Displaying publications 1 - 20 of 164 in total

Abstract:
Sort:
  1. Fadzilah Mohamad, Ping Yein Lee, , Maliza Mawardi
    MyJurnal
    Introduction: The World Health Organization recommends evaluation of maternal satisfaction to improve quality of health care during childbirth. Dissatisfaction may lead to undesired outcomes such as unassisted homebirth and delay in seeking treatment. Determining the maternal satisfaction level and its associated factors may help to improve health care services and prevent negative implications to both mothers and infants. This study aimed to determine the maternal satisfaction towards intrapartum care of designated healthcare facilities and its associated factors among postnatal women. Methods: This was a cross-sectional study of postnatal women attended Klinik Kesihatan Salak from December 2017 to February 2018. Systematic random sampling with the ratio of 1:3 was applied to the eligible respondents. A self-administered questionnaire that include respondent’s socio-demographic characteristics and a validated 14-items Maternal Satisfaction with Hospital-based Intrapartum Care Scale was used. Data was analyzed using SPSS 23. Results: 274 respondents were recruited in this study. Overall, only 21.2% of respondents were sat- isfied with the intrapartum care given. The level of satisfaction was highest in interpersonal care domain (36.1%), followed by physical birth environment (34.3%) and the least satisfied was information and decision making domain (27.7%). Binary logistic regression showed that maternal satisfaction was significantly associated with place of birth (AOR (95% CI): 0.046 (0.183, 0.984)) and labour complications (AOR (95% CI): 3.387 (1.345, 8.528)). Conclusion: The overall maternal satisfaction towards intrapartum care was low and the information and decision-making do- main appeared to be the least satisfied. Maternal satisfaction was associated with place of birth and labour compli- cations. Therefore, health care providers should emphasize and improve the quality of services especially for this domain and to consider factor that contribute to dissatisfaction towards the intrapartum care.
    Matched MeSH terms: Cations; Obstetric Labor Complications
  2. Wee Ling JL, Khan A, Saad B, Ab Ghani S
    Talanta, 2012 Jan 15;88:477-83.
    PMID: 22265529 DOI: 10.1016/j.talanta.2011.11.018
    A new poly(4-vinyl pyridine) (P4VP) based cadmium (Cd)-ion selective electrode (ISE) was developed. The 4-vinyl pyridine (4VP) was first polymerized electrochemically on the surface of graphite, later characterized by FTIR, SEM/EDX and then optimized as ISE for Cd. At optimal pH 6.4, slope of 27.7±0.8mVdecade(-1), linear concentration range of 1×10(-7) to 1.0×10(-1)M Cd(2+) and limit of detection (S/N=3) of 2.51×10(-8)M were obtained. The ISE was very selective towards Cd(2+), with K(pot)<1×10(-2) in the presence of the usual cations and anions in water samples. Response time and shelf life of less than 1min and 90 days, respectively, were observed. Its application was tested in various types of samples.
    Matched MeSH terms: Cations, Divalent
  3. Lee SK, Tan KW, Ng SW, Ooi KK, Ang KP, Abdah MA
    PMID: 24231745 DOI: 10.1016/j.saa.2013.10.084
    A cationic Schiff base ligand, TSB (L) and its Zn (II) complex (1) were synthesized and characterized by using CHN, (1)H-NMR, FT-IR, UV, LC-MS, and X-ray methods. Their ability to inhibit topoisomerase I, DNA cleavage activities, and cytotoxicity were studied. X-ray diffraction study shows that the mononuclear complex 1 is four coordinated with distorted tetrahedral geometry. The singly deprotonated Schiff base ligand L acts as a bidentate ON-donor ligand. Complexation of L increases the inhibitory strength on topoisomerase I activity. Complex 1 could fully inhibit topoisomerase I activity at 250 μM, while L did not show any inhibitory effect on topoisomerase I activity. In addition, L and complex 1 could cleave pBR322 DNA in a concentration and time dependent profile. Surprisingly, L has better DNA cleavage activity than complex 1. The cleavage of DNA by complex 1 is altered in the presence of hydrogen peroxide. Furthermore, L and complex 1 are mildly cytotoxic towards human ovarian cancer A2780 and hepatocellular carcinoma HepG2.
    Matched MeSH terms: Cations
  4. Vijayasree VP, Abdul Manan NS
    Int J Biol Macromol, 2023 Jul 01;242(Pt 1):124723.
    PMID: 37148927 DOI: 10.1016/j.ijbiomac.2023.124723
    In this study, magnetite carboxymethylcellulose (CMC@Fe3O4) composite as magnetic biological molecules were synthetized for the use as adsorbent to remove four types of cationic dyes, namely Methylene Blue, Rhodamine B, Malachite Green, and Methyl Violet from aqueous solution. The characteristic of the adsorbent was achieved by Fourier Transform Infrared Spectroscopy, Field Emission Scanning Electron Microscope (FESEM), X-ray Diffraction, Vibrating Sample Magnetometer and Thermal Gravimetric Analysis techniques. Besides, essential influencing parameters of dye adsorption; the solution pH, solution temperature, contact time, adsorbent concentration and initial dye dosage were studied. FESEM analysis showed the magnetic Fe3O4-TB, Fe3O4@SiO2, Fe3O4@SiO2-NH2 and CMC@Fe3O4 composites were in spherical shape, with average size of 43.0 nm, 92.5 nm, 134.0 nm and 207.5 nm, respectively. On the saturation magnetization (Ms), the results obtained were 55.931 emu/g, 34.557 emu/g, 33.236 emu/g and 11.884 emu/g. From the sorption modelling of Isotherms, Kinetics, and Thermodynamics, the adsorption capacity of dyes is (MB = 103.33 mg/g), (RB = 109.60 mg/g), (MG = 100.08 mg/g) and (MV = 107.78 mg/g). With all the adsorption processes exhibited as exothermic reactions. The regeneration and reusability of the synthetized biological molecules-based adsorbent was also assessed.
    Matched MeSH terms: Cations
  5. Muthukkumar M, Karthikeyan A, Poovarasan M, Ruckmani V, Rajaram D, Jegan Jennifer S, et al.
    Acta Crystallogr E Crystallogr Commun, 2019 Apr 01;75(Pt 4):443-446.
    PMID: 31161053 DOI: 10.1107/S2056989019003189
    In the redetermination of the title compound, C3H5N2OS+·CI-, the asymmetric unit consists of one independent 2-oxo-1,3-thia-zolidin-4-iminium cation and one independent chloride anion. The cation inter-acts with a chloride anion via N-H⋯Cl hydrogen bonds forming a supra-molecular chain along [010]. These supra-molecular chains are further extended by weak C-H⋯Cl and C-H⋯O inter-actions, forming a two-dimensional network parallel to (001). The crystal structure is further stabilized by weak C-O⋯π inter-actions, supporting a three-dimensional architecture. The structure was previously determined by Ananthamurthy & Murthy [Z. Kristallogr. (1975). 8, 356-367] but has been redetermined with higher precision to allow the hydrogen-bonding patterns and supra-molecular inter-actions to be investigated.
    Matched MeSH terms: Cations
  6. Masoumi HR, Kassim A, Basri M, Abdullah DK
    Molecules, 2011 Jun 03;16(6):4672-80.
    PMID: 21642941 DOI: 10.3390/molecules16064672
    A Taguchi robust design method with an L₉ orthogonal array was implemented to optimize experimental conditions for the biosynthesis of triethanolamine (TEA)-based esterquat cationic surfactants using an enzymatic reaction method. The esterification reaction conversion% was considered as the response. Enzyme amount, reaction time, reaction temperature and molar ratio of substrates, [oleic acid: triethanolamine (OA:TEA)] were chosen as main parameters. As a result of the Taguchi analysis in this study, the molar ratio of substrates was found to be the most influential parameter on the esterification reaction conversion%. The amount of enzyme in the reaction had also a significant effect on reaction conversion%.
    Matched MeSH terms: Cations/chemistry*
  7. Adeyi AA, Jamil SNAM, Abdullah LC, Choong TSY, Lau KL, Abdullah M
    Materials (Basel), 2019 Sep 08;12(18).
    PMID: 31500398 DOI: 10.3390/ma12182903
    In this study, simultaneous adsorption of cationic dyes was investigated by using binary component solutions. Thiourea-modified poly(acrylonitrile-co-acrylic acid) (TMPAA) polymer was used as an adsorbent for uptake of cationic dyes (malachite green, MG and methylene blue, MB) from aqueous solution in a binary system. Adsorption tests revealed that TMPAA presented high adsorption of MG and MB at higher pH and higher dye concentrations. It suggested that there are strong electrostatic attractions between the surface functional groups of the adsorbent and cationic dyes. The equilibrium analyses explain that both extended Langmuir and extended models are suitable for the description of adsorption data in the binary system. An antagonistic effect was found, probably due to triangular (MG) and linear (MB) molecular structures that mutually hinder the adsorption of both dyes on TMPAA. Besides, the kinetic studies for sorption of MG and MB dyes onto adsorbent were better represented by a pseudo-second-order model, which demonstrates chemisorption between the polymeric TMPAA adsorbent and dye molecules. According to experimental findings, TMPAA is an attractive adsorbent for treatment of wastewater containing multiple cationic dyes.
    Matched MeSH terms: Cations
  8. Mustafa Hj. Abdullah, Ahmad Nazlim Yusoff
    The electrical resistivity of Mg0.6Zn0.4Fe2O4 ferrite was measured as a function of temperature in the range 300-630 K. Two anomalies are observed in the resistivity curves for measurements during heating up. These anomalies are identified as a magnetic anomaly at the Neel temperature, TN = 598 K, while the other one at TOt = 445 K is discussed as due to the contribution of conduction from the tetrahedral sites. The anomaly at Tot was reduced in the measurements during recooling, while the anomaly at TN was disappeared completely during recooling and second cycle. These effects are discussed as due to the increase of Fe2+ ions at the octahedral sites as a result of cation redistribution at higher temperatures. A relatively small anomaly at Tot still can be observed during the second run. This is possible if the Fe2+ ions have a preference to be relocated at the tetrahedral sites at lower temperatures.
    Kerintangan elektrik Mg0.6Zn0.4Fe2O4 ferit telah diukur sebagai fungsi suhu dalam julat 300 - 630 K. Dua anomali dapat dicerap pada lengkung kerintangan bagi pengukuran semasa pemanasan. Dua anomali tersebut dikenalpasti sebagai anomali magnet pada suhu Neel, TN = 598 K, manakala yang satu lagi pada Tot = 445 K dibincangkan sebagai berpunca daripada sumbangan kekonduksian pada tapak tetrahedron. Anomali pada Tot mengurang dalam pengukuran semasa penyejukan semula pada julat suhu yang sarna, manakala anomali pada TN terus lenyap dalam pengukuran semasa penyejukan semula dan juga semasa kitar kedua. Kesan ini dibincangkan sebagai disebabkan oleh peningkatan ion Fe2+ pada tapak oktahedron daripada proses taburan semula kation pada suhu tinggi. Anomali yang berkurang pada Tot masih boleh dicerap semasa pengukuran kitar kedua. Keadaan seperti ini adalah mungkin jika ion Fe2+ mempunyai kecenderongan untuk bertempat semula pada tapak tetrahedron apabila suhu menurun.
    Matched MeSH terms: Cations
  9. Zaini Hamzah, Nurul Latiffah Abd Rani, Ahmad Saat
    MyJurnal
    Measurement of major cation such as Na+, K+, and Ca2+ in water are normally carried out using
    AAS, ICP-OES or flame photometry. In this study, an attempt was made to measure these cations
    using Energy Dispersive X-ray Fluorescent Spectrometry (EDXRF). Hot spring s water was taken from varies hot spring in Selangor and divided into two portions that is filtered and unfiltered. 5 mL of water samples were pipette into a special liquid cups (sample holders) which has a thin mylar film underneath. The MiniPal4 XRF instrument was used in this study. The resolution for the instrument use is 145 keV with energy resolution at 5.9 keV. The spectrum of cations were analysed by using MiniPal/MiniMate software to determine the cations concentration. For K+ and Ca2+, Al-thin filter was used and default filter was used for Na+. The concentration of Na+ obtained for filtered and unfiltered samples were ranged from 38.00 to 66.05 and 43.26 to 76.95 ppm. Meanwhile, concentrations of K+ for filtered and unfiltered samples were ranged from 2.42 to 8.07 and 6.18 to 29.28 ppm. Concentrations of Ca2+ for filtered and unfiltered samples were ranged from 2.59 to 10.94 and 3.18 to 12.99 ppm.
    Matched MeSH terms: Cations
  10. Noorain Mohd Isa, Ahmad Zaharin Aris
    Sains Malaysiana, 2012;41:23-32.
    Classified as a small island, Kapas Island experiences major problems especially in supplying freshwater where groundwater abstraction is the only way to meet the demand of drinking water and domestic use. Groundwater samples were collected from seven constructed boreholes to examine the hydrochemistry properties of major ions and in-situ parameters as these could provide a basis for future reference. The chemical composition showed strong and significant correlation for each studied parameter; an indication of the effect of environmental variables to the groundwater composition. The composition changed from Ca-rich to Na-rich are explained mostly by mixing and cation exchange processes. This study provided an input for water management at Kapas Island where groundwater is a crucial resource to maintain the hydrogeological balance of the island.
    Matched MeSH terms: Cations
  11. Nasir Mohamad, Shariff Halim, Mohd Ekhwan Toriman, Nor Hidayah Abu Bakar, Ahmad Zubaidi A. Latif
    MyJurnal
    Zamzam is holy water believed by Muslim to have remedial power for all kinds of diseases. It contains
    many electrolytes and the concentration of the electrolytes may be affected by the types of container
    used for its storage. This study was carried out to determine the difference in ions concentration of
    Zamzam water stored in plastic and glass containers, and to determine cytotoxicity effects of Zamzam
    water against U-87 cell line (human primary glioblastoma cell line). Ion Chromatography (IC) was used
    to analyze the concentration. The analyzed anions in the Zamzam water include bromide, chloride,
    phosphate, nitrite, nitrate, sulfate and fluoride whereas the cations were ammonium, lithium, potassium,
    sodium, calcium and magnesium. Subsequently, MTT assay was used to determine the cytotoxicity of
    Zamzam water on U-87 cell line. This study reveals that Zamzam water anions and cations
    concentration was not statistically significant neither in plastic nor glass container. In addition, the
    Zamzam water did not cause any toxicity on the U87 cell line. We postulate that types of container do
    not have much influence on the ion concentration of Zamzam water and it is non-toxic on U87 cell line.
    Matched MeSH terms: Cations
  12. Harun, S.W., Tamjis, M.R., Muhd-Yassin, S.Z., Abd-Rahman, M.K., Ahmad, H.
    ASM Science Journal, 2007;1(2):129-133.
    MyJurnal
    This paper demonstrates an erbium/ytterbium co-doped fi bre amplifi er (EYDFA) which used a pumping wavelength of 1058 nm, whereby the amplifi cation was assisted by the energy transfer between Yb and Er ions. The energy transfer increased the erbium doping concentration limit that was imposed by concentration quenching in erbium-doped fi bre. The optimum length was obtained at 4m~6m for erbium/ytterbium co-doped fi bre with Er ion concentration of 1000 p.p.m. This enabled the development of a compact amplifi er with a shorter gain medium compared to erbium-doped fi bre amplifi ers which use a gain medium of up to 15 m. A 1058 nm pumping wave-length was used for the EYDFA, as 1480 nm pumping resulted in severely degraded gain and noise fi gures because the energy transfer could not be achieved. The use of the optical isolator improved the small signal gain and noise fi gure by about 4.8 dB and 1.6 dB, respectively. Without the isolator, gain saturation and a noise fi gure penalty were observed due to the oscillating laser which was created at around 1534 nm by spurious refl ection. This showed that the usage of optical isolators was an important aspect to consider when designing an EYDFA.
    Matched MeSH terms: Cations
  13. Brza MA, Aziz SB, Anuar H, Ali F, Dannoun EMA, Mohammed SJ, et al.
    Sci Rep, 2020 Oct 22;10(1):18108.
    PMID: 33093604 DOI: 10.1038/s41598-020-75138-x
    In the present study black tea extract (BTE) solution which is familiar for drinking was used to prepare cerium metal-complexes (Ce(III)-complex). The prepared Ce(III)-complex was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and UV-Vis spectroscopy. The results indicate that BTE solution is a novel green coordination chemistry approach for the synthesis of metal complexes. The outcomes signify that coordination occurs between cerium cations and polyphenols. The synthesis of metal-complexes with superior absorption performance in the visible region is a challenge for optoelectronic device applications. The suspended Ce(III)-complex in distilled water was mixed with poly (vinyl alcohol) (PVA) polymer to fabricate PVA/ Ce(III)-complex composites with controlled optical properties. The PVA/Ce(III)-complexes composite films were characterized by FTIR, XRD, and UV-Vis spectroscopy. The XRD findings confirms the amorphous structure for the synthesized Ce(III)-complexes. The addition of Ce(III)-complex into the PVA host polymer led to the growth of polymer composites with controllable small optical band gaps. It is shown by the FTIR spectra of the composite films that the functional groups of the host PVA have a vigorous interaction with the Ce(III)-complex. The XRD deconvolution on PVA composites reveals the amorphous phase enlargement with increasing Ce(III)-complex concentration. It is indicated in the atomic force microscopy (AFM) that the surface roughness in the doped PVA films increases with the increase of the Ce(III)-complex. There is a decrease in absorption edge from 5.7 to 1.7 eV. It becomes possible to recognize the type of electron transition by studying both the Tauc's model and optical dielectric loss (ɛi) parameter.
    Matched MeSH terms: Cations
  14. Agha HM, Abdulhameed AS, Jawad AH, Sidik NJ, Aazmi S, ALOthman ZA, et al.
    Int J Biol Macromol, 2023 Dec 31;253(Pt 5):127112.
    PMID: 37774818 DOI: 10.1016/j.ijbiomac.2023.127112
    Herein, a highly efficient and sustainable adsorbent of cross-linked chitosan-glyoxal/algae biocomposite (CHT-GLX/ALG) adsorbent was developed through an innovative hydrothermal cross-linking method. The CHT-GLX/ALG biocomposite was characterized using several complementary analytical methods that include CHN-O, XRD, FTIR, SEM-EDX, and pHpzc. This new adsorbent, named CHT-GLX/ALG, was utilized for the adsorption of a cationic dye (methyl violet 2B; MV 2B), from synthetic wastewater. The optimization of the dye adsorption process involved key parameters is listed: CHT-GLX/ALG dosage (from 0.02 to 0.1 g/100 mL), pH (from 4 to 10), and contact time (from 20 to 180 min) that was conducted using the Box-Behnken design (BBD). The optimal adsorption conditions for the highest decolorization efficiency of MV 2B (97.02 %) were estimated using the statistical model of the Box-Behnken design. These conditions include a fixed adsorbent dosage of 0.099 g/100 mL, pH 9.9, and a 179.9 min contact time. The empirical data of MV 2B adsorption by CHT-GLX/ALG exhibited favorable agreement with the Freundlich isotherm model. The kinetic adsorption profile of MV 2B by CHT-GLX/ALG revealed a good fit with the pseudo-second-order model. The maximum adsorption capacity (qmax) for MV 2B by CHT-GLX/ALG was estimated at 110.8 mg/g. The adsorption of MV 2B onto the adsorbent can be attributed to several factors, including electrostatic interactions between the negatively charged surface of CHT-GLX/ALG and the MV 2B cation, as well as n-π and H-bonding. These interactions play a crucial role in facilitating the effective adsorption of MV 2B onto the biocomposite adsorbent. Generally, this study highlights the potential of CHT-GLX/ALG as an efficient and sustainable adsorbent for the effective removal of organic dyes.
    Matched MeSH terms: Cations
  15. Salman AA, Tabandeh M, Heidelberg T, Hussen RS, Ali HM
    Carbohydr Res, 2015 Aug 14;412:28-33.
    PMID: 26000863 DOI: 10.1016/j.carres.2015.04.022
    A series of surfactants combining carbohydrate and imidazolium head groups were prepared and investigated on their assembly behavior. The presence of the imidazolium group dominated the interactions of the surfactants, leading to high CMCs and large molecular surface areas, reflected in curved rather than lamellar surfactant assemblies. The carbohydrate, on the other hand, stabilized molecular assemblies slightly and reduced the surface tension of surfactant solutions considerably. A comparative emulsion study discourages the use of pure alkyl imidazolium glycosides owing to reduced assembly stabilities compared with APGs. However, the surfactants are believed to have potential as component in carbohydrate based surfactant mixtures.
    Matched MeSH terms: Cations/chemistry
  16. Woi PM, Bakar MA, Rosli AN, Lee VS, Ahmad MR, Zain S, et al.
    J Mol Model, 2014 May;20(5):2219.
    PMID: 24770548 DOI: 10.1007/s00894-014-2219-3
    DFT and G4 results reveal that cations display the following trends in imparting its positive charge to acrylonitrile; H⁺ > Li⁺ > Na⁺ > K⁺ for group I and Be²⁺ > Mg²⁺ > Ca²⁺ for group II. Solvation by water molecules and interaction with cation make the cyano bond more polarized and exhibits ketene-imine character. Bond order in nitrile-cation complexes has been predicted based on the s character of the covalent bond orbitals. Mulliken, CHELPG, and NPA charges are in good agreement in predicting positive charge buildup and GIAO nuclear deshileding on C1. G4 enthalpies show that Mg²⁺ is more strongly bound to acrylonitrile than to acetonitrile by 3 kcal mol⁻¹, and the proton affinity of the former is higher by 0.8 kcal mol⁻¹. G4 enthalpies of reductions support prior experimental observation that metalated conjugated nitriles show enhanced reactivity toward weak nucleophiles to afford Michael addition products.
    Matched MeSH terms: Cations/chemistry*
  17. Rezayi M, Karazhian R, Abdollahi Y, Narimani L, Sany SB, Ahmadzadeh S, et al.
    Sci Rep, 2014;4:4664.
    PMID: 24722576 DOI: 10.1038/srep04664
    The introduction of low detection limit ion selective electrodes (ISEs) may well pave the way for the determination of trace targets of cationic compounds. This research focuses on the detection of titanium (III) cation using a new PVC-membrane sensor based on synthesized tris(2pyridyl) methylamine (tpm) ionophore. The application and validation of the proposed sensor was done using potentiometric titration, inductively coupled plasma atomic emission spectrometry (ICP-AES), and atomic absorption spectrometry (AAS). The membrane sensor exhibited a Nernstian response to the titanium (III) cation over a concentration range of 1.0 × 10(-6)-1.0 × 10(-2) M and pH range from 1-2.5. The Nernstian slope, the lower of detection (LOD), and the response time (t95%) of the proposed sensor were 29.17 ± 0.24 mV/dec, 7.9 × 10-7 M, and 20 s, respectively. The direct determination of 4-39 μg/ml of titanium (III) standard solution showed an average recovery of 94.60 and a mean relative standard deviation of 1.8 at 100.0 μg/ml. Finally, the utilization of the electrodes as end-point indicators for potentiometric titration with EDTA solutions for titanium (III) sensor was successfully carried out.
    Matched MeSH terms: Cations/chemistry
  18. Mahmoudian MR, Basirun WJ, Woi PM, Hazarkhani H, Alias YB
    Mikrochim Acta, 2019 05 22;186(6):369.
    PMID: 31119482 DOI: 10.1007/s00604-019-3481-y
    The study presents the synthesis of polypyrrole-coated palladium platinum/nitrogen-doped reduced graphene oxide nanocomposites (PdPt-PPy/N-rGO NC) via direct the reduction of Pd(II) and Pt(II) in the presence of pyrrole monomer, N-rGO and L-cysteine as the reducing agent. X-ray diffraction confirmed the presence of metallic Pd and Pt from the reduction of Pd and Pt cations. Transmission electron microscopy images revealed the presence of Pd, Pt and PPy deposition on N-rGO. Impedance spectroscopy results gave a decreased charge transfer resistance due to the presence of N-rGO. The nanocomposites were synthesized with different Pd/Pt ratios (2:1, 1:1 and 1:2). A glassy carbon electrode (GCE) modified with the nanocomposite showed enhanced electrochemical sensing capability for formaldehyde in 0.1 M sulfuric acid solution. Cyclic voltammetry showed an increase in the formaldehyde oxidation peak current at the GCE modified with Pd2Pt1 PPy N-rGO. At a typical potential of 0.45 V (vs. SCE), the sensitivity in the linear segment was 345.8 μA.mM -1. cm-2. The voltammetric response was linear between 0.01 and 0.9 mM formaldehyde concentration range, with a 27 µM detection limit (at S/N = 3). Graphical abstract Schematic presentation of formaldehyde detection by Pd2Pt1-PPy/nitrogen-doped reduced Graphene Oxide Nanocomposite (Pd2Pt1-PPy /N-Gr NC). The decrease of charge transfer resistance and the agglomeration of deposited metals in the presence of N-rGO enhance the current response of the electrochemical sensor.
    Matched MeSH terms: Cations
  19. Jami MS, Rosli NS, Amosa MK
    Water Environ Res, 2016 Jun;88(6):566-76.
    PMID: 26556067 DOI: 10.2175/106143015X14362865227157
    Availability of quality-certified water is pertinent to the production of food and pharmaceutical products. Adverse effects of manganese content of water on the corrosion of vessels and reactors necessitate that process water is scrutinized for allowable concentration levels before being applied in the production processes. In this research, optimization of the adsorption process conditions germane to the removal of manganese from biotreated palm oil mill effluent (BPOME) using zeolite 3A subsequent to a comparative adsorption with clinoptilolite was studied. A face-centered central composite design (FCCCD) of the response surface methodology (RSM) was adopted for the study. Analysis of variance (ANOVA) for response surface quadratic model revealed that the model was significant with dosage and agitation speed connoting the main significant process factors for the optimization. R(2) of 0.9478 yielded by the model was in agreement with predicted R(2). Langmuir and pseudo-second-order suggest the adsorption mechanism involved monolayer adsorption and cation exchanging.
    Matched MeSH terms: Cations
  20. Kusrini E, Arbianti R, Sofyan N, Abdullah MA, Andriani F
    PMID: 24177873 DOI: 10.1016/j.saa.2013.09.132
    In the presence of hydroxyl and amine groups, chitosan is highly reactive; therefore, it could be used as a carrier in drug delivery. For this study, chitosan-Sm complexes with different concentrations of samarium from 2.5 to 25 wt.% have been successfully synthesized by the impregnation method. Chitosan combined with Sm3+ ions produced a drug carrier material with fluorescence properties; thus, it could also be used as an indicator of drug release with ibuprofen (IBU) as a model drug. We evaluated the spectroscopic and interaction properties of chitosan and Sm3+ ions, the interaction of chitosan-Sm matrices with IBU as a model drug, and the effect of Sm3+ ions addition on the chitosan ability to adsorb the drug. The result showed that the hypersensitive fluorescence intensity of chitosan-Sm (2.5 wt.%) is higher than the others, even though the adsorption efficiency of chitosan-Sm 2.5wt.% is lower (29.75%) than that of chitosan-Sm 25 wt.% (33.04%). Chitosan-Sm 25 wt.% showed the highest efficiency of adsorption of ibuprofen (33.04%). In the release process of ibuprofen from the chitosan-Sm-IBU matrix, the intensity of orange fluorescent properties in the hypersensitive peak of 4G5/2→6H7/2 transition at 590 nm was observed. Fluorescent intensity increased with the cumulative amount of IBU released; therefore, the release of IBU from the Sm-modified chitosan complex can be monitored by the changes in fluorescent intensity.
    Matched MeSH terms: Cations/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links