The present work describes the application of homologous recombination techniques in a wild-type Aspergillus terreus (ATCC 20542) strain to increase the flow of precursors towards the lovastatin biosynthesis pathway. A new strain was generated to overexpress acetyl-CoA carboxylase (ACCase) by replacing the native ACCase promoter with a strong constitutive PadhA promoter from Aspergillus nidulans. Glycerol and a mixture of lactose and glycerol were used independently as the carbon feedstock to determine the degree of response by the A. terreus strains towards the production of acetyl-CoA, and malonyl-CoA. The new strain increased the levels of malonyl-CoA and acetyl-CoA by 240% and 14%, respectively, compared to the wild-type strain. As a result, lovastatin production was increased by 40% and (+)-geodin was decreased by 31% using the new strain. This study shows for the first time that the metabolism of Aspergillus terreus can be manipulated to attain higher levels of precursors and valuable secondary metabolites.
Aurantiochytrium sp., a marine thraustochytrid possesses a remarkable ability to produce lipid rich in polyunsaturated fatty acids (PUFAs), such as docosahexaenoic acid (DHA). Although gene regulation underlying lipid biosynthesis has been previously reported, proteomic analysis is still limited. In this study, high DHA accumulating strain Aurantiochytrium sp. SW1 has been used as a study model to elucidate the alteration in proteome profile under different cultivation phases i.e. growth, nitrogen-limitation and lipid accumulation. Of the total of 5146 identified proteins, 852 proteins were differentially expressed proteins (DEPs). The largest number of DEPs (488 proteins) was found to be uniquely expressed between lipid accumulating phase and growth phase. Interestingly, there were up-regulated proteins involved in glycolysis, glycerolipid, carotenoid and glutathione metabolism which were preferable metabolic routes towards lipid accumulation and DHA production as well as cellular oxidative defence. Integrated proteomic and transcriptomic data were also conducted to comprehend the gene and protein regulation underlying the lipid and DHA biosynthesis. A significant up-regulation of acetyl-CoA synthetase was observed which suggests alternative route of acetate metabolism for acetyl-CoA producer. This study presents the holistic routes underlying lipid accumulation and DHA production in Aurantiochytrium sp. SW1 and other relevant thraustochytrid.
Lovastatin is widely prescribed to reduce elevated levels of cholesterol and prevent heart-related diseases. Cultivation of Aspergillus terreus (ATCC 20542) with carbohydrates or low-value feedstocks such as glycerol produces lovastatin as a secondary metabolite and (+)-geodin as a by-product. An A. terreus mutant strain was developed (gedCΔ) with a disrupted (+)-geodin biosynthesis pathway. The gedCΔ mutant was created by inserting the antibiotic marker hygromycin B (hyg) within the gedC gene that encodes emodin anthrone polyketide synthase (PKS), a primary gene responsible for initiating (+)-geodin biosynthesis. The effects of emodin anthrone PKS gene disruption on (+)-geodin and lovastatin biosynthesis and the production of the precursors acetyl-CoA and malonyl-CoA were investigated with cultures based on glycerol alone and in combination with lactose. The gedCΔ strain showed improved lovastatin production, particularly when cultivated on the glycerol-lactose mixture, increasing lovastatin production by 80% (113 mg/L) while simultaneously inhibiting (+)-geodin biosynthesis compared to the wild-type strain. This study thus shows that suppression of the (+)-geodin pathway increases lovastatin yield and demonstrates a practical approach of manipulating carbon flux by modulating enzyme activity.
In this study, transformation of BrCHS var 2 into B. rotunda cell suspension culture, followed by chalcone synthase enzymatic assay and HPLC analysis was conducted to investigate whether the substrate specificity for BrCHS var 2 is either cinnamoyl-CoA or p-coumaroyl-CoA. The HPLC profile showed an increase in the amount of pinocembrin chalcone when cinnamoyl-CoA and malonyl-CoA were added but not p-coumaroyl-CoA. Molecular docking was performed to explore the binding of cinnamoyl-CoA and p-coumaroyl-CoA to BrCHS var 2 receptor and the docking results showed that cinnamoyl-CoA formed numerous hydrogen bonds and more negative docked energy than p-coumaroyl-CoA. Cinnamoyl-CoA showed good interactions with Cys 164 to initiate the subsequent formation of pinocembrin chalcone, whereas the hydroxyl group of p-coumaroyl-CoA formed an unfavorable interaction with Gln 161 that caused steric hindrance to subsequent formation of naringenin chalcone. Docked conformation analysis results also showed that malonyl-CoA formed hydrogen bonding with Cys 164, His 303, and Asn 336 residues in BrCHS var 2. The results show that cinnamoyl-CoA is the preferred substrate for BrCHS var 2.
Matched MeSH terms: Acyl Coenzyme A; Malonyl Coenzyme A
Malonyl-CoA serves as the main building block for the biosynthesis of many important polyketides, as well as fatty acid-derived compounds, such as biofuel. Escherichia coli, Corynebacterium gultamicum, and Saccharomyces cerevisiae have recently been engineered for the biosynthesis of such compounds. However, the developed processes and strains often have insufficient productivity. In the current study, we used enzyme-engineering approach to improve the binding of acetyl-CoA with ACC. We generated different mutations, and the impact was calculated, which reported that three mutations, that is, S343A, T347W, and S350W, significantly improve the substrate binding. Molecular docking investigation revealed an altered binding network compared to the wild type. In mutants, additional interactions stabilize the binding of the inner tail of acetyl-CoA. Using molecular simulation, the stability, compactness, hydrogen bonding, and protein motions were estimated, revealing different dynamic properties owned by the mutants only but not by the wild type. The findings were further validated by using the binding-free energy (BFE) method, which revealed these mutations as favorable substitutions. The total BFE was reported to be -52.66 ± 0.11 kcal/mol for the wild type, -55.87 ± 0.16 kcal/mol for the S343A mutant, -60.52 ± 0.25 kcal/mol for T347W mutant, and -59.64 ± 0.25 kcal/mol for the S350W mutant. This shows that the binding of the substrate is increased due to the induced mutations and strongly corroborates with the docking results. In sum, this study provides information regarding the essential hotspot residues for the substrate binding and can be used for application in industrial processes.
Biodegradable polyester polyhydroxyalkanoate (PHA) is a promising bioplastic material for industrial use as a replacement for petroleum-based plastics. PHA synthase PhaC forms an active dimer to polymerize acyl moieties from the substrate acyl-coenzyme A (CoA) into PHA polymers. Here we present the crystal structure of the catalytic domain of PhaC from Chromobacterium sp. USM2, bound to CoA. The structure reveals an asymmetric dimer, in which one protomer adopts an open conformation bound to CoA, whereas the other adopts a closed conformation in a CoA-free form. The open conformation is stabilized by the asymmetric dimerization and enables PhaC to accommodate CoA and also to create the product egress path. The bound CoA molecule has its β-mercaptoethanolamine moiety extended into the active site with the terminal SH group close to active center Cys291, enabling formation of the reaction intermediate by acylation of Cys291.
Mixed culture sludge has been widely used as a microbial consortium for biohydrogen production. Simple thermal treatment of sludge is usually required in order to eliminate any H2-consuming bacteria that would reduce H2 production. In this study, thermal treatment of sludge was carried out at various temperatures. Electron flow model was then applied in order to assess community structure in the sludge upon thermal treatment for biohydrogen production. Results show that the dominant electron sink was acetate (150-217 e- meq/mol glucose). The electron equivalent (e- eq) balances were within 0.8-18% for all experiments. Treatment at 100 °C attained the highest H2 yield of 3.44 mol H2/mol glucose from the stoichiometric reaction. As the treatment temperature increased from 80 to 100 °C, the computed acetyl-CoA and reduced form of ferredoxin (Fdred) concentrations increased from 13.01 to 17.34 e- eq (1.63-2.17 mol) and 1.34 to 4.18 e- eq (0.67-2.09 mol), respectively. The NADH2 balance error varied from 3 to 10% and the term e-(Fd↔NADH2) (m) in the NADH2 balance was NADH2 consumption (m = -1). The H2 production was mainly via the Fd:hydrogenase system and this is supported with a good NADH2 balance. Using the modified Gompertz model, the highest maximum H2 production potential was 1194 mL whereas the maximum rate of H2 production was 357 mL/h recorded at 100 °C of treatment.
PpCHS is a member of the type III polyketide synthase family and catalyses the synthesis of the flavonoid precursor naringenin chalcone from p-coumaroyl-CoA. Recent research reports the production of pyrone derivatives using either hexanoyl-CoA or butyryl-CoA as starter molecule. The Cys-His-Asn catalytic triad found in other plant chalcone synthase predicted polypeptides is conserved in PpCHS. Site directed mutagenesis involving these amino acids residing in the active-site cavity revealed that the cavity volume of the active-site plays a significant role in the selection of starter molecules as well as product formation. Substitutions of Cys 170 with Arg and Ser amino acids decreased the ability of the PpCHS to utilize hexanoyl-CoA as a starter molecule, which directly effected the production of pyrone derivatives (products). These substitutions are believed to have a restricted number of elongations of the growing polypeptide chain due to the smaller cavity volume of the mutant's active site.
For rapid identification of methicillin-resistant Staphylococcus aureus, molecular methods are generally targeting mecA and species-specific genes. Sa442 DNA fragment is a popular species-specific target. However, recently, there have been few reports on S. aureus isolates that are negative for Sa442 fragment; therefore, use of single gene or DNA-fragment-specific polymerase chain reaction (PCR) for identification of microbial isolate may result in misidentification. This study includes CoA gene in parallel with Sa442 marker for identification of S. aureus. This further improves the specificity of the assay by checking for 2 determinants simultaneously for the identification of S. aureus and can prevent misidentification of S. aureus isolates lacking Sa442 DNA fragment. In this study, the newly developed triplex real-time PCR assay was compared with a quadruplex conventional gel-based PCR assay using the same primer sets in both assays. The dual-labeled TaqMan probes (ProOligo, France) for these primers were specifically designed and used in a real-time PCR assay. The clinical isolates (n = 152) were subjected to both PCR assays. The results obtained from both assays proved that the primer and probe sets were 100% sensitive and 100% specific for identification of S. aureus and detection of methicillin resistance. This triplex real-time PCR assay represents a rapid and powerful method for S. aureus identification and detection of methicillin resistance.
The main strategy for lowering blood cholesterol levels is through the inhibition of the NADPH-dependent HMG-CoA reductase (3-hydroxy-3-methyl-glutaryl-CoA reductase). The enzyme catalyses the reduction of HMG-CoA to mevalonate and this process is inhibited by statins that form the bulk of the therapeutic agents to treat high cholesterol since the 1970s. Newer drugs that are safer than statins are constantly being developed. The inhibition of candidate drugs to HMG-CoA reductase remains the mainstay of drug development research. The determination of the enzyme activity is important for the correct assessment of potency of the enzyme as well as determining the inhibition of potential therapeutic agents from the plant and microbial extracts. Also, this chapter covers the use of the popular four-parameter logistics model that can yield accurate estimation of the IC50 values of therapeutic agents and their 95% confidence intervals.
Anthocyanins and volatile phenylpropenes (isoeugenol and eugenol) in petunia (Petunia hybrida) flowers have the precursor 4-coumaryl coenzyme A (CoA) in common. These phenolics are produced at different stages during flower development. Anthocyanins are synthesized during early stages of flower development and sequestered in vacuoles during the lifespan of the flowers. The production of isoeugenol and eugenol starts when flowers open and peaks after anthesis. To elucidate additional biochemical steps toward (iso)eugenol production, we cloned and characterized a caffeoyl-coenzyme A O-methyltransferase (PhCCoAOMT1) from the petals of the fragrant petunia 'Mitchell'. Recombinant PhCCoAOMT1 indeed catalyzed the methylation of caffeoyl-CoA to produce feruloyl CoA. Silencing of PhCCoAOMT1 resulted in a reduction of eugenol production but not of isoeugenol. Unexpectedly, the transgenic plants had purple-colored leaves and pink flowers, despite the fact that cv Mitchell lacks the functional R2R3-MYB master regulator ANTHOCYANIN2 and has normally white flowers. Our results indicate that down-regulation of PhCCoAOMT1 activated the anthocyanin pathway through the R2R3-MYBs PURPLE HAZE (PHZ) and DEEP PURPLE, with predominantly petunidin accumulating. Feeding cv Mitchell flowers with caffeic acid induced PHZ expression, suggesting that the metabolic perturbation of the phenylpropanoid pathway underlies the activation of the anthocyanin pathway. Our results demonstrate a role for PhCCoAOMT1 in phenylpropene production and reveal a link between PhCCoAOMT1 and anthocyanin production.
One of the pathways to reduce cholesterol production in the liver is through the inhibition of HMG-Coa reductase (HMGCR) by current drugs, statins. However, these have side effects if consumed in prolonged periods. Tangeretin and trans-ethyl caffeate as alternative drugs in reducing hypercholesterolemia and preventing atherosclerosis have never been reported. Their effects on inhibiting HMGCR activity were investigated through enzymatic method (in vitro and in vivo). The toxicity property was analyzed on the Serum Glutamate Oxalate Transaminase (SGOT)/Serum Glutamate Piruvate Transaminase (SGPT) levels and rat liver histology. The results showed that both compounds inhibited HMGCR activity significantly compare to the control simvastatin (p
Exposure to any type of stressors either environmental, chemical or perceived stressors, results in a series of physiological responses in animals. The purpose of this study was to investigate the effects of thermal stress on physiological responses in red hybrid tilapia. Adult red hybrid tilapia were previously exposed to gradual increment of water temperature in thermoregulated recirculating tanks at a rate of 1oC/8 h from 28 to 31oC and kept for 1, 7 and 14 days. Cortisol, HMG-CoA reductase, total protein and osmolality were determined. Plasma cortisol and HMG-CoA levels were significantly increased in the heat-stressed groups compared to nonstressed groups. Osmolality was also significantly higher (p
Osteoporosis is a growing healthcare burden that affects the quality of life in the aging population. Vitamin E is a potential prophylactic agent that can impede the progression of osteoporosis. Various in vivo studies demonstrated the antiosteoporotic potential of vitamin E, but evidence on its molecular mechanism of action is limited. A few in vitro studies showed that various forms of vitamin E can affect the receptor activator of nuclear factor kappa-B ligand (RANKL) signaling and their molecular targets, thus preventing the formation of osteoclasts in the early stage of osteoclastogenesis. Various studies have also shown that the effects of the different isoforms of vitamin E differ. The effects of single isoforms and combinations of isoforms on bone metabolism are also different. Vitamin E may affect bone metabolism by disruption of free radical-mediated RANKL signaling, by its oestrogen-like effects, by its effects on the molecular mechanism of bone formation, by the anti-inflammatory effects of its long-chain metabolites on bone cells, and by the inhibition of 3-hydroxyl-3-methyglutaryl coenzyme A (HMG-CoA). In conclusion, the vitamin E isoforms have enormous potential to be used as prophylactic and therapeutic agents in preventing osteoporosis, but further studies should be conducted to elucidate their mechanisms of action.
A novel bacterial consortium, NAR-2 which consists of Citrobacter freundii A1, Enterococcus casseliflavus C1 and Enterobacter cloacae L17 was investigated for biodegradation of Amaranth azo dye under sequential microaerophilic-aerobic condition. The NAR-2 bacterial consortium with E. casseliflavus C1 as the dominant strain enhanced the decolorization process resulting in reduction of Amaranth in 30 min. Further aerobic biodegradation, which was dominated by C. freundii A1 and E. cloacae L17, allowed biotransformation of azo reduction intermediates and mineralization via metabolic pathways including benzoyl-CoA, protocatechuate, salicylate, gentisate, catechol and cinnamic acid. The presence of autoxidation products which could be metabolized to 2-oxopentenoate was elucidated. The biodegradation mechanism of Amaranth by NAR-2 bacterial consortium was predicted to follow the steps of azo reduction, deamination, desulfonation and aromatic ring cleavage. This is for the first time the comprehensive microaerophilic-aerobic biotransformation pathways of Amaranth dye intermediates by bacterial consortium are being proposed.
Statins are inhibitors of the enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) and they are the most effective agents for lowering cholesterol in clinical practice for the treatment of cardiovascular diseases. However, it has become clear that statins also have pleiotropic immunomodulatory effects in addition to their lipid-lowering properties. As a result, much attention has been focused on their potential as therapeutic agents for the treatment of inflammatory autoimmune diseases. In this review the effect of statins on the expression and function of a variety of immune-relevant molecules will be discussed alongside the underlying mechanisms that contribute to the immunomodulatory effects of statins.
Necrotizing autoimmune myopathy (NAM) is considered a new subgroup of a rare autoimmune idiopathic inflam- matory myopathies. Classically, NAM presented with sub-acute onset of proximal muscle loss of power with raised creatinine kinase and characteristic muscle biopsy showing muscle necrosis and regeneration with little inflamma- tion. Statin use, connective tissue diseases, malignancy and HIV infection are the identified risk factors for NAM. The autoantibodies expected to be presented in NAM are anti-signal recognition particle (SRP) and anti-hydroxymethylgl- utaryl-coenzyme A reductase (anti-HMGCR) antibodies. In this article, we present three cases of NAM with different risk factors and autoantibodies which we believe to have impact on the clinical course and outcome of our patients
The (R)-3-hydroxyacyl-ACP-CoA transferase catalyses the conversion of (R)-3-hydroxyacyl-ACP to (R)-3-hydroxyacyl-CoA derivatives, which serves as the ultimate precursor for polyhydroxyalkanoate (PHA) polymerisation from unrelated substrates in pseudomonads. PhaG was found to be responsible for channelling precursors for polyhydroxyalkanoate (PHA) synthase from a de novo fatty acid biosynthesis pathway when cultured on carbohydrates, such as glucose or gluconate. The phaG gene was cloned from Pseudomonas sp. USM 4-55 using a homologous probe. The gene was located in a 3660 bp Sal I fragment (GenBank accession number EU305558). The open reading frame (ORF) was 885 bp long and encoded a 295 amino acid protein. The predicted molecular weight was 33251 Da, and it showed a 62% identity to the PhaG of Pseudomonas aeruginosa. The function of the cloned phaG of Pseudomonas sp. USM 4-55 was confirmed by complementation studies. Plasmid pBCS39, which harboured the 3660 bp Sal I fragment, was found to complement the PhaG-mutant heterologous host cell, Pseudomonas putida PhaGN-21. P. putida PhaGN-21, which harboured pBCS39, accumulated PHA that accounted for up to 18% of its cellular dry weight (CDW). P. putida PhaGN-21, which harboured the vector alone (PBBR1MCS-2), accumulated only 0.6% CDW of PHA.
Thiamine is known to be an important compound in human diet and it is a cofactor required for vital metabolic processes such as acetyl-CoA biosynthesis, amino acid biosynthesis, Krebs and Calvin cycle. Besides that, thiamine has been shown to be involved in plant protection against stress. In this study, the level of expression of THIC and THI1/THI4, the genes for the first two enzymes in the thiamine biosynthesis pathway were observed when oil palm (Elaeis guineensis) was subjected to oxidative stress. Primers were designed based on the consensus sequence of thiamine biosynthesis genes obtained from Arabidopsis thaliana, Zea mays, Oryza sativa, and Alnus glutinosa. Oxidative stress were induced with various concentrations of paraquat and samplings were done at various time points post-stress induction. The expression of THIC and THI1/THI4 genes were observed via RT-PCR and qPCR analysis. The expression of THIC was increased 2-fold, while THI1/THI4 gene transcript was increased 4-fold upon induction of oxidative stress. These findings showed that oil palm responded to oxidative stress by over-expressing the genes involved in thiamine biosynthesis. These findings support the suggestion that thiamine may play an important role in plant protection against stress.
INTRODUCTION:
HMG-CoA (3-hydroxy-3- methylglutary lcoenzyme A) reductase inhibitors (statins) have anti-inflammatory properties which may be particularly useful in rheumatoid arthritis to suppress disease activity and inflammatory factors.
AIM:
The purpose of this clinical trial was to determine anti-inflammatory properties of statins in rheumatoid arthritis.
MATERIALS AND METHODS:
Eighty Iranian patients with rheumatoid arthritis, aged between 19 to 75 years were recruited to take part in this randomized, double-blind placebo-controlled trial. Subjects were randomly allocated to two groups to take atorvastatin or placebo 40 mg daily as an adjunct to current disease-modifying anti-rheumatic drugs (DMARDs) treatment. Disease Activity Score-28 (DAS28), C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), swollen joint count (SJC) & tender joint count (TJC) were assessed before and after three months intervention.
RESULTS:
Analysis was based on intention to treat. DAS28 significantly declined in the atorvastatin group in comparison with placebo (p< 0.001). SJC, TJC, CRP and ESR also were significantly dropped in the atorvastatin group in comparison with placebo.
CONCLUSION:
It can be concluded that atorvastatin can suppress RA activity and inflmmatory factors in RA patients for high to moderate grade of inflmmation.