Displaying publications 1 - 20 of 359 in total

Abstract:
Sort:
  1. Sarin SK, Kedarisetty CK, Abbas Z, Amarapurkar D, Bihari C, Chan AC, et al.
    Hepatol Int, 2014 Oct;8(4):453-71.
    PMID: 26202751 DOI: 10.1007/s12072-014-9580-2
    The first consensus report of the working party of the Asian Pacific Association for the Study of the Liver (APASL) set up in 2004 on acute-on-chronic liver failure (ACLF) was published in 2009. Due to the rapid advancements in the knowledge and available information, a consortium of members from countries across Asia Pacific, "APASL ACLF Research Consortium (AARC)," was formed in 2012. A large cohort of retrospective and prospective data of ACLF patients was collated and followed up in this data base. The current ACLF definition was reassessed based on the new AARC data base. These initiatives were concluded on a 2-day meeting in February 2014 at New Delhi and led to the development of the final AARC consensus. Only those statements which were based on the evidence and were unanimously recommended were accepted. These statements were circulated again to all the experts and subsequently presented at the annual conference of the APASL at Brisbane, on March 14, 2014. The suggestions from the delegates were analyzed by the expert panel, and the modifications in the consensus were made. The final consensus and guidelines document was prepared. After detailed deliberations and data analysis, the original proposed definition was found to withstand the test of time and identify a homogenous group of patients presenting with liver failure. Based on the AARC data, liver failure grading, and its impact on the "Golden therapeutic Window," extra-hepatic organ failure and development of sepsis were analyzed. New management options including the algorithms for the management of coagulation disorders, renal replacement therapy, sepsis, variceal bleed, antivirals, and criteria for liver transplantation for ACLF patients were proposed. The final consensus statements along with the relevant background information are presented here.
    Matched MeSH terms: Antiviral Agents
  2. Khoo LW, Audrey Kow S, Lee MT, Tan CP, Shaari K, Tham CL, et al.
    PMID: 30105077 DOI: 10.1155/2018/9276260
    Clinacanthus nutans (Burm.f.) Lindau (Acanthaceae), commonly known as Sabah snake grass, is a vegetable and a well-known herb that is considered an alternative medicine for insect bites, skin rashes, herpes infection, inflammation, and cancer and for health benefits. Current review aims to provide a well-tabulated repository of the phytochemical screening, identification and quantification, and the pharmacological information of C. nutans according to the experimental design and the plant preparation methods which make it outstanding compared to existing reviews. This review has documented valuable data obtained from all accessible library databases and electronic searches. For the first time we analyzed the presence of flavonoids, triterpenoids, steroids, phytosterols, and glycosides in C. nutans based on the results from phytochemical screening which are then further confirmed by conventional phytochemical isolation methods and advanced spectroscopic techniques. Phytochemical quantification further illustrated that C. nutans is a good source of phenolics and flavonoids. Pharmacological studies on C. nutans revealed that its polar extract could be a promising anti-inflammation, antiviral, anticancer, immune and neuromodulating, and plasmid DNA protective agent; that its semipolar extract could be a promising antiviral, anticancer, and wound healing agent; and that its nonpolar extract could be an excellent anticancer agent.
    Matched MeSH terms: Antiviral Agents
  3. Ali Y, Muhamad Bunnori N, Susanti D, Muhammad Alhassan A, Abd Hamid S
    Front Chem, 2018;6:210.
    PMID: 29946538 DOI: 10.3389/fchem.2018.00210
    Calixarene derivatives are reported as potential therapeutic agents. Azo derivatives of calixarenes have not been given much consideration to explore their biomedical applications. In the present study, some azo-based derivatives of calix[4]arene were synthesized and characterized and their antibacterial and antiviral potentials were studied. The mono azo products of sulphanilamide, sulfaguanidine and 2-methyl-4-aminobenzoic acid showed good activity against bacterial strains with minimum inhibition concentration values ranging from 0.97 to 62.5 μg/mL. For mono azo products, the diazotized salt was applied as a limiting reagent. The use of calix[4]arene and sodium acetate trihydrate in 1:3 (molar ratio) helped in partial substitution. Molecular docking was performed to see the interaction of the designed compounds with two bacterial and one viral (neuraminidase) receptor. Some of the derivatives showed good interaction with the active site of bacterial and neuraminidase enzymes through hydrogen, hydrophobic and pi-pi interactions, and could inhibit the activity of the selected enzymes.
    Matched MeSH terms: Antiviral Agents
  4. Ahmad S, Usman Mirza M, Yean Kee L, Nazir M, Abdul Rahman N, Trant JF, et al.
    Chem Biol Drug Des, 2021 Oct;98(4):604-619.
    PMID: 34148292 DOI: 10.1111/cbdd.13914
    3CLpro is essential for SARS-CoV-2 replication and infection; its inhibition using small molecules is a potential therapeutic strategy. In this study, a comprehensive crystallography-guided fragment-based drug discovery approach was employed to design new inhibitors for SARS-CoV-2 3CLpro. All small molecules co-crystallized with SARS-CoV-2 3CLpro with structures deposited in the Protein Data Bank were used as inputs. Fragments sitting in the binding pocket (87) were grouped into eight geographical types. They were interactively coupled using various synthetically reasonable linkers to generate larger molecules with divalent binding modes taking advantage of two different fragments' interactions. In total, 1,251 compounds were proposed, and 7,158 stereoisomers were screened using Glide (standard precision and extra precision), AutoDock Vina, and Prime MMGBSA. The top 22 hits having conformations approaching the linear combination of their constituent fragments were selected for MD simulation on Desmond. MD simulation suggested 15 of these did adopt conformations very close to their constituent pieces with far higher binding affinity than either constituent domain alone. These structures could provide a starting point for the further design of SARS-CoV-2 3CLpro inhibitors with improved binding, and structures are provided.
    Matched MeSH terms: Antiviral Agents/pharmacology; Antiviral Agents/chemistry*
  5. Malik FZ, Allaudin ZN, Loh HS, Nee TK, Hani H, Abdullah R
    BMC Complement Altern Med, 2016 May 23;16:139.
    PMID: 27216794 DOI: 10.1186/s12906-016-1120-2
    Duabanga grandiflora or known in Malaysia as Berembang Bukit, Megawasih, or Pedada Bukit, is a native plant of the Southeast Asian countries. In this study, the anti-viral properties of D. grandiflora were investigated.
    Matched MeSH terms: Antiviral Agents/pharmacology*; Antiviral Agents/toxicity
  6. Arcana Thirumorthy, De-Ming Chau, Khatijah Yusoff, Abhi Veerakumarasivam
    MyJurnal
    Introduction: Bladder cancer is associated with high risk of tumour recurrence and therapeutic resistance. Cancer stem cells (CSC) within a particular tumour are postulated to drive tumorigenesis and influence tumour behaviour. Recent studies have shown that Newcastle disease virus (NDV) is able to selectively kill and exert a strong oncolytic effect against various cancer types. However little is known about the oncolytic effect of NDV against CSC. In this study, the oncolytic effect of NDV against putative bladder CSC was examined. Methods: Putative bladder CSC was selectively grown in the form of 3D-spheroids from six different bladder cancer cell lines. The spheroid cells were characterised for their stemness properties to ensure that these cells truly represent CSC. This was conducted via the analysis of CSC associated genes and cell surface markers expression. Subsequently, the oncolytic effect of the wild-type NDV-AF2240 strain against the bladder cancer spheroids was investigated. Results: All the spheroids expressed significantly high levels of CSC-associated genes. Flow-cytometry analysis revealed that the expression pattern of the CSC-associated surface markers was different in the spheroid cells; suggesting heterogeneity in the expression signatures of these cells. The infection of spheroids with NDV showed that the NDV was able to target bladder cancer spheroids but there was a spectrum of response across the different spheroids. Intriguingly, NDV was able to persistently infect bladder cancer spheroids that were not sensitive towards NDV infection as the presence of NDV viral genes were detected in the spheroid cells. The NDV persistently infected bladder cancer spheroids were resistant to superinfection and developed an antiviral state by expressing low levels of interferon-beta (IFN-b). NDV persistency of infection affects the process of epithelial to mesenchymal transition (EMT) of cancer cells as the spheroid forming ability of an established NDV persistently infected bladder cancer cell line, EJ28-PI was shown to be impaired. The EJ28-PI cells expressed significantly high levels of the EN2 gene. Knockdown of the EN2 expression reduced the viability of EJ28-PI cells; suggesting a role for EN2 in mediating NDV persistency of infection in cancer cells. Conclusion: Bladder CSC gene expression signatures influence the efficacy of NDV-mediated oncolysis. Our current work is focused on identifying genes and signalling pathways that influence NDV-mediated oncolysis us-ing whole-transcriptomic sequencing. The findings of this study can potentially be used to enhance the efficacy of NDV-mediated oncolysis and accelerate the translation of NDV as an oncotherapeutic agent in the clinic.
    Matched MeSH terms: Antiviral Agents
  7. Chan LC, Mat Yassim AS, Ahmad Fuaad AAH, Leow TC, Sabri S, Radin Yahaya RS, et al.
    Sci Rep, 2023 Nov 17;13(1):20178.
    PMID: 37978223 DOI: 10.1038/s41598-023-47511-z
    COVID-19 results from SARS-CoV-2, which mutates frequently, challenging current treatments. Therefore, it is critical to develop new therapeutic drugs against this disease. This study explores the interaction between SARS-CoV-2 3CLpro and RetroMAD1, a well-characterized coronavirus protein and potential drug target, using in-silico methods. The analysis through the HDOCK server showed stable complex formation with a binding energy of -12.3, the lowest among reference drugs. The RetroMAD1-3CLpro complex underwent a 100 ns molecular dynamics simulation (MDS) in an explicit solvation system, generating various trajectories, including RMSD, RMSF, hydrogen bonding, radius of gyration, and ligand binding energy. MDS results confirmed intact interactions within the RetroMAD1-3CLpro complex during simulations. In vitro experiments validated RetroMAD1's ability to inhibit 3CLpro enzyme activity and prevent SARS-CoV-2 infection in human bronchial cells. RetroMAD1 exhibited antiviral efficacy comparable to Remdesivir without cytotoxicity at effective concentrations. These results suggest RetroMAD1 as a potential drug candidate against SARS-CoV-2, warranting further in vivo and clinical studies to assess its efficiency.
    Matched MeSH terms: Antiviral Agents/therapeutic use
  8. Lim SG, Phyo WW, Shah SR, Win KM, Hamid S, Piratvisuth T, et al.
    J Viral Hepat, 2018 12;25(12):1533-1542.
    PMID: 30141214 DOI: 10.1111/jvh.12989
    There is a paucity of information on chronic hepatitis C (CHC) patients treated with direct antiviral agents (DAAs) in Asia. We invited Asia-Pacific physicians to collate databases of patients enrolled for CHC treatment, recording baseline clinical, virologic and biochemical characteristics, sustained virologic response at week 12 (SVR12) and virologic failure. SVR12 outcome was based on intention to treat (ITT). Multivariate analysis was used to assess independent risk factors for SVR12 using SPSS version 20. A total of 2171 patients from India (n = 977), Myanmar (n = 552), Pakistan (n = 406), Thailand (n = 139), Singapore (n = 72) and Malaysia (n = 25) were collected. At baseline, mean age was 49 years, 50.2% were males, and 41.8% had cirrhosis. Overall, SVR12 was 89.5% and by genotype (GT) based on ITT and treatment completion, respectively, was 91% and 92% for GT1, 100% and 100% for GT2, 91% and 97% for GT3, 64% and 95% for GT4, 87% and 87% for GT6 and 79% and 91% for GT untested. Patients with cirrhosis had SVR12 of 85% vs 93% for noncirrhosis (P < 0.001) (RR 2.1, 95% CI 1.4-3.1, P = 0.0002). Patients with GT1 and GT3 treated with sofosbuvir/ribavirin (SR) had 88% and 89% SVR12, respectively, but those GT6 treated with sofosbuvir/ledipasvir (SL) had only 77.6% SVR12. Multivariate analysis showed absence of cirrhosis was associated with higher SVR12 (OR 2.0, 95% CI 1.3-3.1, P = 0.002). In conclusion, patients with GT1 and GT3 with/without cirrhosis had surprisingly high efficacy using SR, suggesting that Asians may respond better to some DAAs. However, poor GT6 response to SL suggests this regimen is suboptimal for this genotype.
    Matched MeSH terms: Antiviral Agents/therapeutic use*
  9. Kanauchi O, Low ZX, Jounai K, Tsuji R, AbuBakar S
    Front Immunol, 2023;14:1280680.
    PMID: 38116008 DOI: 10.3389/fimmu.2023.1280680
    The COVID-19 outbreak has caused significant global changes and increased public awareness of SARS-CoV-2. Substantial progress in developing vaccines, enhancing sanitation practices, and implementing various measures to combat the virus, including the utilization of probiotics has been made. This comprehensive review examined the medical impact of clinically proven probiotics on infectious diseases, considering three crucial time periods: before (pre-), during (mid-), and after (post-) COVID-19 pandemic era. This review also showed a perspective on the use of probiotics to stimulate the innate immune system and prevent infectious diseases. In pre-COVID-19 era, several probiotic strains were found to be clinically effective in addressing gastrointestinal infectious diseases, the common cold and flu. However, the mechanism by which probiotics exerted their antiviral effects remained relatively unclear during that period. Nevertheless, probiotics, Lactococcus lactis strain Plasma (LC-Plasma), and others have gained attention for their unique ability to modulate the immune system and demonstrate antiviral properties. While some probiotics have shown promise in alleviating gastrointestinal symptoms linked to COVID-19, their direct effectiveness in treating or preventing COVID-19 progression has not yet been conclusively established. As we transition into the post-COVID-19 era, the relationship between COVID-19 and plasmacytoid dendritic cells (pDCs), a vital component of the innate immune system, has been gradually elucidated. These findings are now being applied in developing novel vaccines and treatments involving interferons and in immune activation research using probiotics as adjuvants, comparable to CpG-DNA through TLR9. The role of the local innate immune system, including pDCs, as the first line of defense against viral infections has gained increasing interest. Moving forward, insight of the immune system and the crosstalk between probiotics and the innate immune system is expected to highlight the role of probiotics in adjunctive immunoregulatory therapy. In combination with drug treatments, probiotics may play a more substantial role in enhancing immune responses. The immunoregulatory approach using probiotics such as LC-Plasma, which can induce anti-infectious factors such as interferons, holds promise as a viable therapeutic and prophylactic option against viral infectious diseases due to their good safety profile and protective efficacy.
    Matched MeSH terms: Antiviral Agents/therapeutic use
  10. Zandi K, Teoh BT, Sam SS, Wong PF, Mustafa MR, Abubakar S
    PMID: 23140177 DOI: 10.1186/1472-6882-12-214
    Dengue is a serious arboviral disease currently with no effective antiviral therapy or approved vaccine available. Therefore, finding the effective compound against dengue virus (DENV) replication is very important. Among the natural compounds, bioflavonoids derived mainly from plants are of interest because of their biological and medicinal benefits.
    Matched MeSH terms: Antiviral Agents/pharmacology; Antiviral Agents/therapeutic use*
  11. Zandi K, Teoh BT, Sam SS, Wong PF, Mustafa MR, Abubakar S
    Virol J, 2011;8:560.
    PMID: 22201648 DOI: 10.1186/1743-422X-8-560
    Dengue is a major mosquito-borne disease currently with no effective antiviral or vaccine available. Effort to find antivirals for it has focused on bioflavonoids, a plant-derived polyphenolic compounds with many potential health benefits. In the present study, antiviral activity of four types of bioflavonoid against dengue virus type -2 (DENV-2) in Vero cell was evaluated. Anti-dengue activity of these compounds was determined at different stages of DENV-2 infection and replication cycle. DENV replication was measured by Foci Forming Unit Reduction Assay (FFURA) and quantitative RT-PCR. Selectivity Index value (SI) was determined as the ratio of cytotoxic concentration 50 (CC50) to inhibitory concentration 50 (IC50) for each compound.
    Matched MeSH terms: Antiviral Agents/pharmacology*
  12. Zandi K, Lim TH, Rahim NA, Shu MH, Teoh BT, Sam SS, et al.
    BMC Complement Altern Med, 2013 Apr 29;13:91.
    PMID: 23627436 DOI: 10.1186/1472-6882-13-91
    BACKGROUND: Scutellaria baicalensis (S. baicalensis) is one of the traditional Chinese medicinal herbs that have been shown to possess many health benefits. In the present study, we evaluated the in vitro antiviral activity of aqueous extract of the roots of S. baicalensis against all the four dengue virus (DENV) serotypes.

    METHODS: Aqueous extract of S. baicalensis was prepared by microwave energy steam evaporation method (MEGHE™), and the anti-dengue virus replication activity was evaluated using the foci forming unit reduction assay (FFURA) in Vero cells. Quantitative real-time polymerase chain reaction (qRT-PCR) assay was used to determine the actual dengue virus RNA copy number. The presence of baicalein, a flavonoid known to inhibit dengue virus replication was determined by mass spectrometry.

    RESULTS: The IC(50) values for the S. baicalensis extract on Vero cells following DENV adsorption ranged from 86.59 to 95.19 μg/mL for the different DENV serotypes. The IC(50) values decreased to 56.02 to 77.41 μg/mL when cells were treated with the extract at the time of virus adsorption for the different DENV serotypes. The extract showed potent direct virucidal activity against extracellular infectious virus particles with IC(50) that ranged from 74.33 to 95.83 μg/mL for all DENV serotypes. Weak prophylactic effects with IC(50) values that ranged from 269.9 to 369.8 μg/mL were noticed when the cells were pre-treated 2 hours prior to virus inoculation. The concentration of baicalein in the S. baicalensis extract was ~1% (1.03 μg/gm dried extract).

    CONCLUSIONS: Our study demonstrates the in vitro anti-dengue virus replication property of S. baicalensis against all the four DENV serotypes investigated. The extract reduced DENV infectivity and replication in Vero cells. The extract was rich in baicalein, and could be considered for potential development of anti-DENV therapeutics.

    Matched MeSH terms: Antiviral Agents/pharmacology*; Antiviral Agents/chemistry
  13. Bandyopadhyay S, Abiodun OA, Ogboo BC, Kola-Mustapha AT, Attah EI, Edemhanria L, et al.
    J Biomol Struct Dyn, 2022;40(22):11467-11483.
    PMID: 34370622 DOI: 10.1080/07391102.2021.1959401
    Medicinal plants as rich sources of bioactive compounds are now being explored for drug development against COVID-19. 19 medicinal plants known to exhibit antiviral and anti-inflammatory effects were manually curated, procuring a library of 521 metabolites; this was virtually screened against NSP9, including some other viral and host targets and were evaluated for polypharmacological indications. Leads were identified via rigorous scoring thresholds and ADMET filtering. MM-GBSA calculation was deployed to select NSP9-Lead complexes and the complexes were evaluated for their stability and protein-ligand communication via MD simulation. We identified 5 phytochemical leads for NSP9, 23 for Furin, 18 for ORF3a, and 19 for IL-6. Ochnaflavone and Licoflavone B, obtained from Lonicera japonica (Japanese Honeysuckle) and Glycyrrhiza glabra (Licorice), respectively, were identified to have the highest potential polypharmacological properties for the aforementioned targets and may act on multiple pathways simultaneously to inhibit viral entry, replication, and disease progression. Additionally, MD simulation supports the robust stability of Ochnaflavone and Licoflavone B against NSP9 at the active sites via hydrophobic interactions, H-bonding, and H-bonding facilitated by water. This study promotes the initiation of further experimental analysis of natural product-based anti-COVID-19 therapeutics.
    Matched MeSH terms: Antiviral Agents/pharmacology
  14. Tan SS, Adlin Nadia Z
    Med J Malaysia, 2017 06;72(3):165-174.
    PMID: 28733564 MyJurnal
    AIM: To describe the clinical characteristic of hepatitis C (HCV) patients and the results of pegylated interferon and ribavirin (PegIFN/RBV) therapy in a routine clinical practice.

    METHODS: A retrospective review of consecutive HCV patients treated with PegIFN/RBV in 2004 to 2012.

    RESULTS: A total of 273 patients received treatment. The mean age was 44.16 ± 10.5 years and 76% were male. The top 2 self-reported risks were blood or blood product transfusion before 1994 and injection drug use, found in 57.1% of patients. The predominant HCV genotype (GT) was 3 at 60.6%, second was GT1 at 36.1% and other GTs were uncommon at about 1% or less. About half of our patients have high baseline viral load (>800,000 iu/ml), 18.3% had liver cirrhosis and 22.3% had HIV co-infection. Co-morbid illness was found in 42.9%, hypertension and type 2 diabetes were the two most common. The overall sustained virological response (SVR) by intention-to-treat analysis were 54.9% (n=150/273), 41.2% (40/97) for GT1, 100% (5/5) for GT2 and 62% (101/163) for GT3. Subgroup analysis for HCV monoinfected, treatment naïve showed SVR of 49.2% (31/63) for GT1, 100% (5/5) for GT2 and 67% (69/103) for GT3. In HCV mono-infected and treatment experienced (n=29), the SVR was 28.6% (4/14) for GT1, 21.4% (69/103) for GT3. In the HIV/HCV co-infected, treatment naïve (n=56), the SVR was 28.6% (4/14) for GT1 and 64.3% (27/42) for GT3. Treatment naïve GT3 mono-infected patients had a statistically significant higher SVR compared to treatment experienced patients (P=0.001). In GT3 patients who achieved rapid virological response, the SVR was significantly higher at 85.2% (P< 0.001). The SVR for cirrhotics were low especially for GT1 at 21% (4/19) and 31% (4/13) based on all patients and treatment naïve HCV monoinfected respectively. In GT3 cirrhotics the corresponding SVR were 57.1% (16/28) and 60.9% (14/23). Premature discontinuation rate was 21.2% with the majority due to intolerable adverse events at 12.1%.

    CONCLUSIONS: In our routine clinical practice, the HCV patients we treated were young, predominantly of GT3 and many had difficult-to-treat clinical characteristics. The SVR of our patients were below those reported in Asian clinical trials but in keeping with some "real world" data.

    Matched MeSH terms: Antiviral Agents/administration & dosage; Antiviral Agents/therapeutic use*
  15. Ravichandran V, Jain A, Kumar KS, Rajak H, Agrawal RK
    Chem Biol Drug Des, 2011 Sep;78(3):464-70.
    PMID: 21615706 DOI: 10.1111/j.1747-0285.2011.01149.x
    A series of 1,3-thiazolidin-4-one derivatives were prepared by the reaction of respective aromatic amine, aromatic aldehyde, and thioglycolic acid in dry benzene/toluene. The newly synthesized compounds were characterized on the basis of elemental analysis, IR, (1) HNMR, and mass spectra. The newly synthesized final compounds were evaluated for their in vitro antibacterial, antifungal, and anti-viral activities. Preliminary results indicated that some of the compounds demonstrated antibacterial activity in the range of 7-13 μg/mL, antifungal activity in the range of 13-17 μg/mL, comparable with the standard drugs, ciprofloxacin and fluconazole. Structure-activity relationship studies revealed that the nature of the substituents at the 2 and 3 positions of the thiazolidinone nucleus had a significant impact on the in vitro antimicrobial and anti-viral activity of these classes of agents.
    Matched MeSH terms: Antiviral Agents/chemical synthesis; Antiviral Agents/pharmacology*; Antiviral Agents/chemistry*
  16. Gadhwal AK, Ankit BS, Chahar C, Tantia P, Sirohi P, Agrawal RP
    J Assoc Physicians India, 2016 06;64(6):22-26.
    PMID: 27739263
    OBJECTIVE: Thrombocytopenia in dengue fever is a common and serious complication. However, no specific treatment is available for dengue fever induced thrombocytopenia. In few countries (Pakistan, Malaysia, Sri Lanka and other Asian countries) the leaf extract of Carica papaya has been effectively used for thrombocytopenia. So, the study is planned to access effect of Carica papaya leaf extract on platelet count in dengue fever patients.

    METHODS: All participants were randomised into two groups, study group and control group; the study group was given papaya leaf extract capsule of 500 mg once daily and routine supportive treatment for consecutive five days. The controls were given only routine supportive treatment. Daily complete blood counts, platelet counts and haematocrit level, liver function test, renal function test of both groups were observed.

    RESULTS: On the first day platelet count of study group and control group was (59.82±18.63, 61.06±20.03 thousands, p value 0.36). On the 2nd day platelet count of both study and control groups was not significantly different (61.67±19.46 and 59.93±19.52 thousands, p value 0.20) but on 3rd day platelet count of study group was significantly higher than control group (82.96±16.72, 66.45±17.36 thousands, p value < 0.01). On 4th and 5th day platelet count of study group (122.43±19.36 and 112.47±17.49 thousands respectively) was also significantly higher than the control group (88.75±21.65 and 102.59±19.35 thousands) (p value < 0.01). On 7th day platelet count of study group and control group were not significantly different (124.47±12.35 and 122.46±19.76 thousands respectively, p value 0.08). Average hospitalization period of study group v/s control group was 3.65±0.97 v/s 5.42±0.98 days (p value < 0.01). Average platelet transfusion requirement in study group was significantly less than control group (0.685 units per patient v/s 1.19 units per patient) (p value <0.01).

    CONCLUSIONS: It is concluded that Carica papaya leaf extract increases the platelet count in dengue fever without any side effect and prevents the complication of thrombocytopenia. So, it can be used in dengue fever with thrombocytopenia patients.
    Matched MeSH terms: Antiviral Agents/isolation & purification; Antiviral Agents/therapeutic use*
  17. Arumugam AC, Agharbaoui FE, Khazali AS, Yusof R, Abd Rahman N, Ahmad Fuaad AAH
    J Biomol Struct Dyn, 2020 Dec 31.
    PMID: 33382015 DOI: 10.1080/07391102.2020.1866074
    Dengue virus (DV) infection is one of the main public health concerns, affecting approximately 390 million people worldwide, as reported by the World Health Organization. Yet, there is no antiviral treatment for DV infection. Therefore, the development of potent and nontoxic anti-DV, as a complement for the existing treatment strategies, is urgently needed. Herein, we investigate a series of small peptides inhibitors of DV antiviral activity targeting the entry process as the promising strategy to block DV infection. The peptides were designed based on our previously reported peptide sequence, DN58opt (TWWCFYFCRRHHPFWFFYRHN), to identify minimal effective inhibitory sequence through molecular docking and dynamics studies. The in silico designed peptides were synthesized using conventional Fmoc solid-phase peptide synthesis chemistry, purified by RP-HPLC and characterized using LCMS. Later, they were screened for their antiviral activity. One of the peptides, AC 001, was able to reduce about 40% of DV plaque formation. This observation correlates well with the molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) analysis - AC 001 showed the most favorable binding affinity through 60 ns simulations. Pairwise residue decomposition analysis has revealed four key residues that contributed to the binding of these peptides into the DV2 E protein pocket. This work identifies the minimal peptide sequence required to inhibit DV replication and explains the behavior observed on an atomic level using computational study.Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Antiviral Agents
  18. Hassan MZ, Osman H, Ali MA, Ahsan MJ
    Eur J Med Chem, 2016 Nov 10;123:236-255.
    PMID: 27484512 DOI: 10.1016/j.ejmech.2016.07.056
    Coumarins have received a considerable attention in the last three decades as a lead structures for the discovery of orally bioavailable non-peptidic antiviral agents. A lot of structurally diverse coumarins analogues were found to display remarkable array of affinity with the different molecular targets for antiviral agents and slight modifications around the central motif result in pronounced changes in its antiviral spectrum. This manuscript thoroughly reviews the design, discovery and structure-activity relationship studies of the coumarin analogues as antiviral agents focusing mainly on lead optimization and its development into clinical candidates.
    Matched MeSH terms: Antiviral Agents/pharmacology*; Antiviral Agents/chemistry
  19. Ishaqui AA, Khan AH, Syed Sulaiman SA, Alsultan MT, Khan I, Al Nami H
    Pak J Pharm Sci, 2019 May;32(3 (Supplementary)):1225-1233.
    PMID: 31326884
    The aim of the study is to assess and compare the impact of antiviral drug alone and in combination with antibiotic for prevention of Influenza-A H1N1 induced acute kidney injury (AKI) in hospitalized patients. Hospitalized admitted patients with confirmed diagnosis of Influenza-A H1N1 infection were divided into two groups: group 1, which received antiviral (oseltamivir) drug alone and group 2, which received antiviral (oseltamivir) in combination with empirically prescribed antibiotic. Patients of both groups were assessed for incidences of AKI by two criteria i.e Acute Kidney Injury Network (AKIN) and RIFLE. A total of 329 patients (176 for group 1 and 153 for group 2) were enrolled. According to RIFLE criteria, 23(13%) of group 1 and 9(6%) patients of groups 2 were suffered from AKI with statistically significant difference (P<0.05). Also as per AKIN criteria, the incidence of AKI is statistically significantly difference (P<0.05) between both groups with 18(10%) patients and 6(4%) patients of group 1 and 2 respectively. Length of hospitalization was statistically less (P<0.05) in group 2 patients. The incidences of AKI in Influenza-A H1N1 treated with antiviral and antibiotic combination was statistically less as compared to patients who were given antiviral alone for treatment of influenza infection.
    Matched MeSH terms: Antiviral Agents
  20. Ishaqui AA, Khan AH, Syed Sulaiman SA, Alsultan MT, Khan I, Al Nami H
    Pak J Pharm Sci, 2019 May;32(3 (Supplementary)):1225-1233.
    PMID: 31303595
    The aim of the study is to assess and compare the impact of antiviral drug alone and in combination with antibiotic for prevention of Influenza-A H1N1 induced acute kidney injury (AKI) in hospitalized patients. Hospitalized admitted patients with confirmed diagnosis of Influenza-A H1N1 infection were divided into two groups: group 1, which received antiviral (oseltamivir) drug alone and group 2, which received antiviral (oseltamivir) in combination with empirically prescribed antibiotic. Patients of both groups were assessed for incidences of AKI by two criteria i.e Acute Kidney Injury Network (AKIN) and RIFLE. A total of 329 patients (176 for group 1 and 153 for group 2) were enrolled. According to RIFLE criteria, 23(13%) of group 1 and 9(6%) patients of groups 2 were suffered from AKI with statistically significant difference (P<0.05). Also as per AKIN criteria, the incidence of AKI is statistically significantly difference (P<0.05) between both groups with 18(10%) patients and 6(4%) patients of group 1 and 2 respectively. Length of hospitalization was statistically less (P<0.05) in group 2 patients. The incidences of AKI in Influenza-A H1N1 treated with antiviral and antibiotic combination was statistically less as compared to patients who were given antiviral alone for treatment of influenza infection.
    Matched MeSH terms: Antiviral Agents/therapeutic use*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links