Displaying publications 1 - 20 of 1524 in total

Abstract:
Sort:
  1. Özkan O, Saleem F, Sharif A
    Environ Sci Pollut Res Int, 2024 Jan;31(4):5610-5624.
    PMID: 38123776 DOI: 10.1007/s11356-023-31233-w
    The determinants of environmental degradation have been investigated many times by utilizing carbon dioxide emissions and/or ecological footprint. However, these traditional environmental degradation indicators do not consider the supply side of environmental problems. Therefore, this study focuses on the dynamic influence of financial development, energy efficiency, economic growth, and technological innovation on environmental degradation in India through the load capacity factor, including both the supply and demand sides of environmental problems. For that purpose, the recently developed dynamically simulated autoregressive distributed lag (ARDL) method is employed using the annual time-series data extending from 1980-2020. The dynamically simulated ARDL results demonstrate that financial development, economic growth, and technological innovation have a dynamic adverse impact on the load capacity factor, whereas energy efficiency has a positive dynamic influence on environmental quality. In addition, the results support the validity of the environmental Kuznets curve hypothesis as the negative effect of economic growth on environmental quality decreases over time. Based on the study findings, policy recommendations are provided for India. Finally, this study utilizing load capacity factor as an indicator for environmental quality will provide new topics in exploring the determinants of environmental degradation.
    Matched MeSH terms: Carbon Dioxide/analysis
  2. Çitil M, İlbasmış M, Olanrewaju VO, Barut A, Karaoğlan S, Ali M
    Environ Sci Pollut Res Int, 2023 Apr;30(18):53962-53976.
    PMID: 36869955 DOI: 10.1007/s11356-023-26016-2
    As the negative repercussions of environmental devastation, such as global warming and climate change, become more apparent, environmental consciousness is growing across the world, forcing nations to take steps to mitigate the damage. Thus, the current study assesses the effect of green investments, institutional quality, and political stability on air quality in the G-20 countries for the period 2004-2020. The stationarity of the variables was examined with the Pesaran (J Appl Econ 22:265-312, 2007) CADF, the long-term relationship between the variables by Westerlund (Oxf Bull Econ Stat 69(6):709-748, 2007), the long-run relationship coefficients with the MMQR method proposed by Machado and Silva (Econ 213(1):145-173, 2019), and the causality relationship between the variables by Dumitrescu and Hurlin (Econ Model 29(4):1450-1460, 2012) panel causality. The study findings revealed that green finance investments, institutional quality and political stability increased the air quality, while total output and energy consumption decreased air quality. The panel causality reveals a unidirectional causality from green finance investments, total output, energy consumption and political stability to air quality, and a bidirectional causality between institutional quality and air quality. According to these findings, it has been found that in the long term, green finance investments, total output, energy consumption, political stability, and institutional quality affect air quality. Based on these results, policies implications were proposed.
    Matched MeSH terms: Carbon Dioxide/analysis
  3. van der Werf GR, Dempewolf J, Trigg SN, Randerson JT, Kasibhatla PS, Giglio L, et al.
    Proc Natl Acad Sci U S A, 2008 Dec 23;105(51):20350-5.
    PMID: 19075224 DOI: 10.1073/pnas.0803375105
    Drainage of peatlands and deforestation have led to large-scale fires in equatorial Asia, affecting regional air quality and global concentrations of greenhouse gases. Here we used several sources of satellite data with biogeochemical and atmospheric modeling to better understand and constrain fire emissions from Indonesia, Malaysia, and Papua New Guinea during 2000-2006. We found that average fire emissions from this region [128 +/- 51 (1sigma) Tg carbon (C) year(-1), T = 10(12)] were comparable to fossil fuel emissions. In Borneo, carbon emissions from fires were highly variable, fluxes during the moderate 2006 El Niño more than 30 times greater than those during the 2000 La Niña (and with a 2000-2006 mean of 74 +/- 33 Tg C yr(-1)). Higher rates of forest loss and larger areas of peatland becoming vulnerable to fire in drought years caused a strong nonlinear relation between drought and fire emissions in southern Borneo. Fire emissions from Sumatra showed a positive linear trend, increasing at a rate of 8 Tg C year(-2) (approximately doubling during 2000-2006). These results highlight the importance of including deforestation in future climate agreements. They also imply that land manager responses to expected shifts in tropical precipitation may critically determine the strength of climate-carbon cycle feedbacks during the 21st century.
    Matched MeSH terms: Carbon Monoxide/analysis
  4. de Toledo TA, da Costa RC, Al-Maqtari HM, Jamalis J, Pizani PS
    PMID: 28259100 DOI: 10.1016/j.saa.2017.02.051
    The heterocyclic chalcone containing thiophene ring 1-(4-chlorophenyl)-3-(2-thienyl)prop-2-en-1-one, C13H9ClOS was synthesized and investigated using experimental techniques such as nuclear magnetic resonance (1H and 13C NMR), Fourier transform infrared spectroscopy (FTIR) at room temperature, differential scanning calorimeter (DSC) from room temperature to 500K and Raman scattering at the temperature range 10-413K in order to study its structure and vibrational properties as well as stability and possible phase transition. Density functional theory (DFT) calculations were performed to determine the vibrational spectrum viewing to improve the knowledge of the material properties. A reasonable agreement was observed between theoretical and experimental Raman spectrum taken at 10K since anharmonic effects of the molecular motion is reduced at low temperatures, leading to a more comprehensive assignment of the vibrational modes. Increasing the temperature up to 393K, was observed the typical phonon anharmonicity behavior associated to changes in the Raman line intensities, line-widths and red-shift, in special in the external mode region, whereas the internal modes region remains almost unchanged due its strong chemical bonds. Furthermore, C13H9ClOS goes to melting phase transition in the temperature range 393-403K and then sublimates in the temperature range 403-413K. This is denounced by the disappearance of the external modes and the absence of internal modes in the Raman spectra, in accordance with DSC curve. The enthalpy (ΔH) obtained from the integration of the endothermic peak in DSC curve centered at 397K is founded to be 121.5J/g.
    Matched MeSH terms: Carbon-13 Magnetic Resonance Spectroscopy
  5. Zuraida, A., Yusliza, Y., Anuar, H., Mohd Khairul Muhaimin, R.
    MyJurnal
    Starch is a biodegradable polymer produced in abundance from many renewable resources. This study examined the influence of citric acid (0-40% w/wt%) ) and water (0-40% w/wt%) as secondary additive and glycerol as plasticizer on the mechanical properties of bio-plastic starch (BPS) from Malaysian sago. The CA content varies from 0 to 40 w/wt% while water was also varied from 0 to 40 w/wt%. FT-IR spectroscopy showed that acid citric improve the properties of BPS and water give negative effects to the carbon hydrogenbond. It is obvious that the addition of the CA at 30 wt/wt% improve the mechanical property of BPS to more than 40% compare to the addition of water.
    Matched MeSH terms: Carbon
  6. Zulkifly SB, Graham JM, Young EB, Mayer RJ, Piotrowski MJ, Smith I, et al.
    J Phycol, 2013 Feb;49(1):1-17.
    PMID: 27008383 DOI: 10.1111/jpy.12025
    The green algal genus Cladophora forms conspicuous nearshore populations in marine and freshwaters worldwide, commonly dominating peri-phyton communities. As the result of human activities, including the nutrient pollution of nearshore waters, Cladophora-dominated periphyton can form nuisance blooms. On the other hand, Cladophora has ecological functions that are beneficial, but less well appreciated. For example, Cladophora has previously been characterized as an ecological engineer because its complex structure fosters functional and taxonomic diversity of benthic microfauna. Here, we review classic and recent literature concerning taxonomy, cell biology, morphology, reproductive biology, and ecology of the genus Cladophora, to examine how this alga functions to modify habitats and influence littoral biogeochemistry. We review the evidence that Cladophora supports large, diverse populations of microalgal and bacterial epiphytes that influence the cycling of carbon and other key elements, and that the high production of cellulose and hydrocarbons by Cladophora-dominated periphyton has the potential for diverse technological applications, including wastewater remediation coupled to renewable biofuel production. We postulate that well-known aspects of Cladophora morphology, hydrodynamically stable and perennial holdfasts, distinctively branched architecture, unusually large cell and sporangial size and robust cell wall construction, are major factors contributing to the multiple roles of this organism as an ecological engineer.
    Matched MeSH terms: Carbon; Hydrocarbons
  7. Zulkefli NN, Masdar MS, Wan Isahak WNR, Md Jahim J, Md Rejab SA, Chien Lye C
    PLoS One, 2019;14(2):e0211713.
    PMID: 30753209 DOI: 10.1371/journal.pone.0211713
    Adsorption technology has led to the development of promising techniques to purify biogas, i.e., biomethane or biohydrogen. Such techniques mainly depend on the adsorbent ability and operating parameters. This research focused on adsorption technology for upgrading biogas technique by developing a novel adsorbent. The commercial coconut shell activated carbon (CAC) and two types of gases (H2S/N2 and H2S/N2/CO2) were used. CAC was modified by copper sulfate (CuSO4), zinc acetate (ZnAc2), potassium hydroxide (KOH), potassium iodide (KI), and sodium carbonate (Na2CO3) on their surface to increase the selectivity of H2S removal. Commercial H2S adsorbents were soaked in 7 wt.% of impregnated solution for 30 min before drying at 120°C for 24 h. The synthesized adsorbent's physical and chemical properties, including surface morphology, porosity, and structures, were characterized by SEM-EDX, FTIR, XRD, TGA, and BET analyses. For real applications, the modified adsorbents were used in a real-time 0.85 L single-column adsorber unit. The operating parameters for the H2S adsorption in the adsorber unit varied in L/D ratio (0.5-2.5) and feed flow rate (1.5-5.5 L/min) where, also equivalent with a gas hourly space velocity, GHSV (212.4-780.0 hour-1) used. The performances of H2S adsorption were then compared with those of the best adsorbent that can be used for further investigation. Characterization results revealed that the impregnated solution homogeneously covered the adsorbent surface, morphology, and properties (i.e., crystallinity and surface area). BET analysis further shows that the modified adsorbents surface area decreased by up to 96%. Hence, ZnAc2-CAC clarify as the best adsorption capacity ranging within 1.3-1.7 mg H2S/g, whereby the studied extended to adsorption-desorption cycle.
    Matched MeSH terms: Carbon Dioxide
  8. Zulfakar MH, Pubadi H, Ibrahim SI, Hairul NM
    J Oleo Sci, 2024;73(3):293-310.
    PMID: 38432994 DOI: 10.5650/jos.ess23204
    Medium-chain triacylglycerol (MCT) is a type of triacylglycerol that has six or seven to twelve carbon chains. It consists of three molecules of fatty acids attached to one molecule of glycerol. Drug delivery system (DDS) is defined as a formulation to distribute drugs into the human body. The unique properties of MCTs have garnered interest in using them as excipients in DDS. Even though there are many significant effects attributed to the use of MCTs, especially in modulating the rate of drug delivery in various DDS, they are all limited and intermittent. This warrants a detailed summary of the previous studies on the use of MCTs in various DDS. Therefore, this review focuses on presenting a systematic review of previous studies on the use of MCTs in the last six years and explores the types and effects of MCTs on DDS that employ various types of delivery routes. A systematic search through PubMed, Science Direct and Scopus was performed. Keywords like "medium-chain triglycerides", "medium-chain fatty acids", "medium-chain triglycerides and their fractions", "medium-chain fatty acids and their fractions", "MCTs", "MCFA", "in drug delivery", "in drug delivery system" and their combinations were used. The synonyms of the words were also used to extend the search. A total of 17 articles that met the inclusion criteria were identified. Findings from this review have identified the several MCTs and their fractions used in DDS that employed the oral/enteral, topical, transdermal, parenteral, and pulmonary routes of drug delivery. The review also highlights that the usage of MCTs in DDS results in a better transportation of drugs into the human body.
    Matched MeSH terms: Carbon*
  9. Zulfadli Ahmad, Saifuddin Normanbhay
    MyJurnal
    This paper reviews the literature on uranium contamination and the removal of uranium from wastewater stemming from mining activities and nuclear power generation. After reviewing the applications of uranium in power generation, military, industry and scientific, this review discusses uranium and rare earth elements in wastewaters and the toxicity of uranium on aquatic life and humans. Further, various methods of removal of heavy metal contaminants including uranium are reviewed with special focus on the adsorption process and carbon nanotubes as a superior adsorbent.
    Matched MeSH terms: Nanotubes, Carbon
  10. Zuleta D, Arellano G, McMahon SM, Aguilar S, Bunyavejchewin S, Castaño N, et al.
    Glob Chang Biol, 2023 Jun;29(12):3409-3420.
    PMID: 36938951 DOI: 10.1111/gcb.16687
    Accurate estimates of forest biomass stocks and fluxes are needed to quantify global carbon budgets and assess the response of forests to climate change. However, most forest inventories consider tree mortality as the only aboveground biomass (AGB) loss without accounting for losses via damage to living trees: branchfall, trunk breakage, and wood decay. Here, we use ~151,000 annual records of tree survival and structural completeness to compare AGB loss via damage to living trees to total AGB loss (mortality + damage) in seven tropical forests widely distributed across environmental conditions. We find that 42% (3.62 Mg ha-1  year-1 ; 95% confidence interval [CI] 2.36-5.25) of total AGB loss (8.72 Mg ha-1  year-1 ; CI 5.57-12.86) is due to damage to living trees. Total AGB loss was highly variable among forests, but these differences were mainly caused by site variability in damage-related AGB losses rather than by mortality-related AGB losses. We show that conventional forest inventories overestimate stand-level AGB stocks by 4% (1%-17% range across forests) because assume structurally complete trees, underestimate total AGB loss by 29% (6%-57% range across forests) due to overlooked damage-related AGB losses, and overestimate AGB loss via mortality by 22% (7%-80% range across forests) because of the assumption that trees are undamaged before dying. Our results indicate that forest carbon fluxes are higher than previously thought. Damage on living trees is an underappreciated component of the forest carbon cycle that is likely to become even more important as the frequency and severity of forest disturbances increase.
    Matched MeSH terms: Carbon
  11. Zukerman-Schpector J, Prado KE, Name LL, Cella R, Jotani MM, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2017 Jun 01;73(Pt 6):918-924.
    PMID: 28638659 DOI: 10.1107/S2056989017007605
    The title organoselenium compound, C19H13ClO3Se {systematic name: 2-[(4-chloro-phen-yl)selan-yl]-2H,3H,4H,5H,6H-naphtho-[1,2-b]pyran-5,6-dione}, has the substituted 2-pyranyl ring in a half-chair conformation with the methyl-ene-C atom bound to the methine-C atom being the flap atom. The dihedral angle between the two aromatic regions of the mol-ecule is 9.96 (9)° and indicates a step-like conformation. An intra-molecular Se⋯O inter-action of 2.8122 (13) Å is noted. In the crystal, π-π contacts between naphthyl rings [inter-centroid distance = 3.7213 (12) Å] and between naphthyl and chloro-benzene rings [inter-centroid distance = 3.7715 (13) Å], along with C-Cl⋯π(chloro-benzene) contacts, lead to supra-molecular layers parallel to the ab plane, which are connected into a three-dimensional architecture via methyl-ene-C-H⋯O(carbon-yl) inter-actions. The contributions of these and other weak contacts to the Hirshfeld surface is described.
    Matched MeSH terms: Carbon
  12. Zubbri NA, Mohamed AR, Kamiuchi N, Mohammadi M
    Environ Sci Pollut Res Int, 2020 Apr;27(11):11809-11829.
    PMID: 31975005 DOI: 10.1007/s11356-020-07734-3
    This work is scrutinizing the development of metallized biochar as a low-cost bio-sorbent for low temperature CO2 capture with high adsorption capacity. Accordingly, single-step pyrolysis process was carried out in order to synthesize biochar from rambutan peel (RP) at different temperatures. The biochar product was then subjected to wet impregnation with several magnesium salts including magnesium nitrate, magnesium sulphate, magnesium chloride and magnesium acetate which then subsequently heat-treated with N2. The impregnation of magnesium into the biochar structure improved the CO2 capture performance in the sequence of magnesium nitrate > magnesium sulphate > magnesium chloride > magnesium acetate. There is an enhancement in CO2 adsorption capacity of metallized biochar (76.80 mg g-1) compare with pristine biochar (68.74 mg g-1). It can be justified by the synergetic influences of physicochemical characteristics. Gas selectivity study verified the high affinity of biochar for CO2 capture compared with other gases such as air, methane, and nitrogen. This investigation also revealed a stable performance of the metallized biochar in 25 cycles of CO2 adsorption and desorption. Avrami kinetic model accurately predicted the dynamic CO2 adsorption performance for pristine and metallized biochar.
    Matched MeSH terms: Carbon Dioxide*
  13. Zou X, Azam M, Islam T, Zaman K
    Environ Sci Pollut Res Int, 2016 Feb;23(4):3641-57.
    PMID: 26493298 DOI: 10.1007/s11356-015-5591-3
    The objective of the study is to examine the impact of environmental indicators and air pollution on "health" and "wealth" for the low-income countries. The study used a number of promising variables including arable land, fossil fuel energy consumption, population density, and carbon dioxide emissions that simultaneously affect the health (i.e., health expenditures per capita) and wealth (i.e., GDP per capita) of the low-income countries. The general representation for low-income countries has shown by aggregate data that consist of 39 observations from the period of 1975-2013. The study decomposes the data set from different econometric tests for managing robust inferences. The study uses temporal forecasting for the health and wealth model by a vector error correction model (VECM) and an innovation accounting technique. The results show that environment and air pollution is the menace for low-income countries' health and wealth. Among environmental indicators, arable land has the largest variance to affect health and wealth for the next 10-year period, while air pollution exerts the least contribution to change health and wealth of low-income countries. These results indicate the prevalence of war situation, where environment and air pollution become visible like "gun" and "bullet" for low-income countries. There are required sound and effective macroeconomic policies to combat with the environmental evils that affect the health and wealth of the low-income countries.
    Matched MeSH terms: Carbon Dioxide/analysis*
  14. Zin KM, Effendi Halmi MI, Abd Gani SS, Zaidan UH, Samsuri AW, Abd Shukor MY
    Biomed Res Int, 2020;2020:2734135.
    PMID: 32149095 DOI: 10.1155/2020/2734135
    The release of wastewater from textile dyeing industrial sectors is a huge concern with regard to pollution as the treatment of these waters is truly a challenging process. Hence, this study investigates the triazo bond Direct Blue 71 (DB71) dye decolorization and degradation dye by a mixed bacterial culture in the deficiency source of carbon and nitrogen. The metagenomics analysis found that the microbial community consists of a major bacterial group of Acinetobacter (30%), Comamonas (11%), Aeromonadaceae (10%), Pseudomonas (10%), Flavobacterium (8%), Porphyromonadaceae (6%), and Enterobacteriaceae (4%). The richest phylum includes Proteobacteria (78.61%), followed by Bacteroidetes (14.48%) and Firmicutes (3.08%). The decolorization process optimization was effectively done by using response surface methodology (RSM) and artificial neural network (ANN). The experimental variables of dye concentration, yeast extract, and pH show a significant effect on DB71 dye decolorization percentage. Over a comparative scale, the ANN model has higher prediction and accuracy in the fitness compared to the RSM model proven by approximated R2 and AAD values. The results acquired signify an efficient decolorization of DB71 dye by a mixed bacterial culture.
    Matched MeSH terms: Carbon/metabolism
  15. Zheng X, Liao Y, Wang J, Hu S, Rudramurthy GR, Swamy MK, et al.
    PMID: 30524484 DOI: 10.1155/2018/9691085
    Microglial cells, upon hyperactivation, produce proinflammatory cytokines and other oxidative stress mediators causing neuroinflammation, which is associated with the progress of many neurodegenerative diseases. Suppressing the microglial activation has hence been used as an approach for treating such diseases. In this study, the antineuroinflammatory effect of simvastatin was examined in lipopolysaccharide (LPS)-activated rat C6 glioma cells. The cell proliferation and cytotoxic effect of LPS and simvastatin on C6 glioma cells was evaluated by (MTT) assay. Neuroinflammation was induced in differentiated cell lines by treatment with 3.125 μg/mL of LPS for 12 h. Upon induction, the cell lines were treated with different concentrations (3.125, 6.25, 12.5, 25, 50, 100 μM) of simvastatin and incubated in a humidified CO2 incubator for 24 to 48 h. The optimum concentrations of LPS and simvastatin were found to be 3.125 μg/mL and 25 μM, respectively, with a cell viability of more than 90% at 24 h postincubation. Furthermore, proinflammatory marker expression was analyzed by flow cytometry and showed a decrease in interferon-γ, interleukin 6, nuclear factor-κB p65, and tumor necrosis factor-α in simvastatin-treated and LPS-induced neuroinflammatory cells, and the mean fluorescent values were found to be 21.75 ± 0.76, 20.9 ± 1.90, 19.72 ± 1.29, and 16.82 ± 0.97, respectively, as compared to the untreated cells. Thus, we show that simvastatin has the potential to regulate the anti-inflammatory response in microglial cells upon LPS challenge. Hence, simvastatin can be employed as a potent anti-inflammatory drug against neuroinflammatory diseases and neurodegenerative disorders.
    Matched MeSH terms: Carbon Dioxide
  16. Zhao X, Zhu M, Guo X, Wang H, Sui B, Zhao L
    Environ Sci Pollut Res Int, 2019 May;26(14):13746-13754.
    PMID: 30008165 DOI: 10.1007/s11356-018-2270-1
    The soil organic carbon accumulation in soda saline-alkaline soil and the humus composition changes with application of aluminum sulfate and rice straw were investigated by the controlled simulative experiments in laboratory. For evaluating the amelioration effect, organic carbon content and humus composition in soda saline-alkaline soil were investigated with different application amounts of rice straw and aluminum sulfate. Potassium dichromate oxidation titration (exogenous heat) method and Kumada method were used to analyze the contents of organic carbon and humus composition, respectively. The transformation of soil organic matter in the saline-alkali soil during the amelioration has been clarified in this paper. The results demonstrated that the contents of soil organic carbon were significantly increased (13-92%) with different application amounts of rice straw and aluminum sulfate. The contents of free fraction and combined fraction of humus and their compositions (humic acid and fulvic acid) were increased with different application amounts of rice straw. The free fraction of humus was increased more dramatically. Due to aluminum sulfate application, free fraction of humus and humic acid (HA) was transformed to combined fraction partially. Free HA was changed to be P type with rice straw application. With aluminum sulfate application, free form of HA was changed from type P to type Rp. For rice straw application, combined HA only was transferred within the area of type A. Aluminum sulfate addition had no significant effect on the type of combined form of HA. With the same amount of rice straw application, the contents of soil organic carbon were increased by increasing the amount of aluminum sulfate application. Both rice straw and aluminum sulfate applications could reduce the humification degree of free and combined fraction of HA. According to the types of HA, it could be concluded that humus became younger and renewed due to the application of rice straw and aluminum sulfate.
    Matched MeSH terms: Carbon/analysis*
  17. Zhao X, Gopinath SCB, Zhao W
    Biotechnol Appl Biochem, 2023 Apr;70(2):502-508.
    PMID: 35661417 DOI: 10.1002/bab.2372
    Abdominal aortic aneurysm (AAA), a medical complication, occurs when the aortic area becomes swollen and very large. It is mandatory to identify AAA to avoid the breakdown of aneurysms. C-reactive protein (CRP) has been recognized as one of the biomarkers for identifying AAA due to the possibility of CRP produced in vascular tissue, which contributes to the formation of an aneurysm, and it is elevated in patients with a ruptured AAA. This research work was designed to develop an immunosensor on a multiwalled carbon nanotube (MWCNT)-modified surface to quantify the CRP level. Anti-CRP specificity was constructed on the MWCNT surface through a silane linker to interact with CRP. The detection limit of CRP was calculated as 100 pM with an R2 (determination coefficient) value of 0.9855 (y = 2.3446x - 1.9922) on a linear regression graph. The dose-dependent linear pattern was registered from 200 to 3000 pM and attained the saturation level during binding at 3000 pM. Furthermore, serum-spiked CRP showed a clear increase in the current response, proving the specific recognition of CRP in biological samples. This designed biosensor identifies CRP at a lower level and can help diagnose AAA.
    Matched MeSH terms: Nanotubes, Carbon*
  18. Zhao J, Rahman SU, Afshan S, Ali MSE, Ashfaq H, Idrees S
    Environ Sci Pollut Res Int, 2023 Sep;30(45):100845-100860.
    PMID: 37640976 DOI: 10.1007/s11356-023-29332-9
    The foremost purpose of the study is to establish a point that an economy of G-7 countries has an abundance of resources to tackle the environmental changes that occur in the world, but these countries are still behind the line because in this modern era, environmental performance changes their shape, dimension, and nature very frequently and create a huge impact on globalization of world economy. To fill this gap, we use green investment, institutional quality, and economic growth on environmental performance for this, we use four proxies for green investment and three proxies for greenhouse gas, and we also use six proxies of institutional quality to do this using period of 1997 to 2021. Moreover, we have used the panel nonlinear autoregressive distributed lag method to evaluate the long-run and short-run asymmetric effects of green investment, institutional quality, and economic growth on greenhouse gas emissions. The findings of the study affirm that the positive change of green investment has a positive and significant relationship with environmental performance, while the negative change of green investment has a significant and positive influence with environmental performance in the long run. Furthermore, the outcomes demonstrate that the positive shock of institutional quality has a positive and significant relationship with environmental performance, while the negative shock of intuitional quality has a significant and positive association with environmental performance in the long run, whereas positive change in economic growth has a positive and significant with the environmental performance, while the negative change of economic growth has a positive effect with environmental performance in the long run. This study finds future precautions that institutional quality has to perform exceptionally and shows results very rapidly, while green investment with economic growth has also made a deadly combination to control greenhouse gas emission, so the role of G-7 countries is pretty clear and straight. Furthermore, it is suggested that governments and policymakers take a proactive stance to promote resource acquisition and investment across all industries. To reduce gas emissions, public interest might also be complementary to private ones. So, economic policymakers, specifically in G-7 countries, should consider strategies that support sustainable economic growth.
    Matched MeSH terms: Carbon Dioxide/analysis
  19. Zhang X, Zhu H, Sang B, Guo L
    Environ Sci Pollut Res Int, 2023 Aug;30(36):85611-85625.
    PMID: 37389755 DOI: 10.1007/s11356-023-28316-z
    Numerous studies have demonstrated that the development of low-carbon economy and industrial restructuring cannot occur in a coordinated manner. However, academic literature does not provide further explanations for this phenomenon. In this paper, we introduce a novel decomposition method to reassess the relationship between industrial restructuring and low-carbon economy, which yields similar findings. Next, we construct a straightforward theoretical model to investigate two fundamental reasons that interrelate with this issue: excessively high proportion of secondary sector and excessive carbon intensity of tertiary sector. Finally, we implement a rigorous causal identification using three-dimensional panel data at the provincial, industrial, and yearly levels by undergoing multiple robustness tests and mitigating endogeneity issues. Our heterogeneity tests suggest that the impact of industrial restructuring is greater in high-polluting industries, the Eastern region, and non-digital pilot regions. Overall, our theoretical and empirical analysis serves as a vital reference for other developing and developed countries to attain harmonious development between low-carbon economy and industrial restructuring.
    Matched MeSH terms: Carbon*; Carbon Dioxide
  20. Zhang W, Mohamed AR, Ong WJ
    Angew Chem Int Ed Engl, 2020 Dec 14;59(51):22894-22915.
    PMID: 32009290 DOI: 10.1002/anie.201914925
    Transforming CO2 into fuels by utilizing sunlight is promising to synchronously overcome global warming and energy-supply issues. It is crucial to design efficient photocatalysts with intriguing features such as robust light-harvesting ability, strong redox potential, high charge-separation, and excellent durability. Hitherto, a single-component photocatalyst is incapable to simultaneously meet all these criteria. Inspired by natural photosynthesis, constructing artificial Z-scheme photocatalysts provides a facile way to conquer these bottlenecks. In this review, we firstly introduce the fundamentals of photocatalytic CO2 reduction and Z-scheme systems. Thereafter we discuss state-of-the-art Z-scheme photocatalytic CO2 reduction, whereby special attention is placed on the predominant factors that affect photoactivity. Additionally, further modifications that are important for efficient photocatalysis are reviewed.
    Matched MeSH terms: Carbon Dioxide
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links