.

    METHODS: Sixty patients were randomised to receive IV dexmedetomidine 0.5 μg.kg-1 (Group DEX, n = 30) or IV saline (Group P, n = 30). General anaesthesia was maintained with Sevoflurane: oxygen: air, titrated to BIS 40-60. Pain intensity, sedation, rescue analgesics, nausea/vomiting and resumption of daily activities were recorded at 1 h, and postoperative day (POD) 1-5.

    RESULTS: Group DEX patients had significant reduction in sevoflurane minimum alveolar concentration (MAC), mean (SD) DEX vs. Placebo 0.6 (0.2) vs. 0.9 (0.1), p = 0.037; reduced postoperative resting pain at 1 h (VAS 0-10) (mean (SD) 1.00 (1.84) vs. 2.63 (2.78), p = 0.004), POD 1 (mean (SD) 1.50 (1.48) vs. 2.87 (2.72), p = 0.002), POD 2 (0.53 (0.97) vs. 1.73 (1.96), p = 0.001) and POD 3 (0.30 (0.75) vs. 0.89 (1.49), p = 0.001). DEX patients also had less pain on movement POD 1 (3.00 (2.12) vs. 4.30 (3.10), p = 0.043) and POD 2 (2.10 (1.98) vs. 3.10 (2.46), p = 0.040), with higher resumption of daily activities by 48 h compared to placebo, 87% vs. 63%, p = 0.04.

    CONCLUSIONS: We conclude that a single dose of dexmedetomidine was a useful adjuvant in reducing MAC and postoperative pain (at 1 h and POD 1-3), facilitating faster return to daily activities by 48 h.

    TRIAL REGISTRATION: The Australian New Zealand Clinical Trials Registry (ANZCTR), ACTRN12617001120369 , 31st July 2017, retrospectively registered.

    Matched MeSH terms: Analgesics, Non-Narcotic/administration & dosage; Analgesics, Non-Narcotic/pharmacology
  4. Lim AY, Segarra I, Chakravarthi S, Akram S, Judson JP
    BMC Pharmacol., 2010;10:14.
    PMID: 20950441 DOI: 10.1186/1471-2210-10-14
    BACKGROUND: Sunitinib, a tyrosine kinase inhibitor to treat GIST and mRCC may interact with paracetamol as both undergo P450 mediated biotransformation and P-glycoprotein transport. This study evaluates the effects of sunitinib-paracetamol coadministration on liver and renal function biomarkers and liver, kidney, brain, heart and spleen histopathology. ICR male mice (n = 6 per group/dose) were administered saline (group-A) or paracetamol 500 mg/kg IP (group-B), or sunitinib at 25, 50, 80, 100, 140 mg/kg PO (group-C) or coadministered sunitinib at 25, 50, 80, 100, 140 mg/kg PO and paracetamol IP at fixed dose 500 mg/kg (group-D). Paracetamol was administered 15 min before sunitinib. Mice were sacrificed 4 h post sunitinib administration.
    RESULTS: Group-A serum ALT and AST levels were 14.29 ± 2.31 U/L and 160.37 ± 24.74 U/L respectively and increased to 249.6 ± 222.7 U/L and 377.1 ± 173.6 U/L respectively in group-B; group-C ALT and AST ranged 36.75-75.02 U/L and 204.4-290.3 U/L respectively. After paracetamol coadministration with low sunitinib doses (group-D), ALT and AST concentrations ranged 182.79-221.03 U/L and 259.7-264.4 U/L respectively, lower than group-B. Paracetamol coadministration with high sunitinib doses showed higher ALT and AST values (range 269.6-349.2 U/L and 430.2-540.3 U/L respectively), p < 0.05. Hepatic histopathology showed vascular congestion in group-B; mild congestion in group-C (but lesser than in group-B and D). In group-D, at low doses of sunitinib, lesser damage than in group-B occurred but larger changes including congestion were observed at high sunitinib doses. BUN levels were higher (p < 0.05) for group-B (33.81 ± 5.68 mg/dL) and group-D (range 35.01 ± 6.95 U/L to 52.85 ± 12.53 U/L) compared to group-A (15.60 ± 2.17 mg/dL) and group-C (range 17.50 ± 1.25 U/L to 26.68 ± 6.05 U/L). Creatinine remained unchanged. Renal congestion and necrosis was lower in group-C than group-B but was higher in group-D (p > 0.05). Mild cardiotoxicity occurred in groups B, C and D. Brain vascular congestion occurred at high doses of sunitinib administered alone or with paracetamol. Hepatic and renal biomarkers correlated with histopathology signs.
    CONCLUSIONS: Paracetamol and sunitinib coadministration may lead to dose dependent outcomes exhibiting mild hepatoprotective effect or increased hepatotoxicity. Sunitinib at high doses show renal, cardiac and brain toxicity. Liver and renal function monitoring is recommended.
    Matched MeSH terms: Analgesics, Non-Narcotic/toxicity*
  5. Marzilawati AR, Ngau YY, Mahadeva S
    PMID: 23021009 DOI: 10.1186/2050-6511-13-8
    The metabolism of paracetamol in Asians is thought to differ from Westerners. Detailed clinical features of paracetamol -induced hepatotoxicity among Asians remains largely unreported.
    Matched MeSH terms: Analgesics, Non-Narcotic/toxicity*
  6. Cheah KY, Mah KY, Pang LH, Ng SM, Wong JW, Tan SS, et al.
    BMC Pharmacol Toxicol, 2020 06 23;21(1):45.
    PMID: 32576287 DOI: 10.1186/s40360-020-00416-3
    BACKGROUND: Paracetamol/Orphenadrine is a fixed dose combination containing 35 mg orphenadrine and 450 mg paracetamol. It has analgesic and muscle relaxant properties and is widely available as generics. This study is conducted to investigate the relative bioavailability and bioequivalence between one fixed dose paracetamol/orphenadrine combination test preparation and one fixed dose paracetamol/orphenadrine combination reference preparation in healthy volunteers under fasted condition for marketing authorization in Malaysia.

    METHOD: This is a single-center, single-dose, open-label, randomized, 2-treatment, 2-sequence and 2-period crossover study with a washout period of 7 days. Paracetamol/Orphenadrine tablets were administered after a 10-h fast. Blood samples for pharmacokinetic analysis were collected at scheduled time intervals prior to and up to 72 h after dosing. Blood samples were centrifuged, and separated plasma were kept frozen (- 15 °C to - 25 °C) until analysis. Plasma concentrations of orphenadrine and paracetamol were quantified using liquid-chromatography-tandem mass spectrometer using diphenhydramine as internal standard. The pharmacokinetic parameters AUC0-∞, AUC0-t and Cmax were determined using plasma concentration time profile for both preparations. Bioequivalence was assessed according to the ASEAN guideline acceptance criteria for bioequivalence which is the 90% confidence intervals of AUC0-∞, AUC0-t and Cmax ratio must be within the range of 80.00-125.00%.

    RESULTS: There were 28 healthy subjects enrolled, and 27 subjects completed this trial. There were no significant differences observed between the AUC0-∞, AUC0-t and Cmax of both test and reference preparations in fasted condition. The 90% confidence intervals for the ratio of AUC0-t (100.92-111.27%), AUC0-∞ (96.94-108.08%) and Cmax (100.11-112.50%) for orphenadrine (n = 25); and AUC0-t (94.29-101.83%), AUC0-∞ (94.77-101.68%) and Cmax (87.12-101.20%) for paracetamol (n = 27) for test preparation over reference preparation were all within acceptable bioequivalence range of 80.00-125.00%.

    CONCLUSION: The test preparation is bioequivalent to the reference preparation and can be used interchangeably.

    TRIAL REGISTRATION: NMRR- 17-1266-36,001; registered and approved on 12 September 2017.

    Matched MeSH terms: Analgesics, Non-Narcotic/blood; Analgesics, Non-Narcotic/pharmacokinetics*
  7. Zyoud SH, Awang R, Sulaiman SA, Khan HR, Sawalha AF, Sweileh WM, et al.
    Basic Clin Pharmacol Toxicol, 2010 Sep;107(3):718-23.
    PMID: 20374238 DOI: 10.1111/j.1742-7843.2010.00567.x
    Intravenous N-acetylcysteine is usually regarded as a safe antidote. However, during the infusion of the loading dose, different types of adverse drug reactions (ADR) may occur. The objective of this study was to investigate the relation between the incidence of different types of ADR and serum acetaminophen concentration in patients presenting to the hospital with acetaminophen overdose. This is a retrospective study of patients admitted to the hospital for acute acetaminophen overdose over a period of 5 years (1 January 2004 to 31 December 2008). Parametric and non-parametric tests were used to test differences between groups depending on the normality of the data. SPSS 15 was used for data analysis. Of 305 patients with acetaminophen overdose, 146 (47.9%) were treated with intravenous N-acetylcysteine and 139 (45.6%) were included in this study. Different types of ADR were observed in 94 (67.6%) patients. Low serum acetaminophen concentrations were significantly associated with cutaneous anaphylactoid reactions but not other types of ADR. Low serum acetaminophen concentration was significantly associated with flushing (p < 0.001), rash (p < 0.001) and pruritus (p < 0.001). However, there were no significant differences in serum acetaminophen concentrations between patients with and without the following ADR: gastrointestinal reactions (p = 0.77), respiratory reactions (p = 0.96), central nervous reactions (p = 0.82) and cardiovascular reactions (p = 0.37). In conclusion, low serum acetaminophen concentrations were associated with higher cutaneous anaphylactoid reactions. Such high serum acetaminophen concentrations may be protective against N-acetylcysteine-induced cutaneous ADR.
    Matched MeSH terms: Analgesics, Non-Narcotic/adverse effects; Analgesics, Non-Narcotic/blood*
  8. Zakaria ZA, Abdul Rahim MH, Roosli RAJ, Mohd Sani MH, Marmaya NH, Omar MH, et al.
    Biomed Res Int, 2019;2019:6593125.
    PMID: 31467905 DOI: 10.1155/2019/6593125
    Methanolic extract of Clinacanthus nutans Lindau leaves (MECN) has been reported to exert antinociceptive activity. The present study aimed to elucidate the possible antinociceptive mechanisms of a lipid-soluble fraction of MECN, which was obtained after sequential extraction in petroleum ether. The petroleum ether fraction of C. nutans (PECN), administered orally to mice, was (i) subjected to capsaicin-, glutamate-, phorbol 12-myristate 13-acetate-, bradykinin-induced nociception model; (ii) prechallenged (intraperitoneal (i.p.)) with 0.15 mg/kg yohimbine, 1 mg/kg pindolol, 3 mg/kg caffeine, 0.2 mg/kg haloperidol, or 10 mg/kg atropine, which were the respective antagonist of α 2-adrenergic, β-adrenergic, adenosinergic, dopaminergic, or muscarinic receptors; and (iii) prechallenged (i.p.) with 10 mg/kg glibenclamide, 0.04 mg/kg apamin, 0.02 mg/kg charybdotoxin, or 4 mg/kg tetraethylammonium chloride, which were the respective inhibitor of ATP sensitive-, small conductance Ca2+-activated-, large conductance Ca2+-activated-, or nonselective voltage-activated-K+ channel. Results obtained demonstrated that PECN (100, 250, and 500 mg/kg) significantly (P<0.05) inhibited all models of nociception described earlier. The antinociceptive activity of 500 mg/kg PECN was significantly (P<0.05) attenuated when prechallenged with all antagonists or K+ channel blockers. However, only pretreatment with apamin and charybdotoxin caused full inhibition of PECN-induced antinociception. The rest of the K+ channel blockers and all antagonists caused only partial inhibition of PECN antinociception, respectively. Analyses on PECN's phytoconstituents revealed the presence of antinociceptive-bearing bioactive compounds of volatile (i.e., derivatives of γ-tocopherol, α-tocopherol, and lupeol) and nonvolatile (i.e., cinnamic acid) nature. In conclusion, PECN exerts a non-opioid-mediated antinociceptive activity involving mainly activation of adenosinergic and cholinergic receptors or small- and large-conductance Ca2+-activated-K+ channels.
    Matched MeSH terms: Analgesics, Non-Narcotic/pharmacology; Analgesics, Non-Narcotic/chemistry
  9. Islam MT, Quispe C, Islam MA, Ali ES, Saha S, Asha UH, et al.
    Biomed Pharmacother, 2021 Aug;140:111732.
    PMID: 34130201 DOI: 10.1016/j.biopha.2021.111732
    Nerol, a monoterpene is evident to possess diverse biological activities, including antioxidant, anti-microbial, anti-spasmodic, anthelmintic, and anti-arrhythmias. This study aims to evaluate its hepatoprotective effect against paracetamol-induced liver toxicity in a rat model. Five groups of rats (n = 7) were orally treated (once daily) with 0.05% tween 80 dissolved in 0.9% NaCl solution (vehicle), paracetamol 640 mg/kg (negative control), 50 mg/kg silymarin (positive control), or nerol (50 and 100 mg/kg) for 14 days, followed by the hepatotoxicity induction using paracetamol (PCM). The blood samples and livers of the animals were collected and subjected to biochemical and microscopical analysis. The histological findings suggest that paracetamol caused lymphocyte infiltration and marked necrosis, whereas maintenance of the normal hepatic structural was observed in group pre-treated with silymarin and nerol. The rats pre-treated with nerol significantly and dose-dependently reduced the hepatotoxic markers in animals. Nerol at 100 mg/kg significantly reversed the paracetamol-induced altered situations, including the liver enzymes, plasma proteins, antioxidant enzymes and serum bilirubin, lipid peroxidation (LPO) and cholesterol [e.g., total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-c), low-density lipoprotein cholesterol (LDL-c)] levels in animals. Taken together, nerol exerted significant hepatoprotective activity in rats in a dose-dependent manner. PCM-induced toxicity and nerol induced hepatoprotective effects based on expression of inflammatory and apoptosis factors will be future line of work for establishing the precise mechanism of action of nerol in Wistar albino rats.
    Matched MeSH terms: Analgesics, Non-Narcotic*
  10. Zakaria ZA, Raden Mohd Nor RN, Hanan Kumar G, Abdul Ghani ZD, Sulaiman MR, Rathna Devi G, et al.
    Can J Physiol Pharmacol, 2006 Dec;84(12):1291-9.
    PMID: 17487238
    The present study was carried out to establish the antinociceptive, anti-inflammatory, and antipyretic properties of the aqueous extract of Melastoma malabathricum leaves in experimental animals. The antinociceptive activity was measured using abdominal constriction, hot-plate, and formalin tests, whereas the anti-inflammatory and antipyretic activities were measured using carrageenan-induced paw edema and brewer's yeast-induced pyrexia tests, respectively. The extract, which was obtained after soaking the air-dried leaves in distilled water for 72 h and then preparing in concentrations of 10%, 50%, and 100% (v/v), was administered subcutaneously 30 min prior to subjection to the above mentioned assays. At all concentrations tested, the extract was found to exhibit significant (P < 0.05) antinociceptive, anti-inflammatory, and antipyretic activities in a concentration-independent manner. Our findings that the aqueous extract of M. malabathricum possesses antinociceptive, anti-inflammatory, and antipyretic activities supports previous claims on its traditional uses to treat various ailments.
    Matched MeSH terms: Analgesics, Non-Narcotic/pharmacology*; Analgesics, Non-Narcotic/therapeutic use; Analgesics, Non-Narcotic/chemistry
  11. Tan SY, Wong MM, Tiew AL, Choo YW, Lim SH, Ooi IH, et al.
    Cancer Chemother Pharmacol, 2016 10;78(4):709-18.
    PMID: 27495788 DOI: 10.1007/s00280-016-3120-9
    PURPOSE: Pharmacokinetic interaction of sunitinib with diclofenac, paracetamol, mefenamic acid and ibuprofen was evaluated due to their P450 mediated metabolism and OATP1B1, OATP1B3, ABCB1, ABCG2 transporters overlapping features.

    METHODS: Male and female mice were administered 6 sunitinib doses (60 mg/kg) PO every 12 h and 30 min before the last dose were administered vehicle (control groups), 250 mg/kg paracetamol, 30 mg/kg diclofenac, 50 mg/kg mefenamic acid or 30 mg/kg ibuprofen (study groups), euthanized 6 h post last administration and sunitinib plasma, liver, kidney, brain concentrations analyzed.

    RESULTS: Ibuprofen halved sunitinib plasma concentration in female mice (p 

    Matched MeSH terms: Analgesics, Non-Narcotic/pharmacology*
  12. Othman R, Vladisavljević GT, Thomas NL, Nagy ZK
    Colloids Surf B Biointerfaces, 2016 May 01;141:187-195.
    PMID: 26852102 DOI: 10.1016/j.colsurfb.2016.01.042
    Paracetamol (PCM)-loaded composite nanoparticles (NPs) composed of a biodegradable poly(d,l-lactide) (PLA) polymer matrix filled with organically modified montmorillonite (MMT) nanoparticles were fabricated by antisolvent nanoprecipitation in a microfluidic co-flow glass capillary device. The incorporation of MMT in the polymer improved both the drug encapsulation efficiency and the drug loading, and extended the rate of drug release in simulated intestinal fluid (pH 7.4). The particle size increased on increasing both the drug loading and the concentration of MMT in the polymer matrix, and decreased on increasing the aqueous to organic flow rate ratio. The drug encapsulation efficiency in the NPs was higher at higher aqueous to organic flow rate ratio due to faster formation of the NPs. The PCM-loaded PLA NPs containing 2 wt% MMT in PLA prepared at an aqueous to organic flow rate ratio of 10 with an orifice size of 200 μm exhibited a spherical shape with a mean size of 296 nm, a drug encapsulation efficiency of 38.5% and a drug loading of 5.4%. The encapsulation of MMT and PCM in the NPs was confirmed by transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis and attenuated total reflection-Fourier transform infrared spectroscopy.
    Matched MeSH terms: Analgesics, Non-Narcotic/pharmacokinetics; Analgesics, Non-Narcotic/chemistry
  13. Anuar MS, Briscoe BJ
    Drug Dev Ind Pharm, 2010 Aug;36(8):972-9.
    PMID: 20515396 DOI: 10.3109/03639041003610807
    It is generally accepted that the tablet elastic relaxation during compaction plays a vital role in undermining the final tablet mechanical integrity. One of the least investigated stages of the compaction process is the ejection stage.
    Matched MeSH terms: Analgesics, Non-Narcotic/administration & dosage; Analgesics, Non-Narcotic/chemistry*
  14. Wai BH, Heok KE
    Ethn Health, 1998 Nov;3(4):255-63.
    PMID: 10403107
    This study was undertaken to determine whether there were ethnic and social variations in parasuicide in the population of Singapore.
    Matched MeSH terms: Analgesics, Non-Narcotic/poisoning
  15. Fakurazi S, Hairuszah I, Nanthini U
    Food Chem Toxicol, 2008 Aug;46(8):2611-5.
    PMID: 18514995 DOI: 10.1016/j.fct.2008.04.018
    Initiation of acetaminophen (APAP) toxicities is believed to be promoted by oxidative stress during the event of overdosage. The aim of the present study was to evaluate the hepatoprotective action of Moringa oleifera Lam (MO), an Asian plant of high medicinal value, against a single high dose of APAP. Groups of five male Sprague-Dawley rats were pre-administered with MO (200 and 800 mg/kg) prior to a single dose of APAP (3g/kg body weight; p.o). Silymarin was used as an established hepatoprotective drug against APAP induced liver injury. The hepatoprotective activity of MO extract was observed following significant histopathological analysis and reduction of the level of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (ALP) in groups pretreated with MO compared to those treated with APAP alone. Meanwhile, the level of glutathione (GSH) was found to be restored in MO-treated animals compared to the groups treated with APAP alone. These observations were comparable to the group pretreated with silymarin prior to APAP administration. Group that was treated with APAP alone exhibited high level of transaminases and ALP activities besides reduction in the GSH level. The histological hepatocellular deterioration was also evidenced. The results from the present study suggested that the leaves of MO can prevent hepatic injuries from APAP induced through preventing the decline of glutathione level.
    Matched MeSH terms: Analgesics, Non-Narcotic/toxicity*
  16. Zyoud SH, Awang R, Sulaiman SA, Al-Jabi SW
    Hum Exp Toxicol, 2011 Jul;30(7):550-9.
    PMID: 20630911 DOI: 10.1177/0960327110377647
    Acetaminophen is one of the most commonly encountered medications in self-poisoning, with a high rate of morbidity. The prevalence and characteristics of acetaminophen intoxication associated with long hospital stay in patients are not well defined.
    Matched MeSH terms: Analgesics, Non-Narcotic/poisoning*
  17. Zyoud SH, Awang R, Syed Sulaiman SA, Sweileh WM, Al-Jabi SW
    Hum Exp Toxicol, 2010 Mar;29(3):153-60.
    PMID: 20071472 DOI: 10.1177/0960327109359642
    Intravenous N-acetylcysteine (IV-NAC) is widely recognized as the antidote of choice for acetaminophen overdose. However, its use is not without adverse drug reactions (ADR) that might affect therapeutic outcome or lead to treatment delay.
    Matched MeSH terms: Analgesics, Non-Narcotic/poisoning*
  18. Yam MF, Ang LF, Basir R, Salman IM, Ameer OZ, Asmawi MZ
    Inflammopharmacology, 2009 Feb;17(1):50-4.
    PMID: 19127348 DOI: 10.1007/s10787-008-8038-3
    The anti-pyretic activity of a standardized methanol/water (50/50) extract of Orthosiphon stamineus Benth. (SEOS) was investigated for its effect on normal body temperature and yeast-induced pyrexia in Sprague Dawley (SD) rats. The SEOS showed no effect on normal body temperature. Doses of 500 and 1000 mg/kg body weight of SEOS significantly reduced the yeast-induced elevation in body temperature. This effect persisted up to 4 h following the administration of the extract. The anti-pyretic effect of SEOS was comparable with that of paracetamol (acetaminophen in U.S) (150 mg/kg p.o.), a standard anti-pyretic agent. HPLC study revealed that rosmarinic acid, sinensetin, eupatorin and tetramethoxyflavone were present in SEOS in the amounts of 7.58%, 0.2%, 0.34% and 0.24% respectively. The LD(50) of the extract in rats was higher than 5000 mg/kg body weight. Therefore, the present study ascertained that SEOS possesses a significant anti-pyretic activity.
    Matched MeSH terms: Analgesics, Non-Narcotic/administration & dosage*; Analgesics, Non-Narcotic/isolation & purification; Analgesics, Non-Narcotic/toxicity
  19. Salim N, Basri M, Rahman MB, Abdullah DK, Basri H
    Int J Nanomedicine, 2012;7:4739-47.
    PMID: 22973096 DOI: 10.2147/IJN.S34700
    During recent years, there has been growing interest in the use of nanoemulsion as a drug-carrier system for topical delivery. A nanoemulsion is a transparent mixture of oil, surfactant and water with a very low viscosity, usually the product of its high water content. The present study investigated the modification of nanoemulsions with different hydrocolloid gums, to enhanced drug delivery of ibuprofen. The in vitro characterization of the initial and modified nanoemulsions was also studied.
    Matched MeSH terms: Analgesics, Non-Narcotic/administration & dosage; Analgesics, Non-Narcotic/pharmacokinetics; Analgesics, Non-Narcotic/chemistry
  20. Said MM, Gibbons S, Moffat AC, Zloh M
    Int J Pharm, 2011 Aug 30;415(1-2):102-9.
    PMID: 21645600 DOI: 10.1016/j.ijpharm.2011.05.057
    The influx of medicines from different sources into healthcare systems of developing countries presents a challenge to monitor their origin and quality. The absence of a repository of reference samples or spectra prevents the analysis of tablets by direct comparison. A set of paracetamol tablets purchased in Malaysian pharmacies were compared to a similar set of sample purchased in the UK using near-infrared spectroscopy (NIRS). Additional samples of products containing ibuprofen or paracetamol in combination with other actives were added to the study as negative controls. NIR spectra of the samples were acquired and compared by using multivariate modeling and classification algorithms (PCA/SIMCA) and stored in a spectral database. All analysed paracetamol samples contained the purported active ingredient with only 1 out of 20 batches excluded from the 95% confidence interval, while the negative controls were clearly classified as outliers of the set. Although the substandard products were not detected in the purchased sample set, our results indicated variability in the quality of the Malaysian tablets. A database of spectra was created and search methods were evaluated for correct identification of tablets. The approach presented here can be further developed as a method for identifying substandard pharmaceutical products.
    Matched MeSH terms: Analgesics, Non-Narcotic/analysis; Analgesics, Non-Narcotic/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links