Displaying publications 1 - 20 of 75 in total

Abstract:
Sort:
  1. Zainul R, Abd Azis N, Md Isa I, Hashim N, Ahmad MS, Saidin MI, et al.
    Sensors (Basel), 2019 Feb 22;19(4).
    PMID: 30813385 DOI: 10.3390/s19040941
    This paper presents the application of zinc/aluminium-layered double hydroxide-quinclorac (Zn/Al-LDH-QC) as a modifier of multiwalled carbon nanotubes (MWCNT) paste electrode for the determination of bisphenol A (BPA). The Zn/Al-LDH-QC/MWCNT morphology was examined by a transmission electron microscope and a scanning electron microscope. Electrochemical impedance spectroscopy was utilized to investigate the electrode interfacial properties. The electrochemical responses of the modified electrode towards BPA were thoroughly evaluated by using square-wave voltammetry technique. The electrode demonstrated three linear plots of BPA concentrations from 3.0 × 10-8⁻7.0 × 10-7 M (R² = 0.9876), 1.0 × 10-6⁻1.0 × 10-5 M (R² = 0.9836) and 3.0 × 10-5⁻3.0 × 10-4 M (R² = 0.9827) with a limit of detection of 4.4 × 10-9 M. The electrode also demonstrated good reproducibility and stability up to one month. The presence of several metal ions and organic did not affect the electrochemical response of BPA. The electrode is also applicable for BPA determination in baby bottle and mineral water samples with a range of recovery between 98.22% and 101.02%.
    Matched MeSH terms: Benzhydryl Compounds
  2. Zhang Z, Alomirah H, Cho HS, Li YF, Liao C, Minh TB, et al.
    Environ Sci Technol, 2011 Aug 15;45(16):7044-50.
    PMID: 21732633 DOI: 10.1021/es200976k
    Bisphenol A (BPA) is an industrial chemical used in the manufacture of polycarbonate plastics and epoxy resins. Due to the potential of this compound to disrupt normal endocrinal functions, concerns over human exposure to BPA have been raised. Although several studies have reported human exposure to BPA in Western nations, little is known about exposure in Asian countries. In this study, we determined total urinary BPA concentrations (free plus conjugated) in 296 urine samples (male/female: 153/143) collected from the general population in seven Asian countries, China, India, Japan, Korea, Kuwait, Malaysia, and Vietnam, using high-performance liquid chromatography (HPLC) tandem mass spectrometry (MS/MS). On the basis of urinary BPA concentrations, we estimated the total daily intake. The results indicated that BPA was detected in 94.3% of the samples analyzed, at concentrations ranging from <0.1 to 30.1 ng/mL. The geometric mean concentration of BPA for the entire sample set from seven countries was 1.20 ng/mL. The highest concentration of BPA was found in samples from Kuwait (median: 3.05 ng/mL, 2.45 μg/g creatinine), followed by Korea (2.17 ng/mL, 2.40 μg/g), India (1.71 ng/mL, 2.09 μg/g), Vietnam (1.18 ng/mL, 1.15 μg/g), China (1.10 ng/mL, 1.38 μg/g), Malaysia (1.06 ng/mL, 2.31 μg/g), and Japan (0.95 ng/mL, 0.58 μg/g). Among the five age groups studied (≤ 19, 20-29, 30-39, 40-49, and ≥ 50 years), the highest median concentration of BPA was found in urine samples from the age group of ≤ 19 years. There was no significant difference in BPA concentrations between genders (male and female) or domicile of residence (rural and urban). The estimated median daily intakes of BPA for the populations in Kuwait, Korea, India, China, Vietnam, Malaysia, and Japan were 5.19, 3.69, 2.90, 2.13, 2.01, 1.80, and 1.61 μg/day, respectively. The estimated daily intake of BPA in the seven Asian countries was significantly lower than the tolerable daily intake recommended by the U.S. Environmental Protection Agency. This is the first study to document the occurrence of and human exposure to BPA in several Asian countries.
    Matched MeSH terms: Benzhydryl Compounds
  3. Mohamad Zaid SS, Kassim NM, Othman S
    PMID: 26788107 DOI: 10.1155/2015/202874
    Bisphenol A (BPA) is an endocrine disrupting chemical (EDC) that can disrupt the normal functions of the reproductive system. The objective of the study is to investigate the potential protective effects of Tualang honey against BPA-induced uterine toxicity in pubertal rats. The rats were administered with BPA by oral gavage over a period of six weeks. Uterine toxicity in BPA-exposed rats was determined by the degree of the morphological abnormalities, increased lipid peroxidation, and dysregulated expression and distribution of ERα, ERβ, and C3 as compared to the control rats. Concurrent treatment of rats with BPA and Tualang honey significantly improved the uterine morphological abnormalities, reduced lipid peroxidation, and normalized ERα, ERβ, and C3 expressions and distribution. There were no abnormal changes observed in rats treated with Tualang honey alone, comparable with the control rats. In conclusion, Tualang honey has potential roles in protecting the uterus from BPA-induced toxicity, possibly accounted for by its phytochemical properties.
    Matched MeSH terms: Benzhydryl Compounds
  4. Wiraagni IA, Mohd MA, Rashid RA, Haron DEBM
    Biomed Res Int, 2020;2020:2581287.
    PMID: 32420332 DOI: 10.1155/2020/2581287
    In this study, a novel LC-MS/MS method was designed using a simple extraction procedure that was scientifically developed to capture the most relevant bisphenol A (BPA) analogues (BPB, BPF, BPS, and BPAF) and parabens (propylparaben, ethylparaben, butylparaben, and methylparaben) in human plasma. The LC-MS/MS method was validated using US FDA guidelines, and all validation requirements were satisfactory. This is the method that allows for the detection of plasma bisphenols and parabens in one run and is also the fastest BPA analogue and paraben detection technique for human plasma. The method was used to analyze samples from 150 healthy volunteers from Malaysia who enrolled in the study. No BPB was detected in any of the volunteers; however, 99.3% were positive for BPF. Only 24% and 10.7% of volunteers were positive for BPAF and BPS, respectively. A high percentage of volunteers were negative for propylparaben, ethylparaben, butylparaben, and methylparaben (56%, 68%, 86.7%, and 83.3%, respectively). These results suggest that persons in Malaysia are exposed to different BPA analogues and parabens, from both the daily use of products (cosmetic and plastic products) and the environment.
    Matched MeSH terms: Benzhydryl Compounds/blood*
  5. Sunasee S, Wong KT, Lee G, Pichiah S, Ibrahim S, Park C, et al.
    Environ Sci Pollut Res Int, 2017 Jun;24(18):15488-15499.
    PMID: 28512708 DOI: 10.1007/s11356-017-9124-0
    In this study, bisphenol A (BPA) removal by sonophotocatalysis coupled with commercially available titanium dioxide (TiO2, P25) was assessed in batch tests using energy-based advanced oxidation combining ultrasound (US) and ultraviolet (UV). The kinetics of BPA removal were systematically evaluated by changing operational parameters, such as US frequency and power, mechanical stirring speed, and temperature, but also comparison of single and coupled systems under the optimum US conditions (35 kHz, 50 W, 300 rpm stirring speed, and 20 °C). The combination of US/UV/P25 exhibited the highest BPA removal rate (28.0 × 10-3 min-1). In terms of the synergy index, the synergistic effect of sonophotocatalysis was found to be 2.2. This indicated that sonophotocatalysis has a considerably higher removal efficiency than sonocatalysis or photocatalysis. The removal of BPA was further investigated to identify BPA byproducts and intermediates using high-performance liquid chromatography-mass spectrometry. Five main intermediates were formed during sonophotocatalytic degradation, and complete removal of BPA and its intermediates was obtained after 3 h of operation. The degradation pathway of BPA by sonophotocatalysis was also elucidated.
    Matched MeSH terms: Benzhydryl Compounds/chemistry*
  6. Dzuhri S, Yuhana N, Khairulazfar M
    Sains Malaysiana, 2015;44:441-448.
    This study utilized the incorporation of nanoparticle filler into an epoxy system to study the effect of different nanosized
    montmorillonite (MMT) fillers on the thermal stability and mechanical properties of epoxy. The sample was prepared
    using diglycidyl ether of bisphenol A (DGEBA) with different surface treatments of montmorillonite filler by mechanical
    stirring. The results of thermal stability and mechanical properties of epoxy/clay system obtained from thermal gravimetric
    analyzer (TGA), universal testing machine (UTM) and scanning electron microscopy (SEM) were discussed. With the same
    amount of filler introduced into the system, different thermal stability of epoxy composite can be observed. Bentonite,
    which contained other contaminant components, can downgrade the enhanced properties of the filler.
    Matched MeSH terms: Benzhydryl Compounds
  7. Ahmad NA, Goh PS, Zakaria NAS, Naim R, Abdullah MS, Ismail AF, et al.
    Chemosphere, 2024 Apr;353:141108.
    PMID: 38423147 DOI: 10.1016/j.chemosphere.2024.141108
    Thin film composite (TFC) reverse osmosis (RO) membrane shows good promise for treating wastewater containing endocrine disrupting chemical (EDC) pollutants. The incorporation of functional materials with exceptional structural and physico-chemical properties offers opportunities for the membranes preparation with enhanced permselectivity and better antifouling properties. The present study aims to improve the EDC removal efficiency of TFC RO membrane using two-dimensional titania nanosheets (TNS). RO membrane was prepared by incorporating TNS in the dense layer of polyamide (PA) layer to form thin film nanocomposite (TFN) membrane. The TNS loading was varied and the influences on membrane morphology, surface hydrophilicity, surface charge, as well as water permeability and rejection of EDC were investigated. The results revealed that the inclusion of TNS in the membrane resulted in the increase of water permeability and EDC rejection. When treating the mixture of bisphenol A (BPA) and caffeine at 100 ppm feed concentration, the TFN membrane incorporated with 0.05% TNS achieved water permeability of 1.45 L/m2·h·bar, which was 38.6% higher than that of unmodified TFC membrane, while maintaining satisfactory rejection of >97%. The enhancement of water permeability for TFN membrane can be attributed to their hydrophilic surface and unique nanochannel structure created by the nanoscale interlayer spacing via staking of TiO2 nanosheets. Furthermore, the 0.05TFN membrane exhibited excellent fouling resistance towards BPA and caffeine pollutants with almost 100% flux recovery for three cycles of operations.
    Matched MeSH terms: Benzhydryl Compounds*
  8. Jin M, Dang J, Paudel YN, Wang X, Wang B, Wang L, et al.
    Sci Total Environ, 2021 Jul 01;776:145963.
    PMID: 33639463 DOI: 10.1016/j.scitotenv.2021.145963
    Fluorene-9-bisphenol (BHPF) is a bisphenol A substitute, which has been introduced for the production of so-called 'bisphenol A (BPA)-free' plastics. However, it has been reported that BHPF can enter living organisms through using commercial plastic bottles and cause adverse effects. To date, the majority of the toxicologic study of BHPF focused on investigating its doses above the toxicological threshold. Here, we studied the effects of BHPF on development, locomotion, neuron differentiation of the central nervous system (CNS), and the expression of genes in the hypothalamic-pituitary-thyroid (HPT) axis in zebrafish exposed to different doses of BHPF ranging from 1/5 of LD1 to LD50 (300, 500, 750, 1500, 3000, and 4500 nM). As a result, the possible hormetic effects of BHPF on regulating the HPT axis were revealed, in which low-dose BHPF positively affected the HPT axis while this regulation was inhibited as the dose increased. Underlying mechanism investigation suggested that BHPF disrupted myelination through affecting HPT axis including related genes expression and TH levels, thus causing neurotoxic characteristics. Collectively, this study provides the full understanding of the environmental impact of BHPF and its toxicity on living organisms, highlighting a substantial and generalized ongoing dose-response relationship with great implications for the usage and risk assessment of BHPF.
    Matched MeSH terms: Benzhydryl Compounds
  9. Farhana Mohamed Ghazali, Wan Lutfi Wan Johari
    MyJurnal
    This review paper briefly explains the meaning and characteristics of endocrine disrupting compounds (EDCs). EDCs comprise various types of natural and synthetic chemical compounds that can impede the reproductive action of the endocrine system in animals and humans. Further discussion is on bisphenol A (BPA), one of the examples of EDCs that is extensively used in industries nowadays. It acts as a monomer, which is desired in the production of polycarbonate plastics and epoxy resins. BPA later ends up in environmental compartments (air, water, sediment). In spite of this, BPA is not categorized as a persistent compound and it will be degraded either by photolysis or bacteria. It can only exist between three and five days in the environment. The concentration of BPA varies in different locations depending on the temperature, pH, source and time of sampling. BPA has been frequently debated due to its toxicity and carcinogenicity towards animals and humans. This paper also explains several extraction procedures and analytical methods concerning how to identify BPA in either aqueous or solid samples. However, an additional review is needed in respect of how to handle, reduce the level of BPA in the environment and understand the details concerning the existence of BPA.
    Matched MeSH terms: Benzhydryl Compounds
  10. Rasdi Z, Kamaludin R, Ab Rahim S, Syed Ahmad Fuad SB, Othman MHD, Siran R, et al.
    Sci Rep, 2020 Apr 03;10(1):5882.
    PMID: 32246001 DOI: 10.1038/s41598-020-62420-1
    This study aimed to examine the impact of BPA exposure on pregnancy and foetuses on cardiac tissues and the expression of cardiac microRNAs (miRNAs) related to heart development and diseases. Pregnancy is known to be the "critical windows" in determining the offspring physical and cells development in their life after birth. The increment of the risk of cardiovascular disease (CVD) in a later stage of life has been reported by few studies demonstrated from prenatal exposure of BPA. BPA has been shown to alter miRNAs expression profiles for organ development, regeneration and metabolic functions. These alterations have been associated with the risk of CVDs. However, the associations between pregnancy outcomes and miRNAs expression in cardiac of mother- and foetuses-exposed to BPA are still not entirely explored. In BPA-exposed pregnant rat groups, a significant weight gained was observed in comparison to control (p 
    Matched MeSH terms: Benzhydryl Compounds/adverse effects*
  11. Al Balawi AN, Yusof NA, Kamaruzaman S, Mohammad F, Wasoh H, Al Abbosh KF, et al.
    Biomed Res Int, 2019;2019:7064073.
    PMID: 30868072 DOI: 10.1155/2019/7064073
    The present study has synthesized poly(4,4'-cyclohexylidene bisphenol oxalate) by the condensation of oxalyl chloride with 4,4'-cyclohexylidene bisphenol, where its efficacy was tested for the solid-phase extraction of DNA. The synthesized polymer in the form of a white powder was characterized by FTIR, TGA-DTG, SEM, and BET analysis. The study utilized solid-phase application of the resulting polymer to extract DNA. The analysis of results provided the information that the extraction efficiency is a strong dependent of polymer amount and binding buffer type. Among the three types of buffers tested, the GuHCl buffer produced the most satisfactory results in terms of yield and efficiency of extraction. Moreover, the absorbance ratio of A260/A280 in all of the samples varied from 1.682 to 1.491, thereby confirming the capability of poly(4,4'-cyclohexylidene bisphenol oxalate) to elute pure DNA. The results demonstrated an increased DNA binding capacity with respect to increased percentage of the polymer. The study has concluded that poly(bisphenol Z oxalate) can be applied as one of the potential candidates for the high efficiency extraction of DNA by means of a simple, cost-effective, and environmentally friendly approach compared to the other traditional solid-phase methods.
    Matched MeSH terms: Benzhydryl Compounds/chemistry
  12. Wan Seman WJ, Kori N, Rajoo S, Othman H, Mohd Noor N, Wahab NA, et al.
    Diabetes Obes Metab, 2016 06;18(6):628-32.
    PMID: 26889911 DOI: 10.1111/dom.12649
    The aim of the present study was to assess the hypoglycaemia risk and safety of dapagliflozin compared with sulphonylurea during the fasting month of Ramadan. In this 12-week, randomized, open-label, two-arm parallel group study, 110 patients with type 2 diabetes who were receiving sulphonylurea and metformin were randomized either to receive 10 mg (n = 58) of dapagliflozin daily or to continue receiving sulphonylurea (n = 52). The primary outcome was to compare the effects of dapagliflozin and sulphonylurea on the proportions of patients with at least one episode of hypoglycaemia during Ramadan, as well as to assess the safety of dapagliflozin when used to treat patients observing Ramadan. A lower proportion of patients had reported or documented hypoglycaemia in the dapagliflozin group than in the sulphonylurea group: 4 (6.9%) versus 15 (28.8%); p = 0.002. The relative risk of any reported or documented hypoglycaemia in the 4th week of Ramadan was significantly lower in the dapagliflozin group: RR=0.24, 95%CI: 0.09, 0.68; p=0.002. No significance differences were observed between the two groups regarding postural hypotension (13.8 vs 3.8%; p = 0.210) or urinary tract infections (10.3 vs 3.8%; p = 0.277). In conclusion, fewer patients exhibited hypoglycaemia in the dapagliflozin group than in the sulphonylurea group.
    Matched MeSH terms: Benzhydryl Compounds/administration & dosage*; Benzhydryl Compounds/adverse effects
  13. J.Karim, M.A.M.Idrus, N.H.F.Hashim, M.Abdullah, S.S.Sharifuddin, M.F.Muhazeli, et al.
    MyJurnal
    Rivers as surface water in Malaysia are recipients of effluents and wastewater and yet it is important water source for daily uses of some villagers living along the river. Endocrine disruptors such as Bisphenol A (BPA) can be found in river due to continuous discharge into it. The objectives of this research is to find out the occurrence and concentration of BPA in Sungai Langat and also to see how water quality parameters such as temperature, pH, dissolved oxygen (DO), turbidity, Total Suspended Solid (TSS), Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD) and ammonia nitrogen (AN) affecting the concentration of BPA. 12 stations in total including upstream to downstream of Sungai Langat and also tributary of Sungai Langat. The instrument used to find out concentration of BPA is Triple Quadrupole LC/MS. The source of BPA are mainly industrial effluents and also direct domestic discharges. The water quality parameters that will affect concentration of BPA are Ammonia Nitrogen (AN), turbidity, Biochemical Oxygen Demand (BOD), Total Suspended Solid (TSS), and Chemical Oxygen Demand (COD), Dissolved Oxygen (DO). While pH and water temperature are also factors that will affect concentration of BPA but the significance is not shown in the analysis. It can be concluded that upstream of Sungai Langat has lower concentration of BPA than downstream.
    Matched MeSH terms: Benzhydryl Compounds
  14. Palanisamy UD, Ling LT, Manaharan T, Sivapalan V, Subramaniam T, Helme MH, et al.
    Int J Cosmet Sci, 2011 Jun;33(3):269-75.
    PMID: 21284663 DOI: 10.1111/j.1468-2494.2010.00637.x
    Syzygium aqueum, a species in the Myrtaceae family, commonly called the water jambu is native to Malaysia and Indonesia. It is well documented as a medicinal plant, and various parts of the tree have been used in traditional medicine, for instance as an antibiotic. In this study, we show S. aqueum leaf extracts to have a significant composition of phenolic compounds, protective activity against free radicals as well as low pro-oxidant capability. Its ethanolic extract, in particular, is characterized by its excellent radical scavenging activity of EC(50) of 133 μg mL(-1) 1,1-diphenyl-2-picryl-hydrazyl (DPPH), 65 μg mL(-1) 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) and 71 μg mL(-1) (Galvinoxyl), low pro-oxidant capabilities and a phenolic content of 585-670 mg GAE g(-1) extract. The extract also displayed other activities, deeming it an ideal cosmetic ingredient. A substantial tyrosinase inhibition activity with an IC(50) of about 60 μg mL(-1) was observed. In addition, the extract was also found to have anti-cellulite activity tested for its ability to cause 98% activation of lipolysis of adipocytes (fat cells) at a concentration of 25 μg mL(-1). In addition, the extract was not cytotoxic to Vero cell lines up to a concentration of 600 μg mL(-1). Although various parts of this plant have been used in traditional medicine, this is the first time it has been shown to have cosmeceutical properties. Therefore, the use of this extract, alone or in combination with other active principles, is of interest to the cosmetic industry.
    Matched MeSH terms: Benzhydryl Compounds/metabolism
  15. Sunasee S, Leong KH, Wong KT, Lee G, Pichiah S, Nah I, et al.
    Environ Sci Pollut Res Int, 2019 Jan;26(2):1082-1093.
    PMID: 28290089 DOI: 10.1007/s11356-017-8729-7
    Since bisphenol A (BPA) exhibits endocrine disrupting action and high toxicity in aqueous system, there are high demands to remove it completely. In this study, the BPA removal by sonophotocatalysis coupled with nano-structured graphitic carbon nitride (g-C3N4, GCN) was conducted with various batch tests using energy-based advanced oxidation process (AOP) based on ultrasound (US) and visible light (Vis-L). Results of batch tests indicated that GCN-based sonophotocatalysis (Vis-L/US) had higher rate constants than other AOPs and especially two times higher degradation rate than TiO2-based Vis-L/US. This result infers that GCN is effective in the catalytic activity in Vis-L/US since its surface can be activated by Vis-L to transport electrons from valence band (VB) for utilizing holes (h+VB) in the removal of BPA. In addition, US irradiation exfoliated the GCN effectively. The formation of BPA intermediates was investigated in detail by using high-performance liquid chromatography-mass spectrometry (HPLC/MS). The possible degradation pathway of BPA was proposed.
    Matched MeSH terms: Benzhydryl Compounds/chemistry*
  16. Rosano G, Quek D, Martínez F
    Card Fail Rev, 2020 Mar;6:e31.
    PMID: 33294215 DOI: 10.15420/cfr.2020.23
    Heart failure is a shared chronic phase of many cardiac diseases and its prevalence is on the rise globally. Previous large-scale cardiovascular outcomes trials of sodium.glucose co-transporter 2 (SGLT2) inhibitors in patients with type 2 diabetes (T2D) have suggested that these agents may help to prevent primary and secondary hospitalisation due to heart failure and cardiovascular death in these patients. Data from the Study to Evaluate the Effect of Dapagliflozin on the Incidence of Worsening Heart Failure or Cardiovascular Death in Patients With Chronic Heart Failure (DAPA-HF) and Empagliflozin Outcome Trial in Patients With Chronic Heart Failure With Reduced Ejection Fraction (EMPEROR-Reduced) have demonstrated the positive clinical impact of SGLT2 inhibition in patients with heart failure with reduced ejection fraction both with and without T2D. These data have led to the approval of dapagliflozin for the treatment of patients with heart failure with reduced ejection fraction, irrespective of T2D status. This article reviews the latest data reported from the DAPA-HF and EMPEROR-Reduced trials and their clinical implications for the treatment of patients with heart failure.
    Matched MeSH terms: Benzhydryl Compounds
  17. Santhi VA, Hairin T, Mustafa AM
    Chemosphere, 2012 Mar;86(10):1066-71.
    PMID: 22197311 DOI: 10.1016/j.chemosphere.2011.11.063
    A study to assess the level of organochlorine pesticides (OCPs) and bisphenol A (BPA) in edible marine biota collected from coastal waters of Malaysia was conducted using GC-MS and SPE extraction. An analytical method was developed and validated to measure the level of 15 OCPs and BPA simultaneously from five selected marine species. It was observed that some samples had low levels of p,p'-DDE, p,p'-DDT and p,p'- DDD ranging from 0.50 ng g(-1) to 22.49 ng g(-1) dry weight (d.w) but significantly elevated level of endosulfan I was detected in a stingray sample at 2880 ng g(-1) d.w. BPA was detected in 31 out of 57 samples with concentration ranging from below quantification level (LOQ: 3 ng g(-1)) to 729 ng g(-1) d.w. The presence of OCPs is most likely from past use although there is also indication of illegal use in recent times. The study also reveals that BPA is more widely distributed in coastal species caught off the coast of the most developed state. The potential health risk from dietary intakes of OCPs and BPA from the analysed fish species was negligible.
    Matched MeSH terms: Benzhydryl Compounds
  18. Choong CE, Ibrahim S, Yoon Y, Jang M
    Ecotoxicol Environ Saf, 2018 Feb;148:142-151.
    PMID: 29040822 DOI: 10.1016/j.ecoenv.2017.10.025
    In this work, palm shell waste powder activated carbon coated by magnesium silicate (PPAC-MS) were synthesized by the impregnation of magnesium silicate (MgSiO3) using economical material (silicon dioxide powder) via mild hydrothermal approach for the first time. As an effective adsorbent, PPAC-MS simultaneously removes BPA and Pb(II) in single and binary mode. Surprisingly, PPAC-MS exhibited a homogeneous thin plate mesh-like structure, as well as meso- and macropores with a high surface area of 772.1m2g-1. Due to its specific morphological characteristics, PPAC-MS had adsorption capacities of Pb(II) as high as 419.9mgg-1 and 408.8mgg-1 in single mode and binary mode based on Freudliuch isotherm model while those for BPA by PPAC-MS were 168.4mgg-1 and 254.7mgg-1 for single mode and binary modes corresponding to Langmuir isotherm model. Experiment results also indicated that the synergistic removal of BPA occurred because the precipitation process of Pb(II) leads to the co-precipitation of BPA with Pb(OH)2 compound. PPAC-MS showed a good reusability for 5 regeneration cycles using Mg(II) solution followed by thermal treatment. Overall, PPAC-MS has a high potential in the treatment process for wastewater containing both toxic heavy metals and emerging pollutants due to its high sorption capacities and reusability.
    Matched MeSH terms: Benzhydryl Compounds/analysis*
  19. Muhamad MS, Salim MR, Lau WJ, Hadibarata T, Yusop Z
    Environ Technol, 2016 Aug;37(15):1959-69.
    PMID: 26729509 DOI: 10.1080/09593330.2015.1137359
    Polyethersulphone (PES) membranes blended with silicon dioxide (SiO2) nanoparticles were prepared via a dry-jet wet spinning technique for the removal of bisphenol A (BPA) by adsorption mechanism. The morphology of SiO2 nanoparticles was analysed using a transmission electron microscopy and particle size distribution was also analysed. The prepared membranes were characterized by several techniques including field emission scanning electron microscopy, Fourier transform infrared spectroscopy and water contact angle. The adsorption mechanism of membrane towards BPA was evaluated by batch experiments and kinetic model. The influence of natural organic matter (NOM) in feed water on membrane BPA removal was also studied by filtration experiments. Results showed that BPA adsorption capacity as high as 53 µg/g could be achieved by the PES membrane incorporated with 2 wt% SiO2 in which the adsorption mechanism was in accordance with the pseudo-second-order kinetic model. The intraparticles diffusion model suggested that the rate limiting factor of membrane adsorption mechanism is governed by the diffusion of BPA into the membrane pores. The presence of 10 ppm NOM has reported to negatively reduce BPA removal by 24%, as it tended to compete with BPA for membrane adsorption. This work has demonstrated that PES-SiO2 membrane has the potential to eliminate trace amount of BPA from water source containing NOM.
    Matched MeSH terms: Benzhydryl Compounds/analysis; Benzhydryl Compounds/isolation & purification*; Benzhydryl Compounds/chemistry
  20. Aziz A, Agamuthu P, Fauziah SH
    Waste Manag Res, 2018 Oct;36(10):975-984.
    PMID: 30058954 DOI: 10.1177/0734242X18790360
    Landfill leachate contain persistent organic pollutants (POPs), namely, bisphenol A (BPA) and 2,4-Di-tert-butylphenol, which exceed the permissible limits. Thus, such landfill leachate must be treated before it is released into natural water courses. This article reports on investigations about the removal efficiency of POPs such as BPA and 2,4-Di-tert-butylphenol from leachate using locust bean gum (LBG) in comparison with alum. The vital experimental variables (pH, coagulant dosage and stirring speed) were optimised by applying response surface methodology equipped with the Box-Behnken design to reduce the POPs from leachate. An empirical quadratic polynomial model could accurately model the surface response with R2 values of 0.928 and 0.954 to reduce BPA and 2,4-Di-tert-butylphenol, respectively. Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) were performed on treated flocs for further understanding. FTIR analysis revealed that the bridging of pollutant particles could be due to the explicit adsorption and bridging via hydrogen bonding of a coagulation mechanism. SEM micrographs indicated that the flocs produced by LBG have a rough cloudy surface and numerous micro-pores compared with alum, which enabled the capture and removal of POPs from leachate. Results showed that the reduction efficiencies for BPA and 2,4-Di-tert-butylphenol at pH 7.5 were 76% and 84% at LBG dosage of 500 mg·L-1 and 400 mg·L-1, respectively. Coagulant dosage and pH variation have a significant effect on POPs reduction in leachate. Coagulation/flocculation using LBG could be applied for POPs reduction in leachate as a pre-treatment prior to advanced treatments.
    Matched MeSH terms: Benzhydryl Compounds
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links