Displaying publications 1 - 20 of 215 in total

Abstract:
Sort:
  1. How CW, Rasedee A, Abbasalipourkabir R
    IEEE Trans Nanobioscience, 2013 Jun;12(2):72-8.
    PMID: 23268387 DOI: 10.1109/TNB.2012.2232937
    Nanostructured lipid carriers (NLC) composed of solid and liquid lipids, and surfactants are potentially good colloidal drug carriers. Before NLC can be used as drug carriers, the cytotoxicity of their components must be ascertained. The cytotoxicity of solid lipids (trilaurin, palmitin, docosanoid acid, and hydrogenated palm oil [HPO]) and surfactants (Polysorbate 20, 80, and 85) were determined on BALB/c 3T3 cells. The HPO and Polysorbate 80 were least cytotoxic and used with olive oil in the formulation of NLC. The particle size, polydispersity index, zeta potential, specific surface area, and crystallinity index of the NLC were 61.14 nm, 0.461, -25.4 mV, and 49.07 m(2) and 27.12% respectively, while the melting point was 4.3 °C lower than of HPO. Unlike in serum-free, NLC incubated in fetal bovine serum-supplemented medium did not show particle growth, suggesting that serum proteins in medium inhibit nanoparticles aggregation. The study also showed that NLC was less toxic to BALB/c 3T3 cells than Polysorbate 80. Thus, NLC with olive oil, HPO, and Polysorbate 80 as components are potentially good drug carriers with minimal cytotoxicity on normal cells.
    Matched MeSH terms: Drug Carriers/chemistry
  2. Md Rasib SZ, Md Akil H, Khan A, Abdul Hamid ZA
    Int J Biol Macromol, 2019 May 01;128:531-536.
    PMID: 30708001 DOI: 10.1016/j.ijbiomac.2019.01.190
    An earlier study showed that the behaviour of chitosan-poly(methacrylic acid‑co‑N‑isopropylacrylamide) [chitosan‑p(MAA‑co‑NIPAM)] hydrogels synthesized at different reaction times are affected with regard to their pH and temperature sensitivities. The study was continued in this paper to identify the effects of different reaction times on the degradation, efficiency of rifampicin (Rif) loading and the Rif release profile under two different pH conditions (acidic and basic). The results that were obtained showed that the hydrogel had a faster degradation rate in the acidic condition than in the basic condition, where there was a loss of approximately 50% and 20%, respectively in its original weight within two weeks. The Rif loading efficiency was within 50% and the drug release was controlled by characteristics that were developed beyond the polymerization stages of the synthesis. Therefore, the reaction time for the synthesis of the hydrogel can be considered as a way to control the behaviour of the hydrogel as well as to modify the drug release profile in the chitosan‑p(MAA‑co‑NIPAM) hydrogel.
    Matched MeSH terms: Drug Carriers/chemistry*
  3. Helal MH, Al-Mudaris ZA, Al-Douh MH, Osman H, Wahab HA, Alnajjar BO, et al.
    Int J Oncol, 2012 Aug;41(2):504-10.
    PMID: 22614449 DOI: 10.3892/ijo.2012.1491
    Molecules that target the deoxyribonucleic acid (DNA) minor groove are relatively sequence specific and they can be excellent carrier structures for cytotoxic chemotherapeutic compounds which can help to minimize side effects. Two novel isomeric derivatives of diaminobenzene Schiff base [N,N'-bis (2-hydroxy-3-methoxybenzylidene)-1,2-diaminobenzene (2MJ) and N,N'-bis(2-hydroxy-3-methoxybenzylidene)-1,3-diaminobenzene (2MH)] were analyzed for their DNA minor groove binding (MGB) ability using viscometry, UV and fluorescence spectroscopy, computational modeling and clonogenic assay. The result shows that 2MJ and 2MH are strong DNA MGBs with the latter being more potent. 2MH can form interstrand hydrogen bond linkages at its oxygens with N3 of adenines. Changing the 2-hydroxy-3-methoxybenzylidene binding position to the 1,3 location on the diaminobenzene structure (2MJ) completely removed any viable hydrogen bond formation with the DNA and caused significant decrease in binding strength and minor groove binding potency. Neither compound showed any significant cytotoxicity towards human breast, colon or liver cancer cell lines.
    Matched MeSH terms: Drug Carriers/chemistry*
  4. Rozman NAS, Tong WY, Leong CR, Tan WN, Hasanolbasori MA, Abdullah SZ
    J Microbiol Biotechnol, 2019 Jul 28;29(7):1009-1013.
    PMID: 31288302 DOI: 10.4014/jmb.1904.04065
    Polymeric nanoparticles are widely used for drug delivery due to their biodegradability property. Among the wide array of polymers, chitosan has received growing interest among researchers. It was widely used as a vehicle in polymeric nanoparticles for drug targeting. This review explored the current research on the antimicrobial activity of chitosan nanoparticles (ChNP) and the impact on the clinical applications. The antimicrobial activities of ChNP were widely reported against bacteria, fungi, yeasts and algae, in both in vivo and in vitro studies. For pharmaceutical applications, ChNP were used as antimicrobial coating for promoting wound healing, preventing infections and combating the rise of infectious disease. Besides, ChNP also exhibited significant inhibitory on foodborne microorganisms, particularly on fruits and vegetables. It is noteworthy that ChNP can be also applied to deliver antimicrobial drugs, which further enhance the efficiency and stability of the antimicrobial agent. The present review addresses the potential antimicrobial applications of ChNP from these few aspects.
    Matched MeSH terms: Drug Carriers/chemistry*
  5. Dabbagh A, Mahmoodian R, Abdullah BJ, Abdullah H, Hamdi M, Abu Kasim NH
    Int J Hyperthermia, 2015;31(8):920-9.
    PMID: 26670340 DOI: 10.3109/02656736.2015.1094147
    The aim of this paper was to synthesise core-shell nanostructures comprised of mesoporous silica core and a low melting-point polyethylene glycol (PEG) nanoshell with a sharp gel-liquid phase transition for rapid drug release at hyperthermia temperature range.
    Matched MeSH terms: Drug Carriers/chemistry*
  6. Dorniani D, Hussein MZ, Kura AU, Fakurazi S, Shaari AH, Ahmad Z
    Int J Mol Sci, 2013;14(12):23639-53.
    PMID: 24300098 DOI: 10.3390/ijms141223639
    The preparation of magnetic nanoparticles coated with chitosan-prindopril erbumine was accomplished and confirmed by X-ray diffraction, TEM, magnetic measurements, thermal analysis and infrared spectroscopic studies. X-ray diffraction and TEM results demonstrated that the magnetic nanoparticles were pure iron oxide phase, having a spherical shape with a mean diameter of 6 nm, compared to 15 nm after coating with chitosan-prindopril erbumine (FCPE). Fourier transform infrared spectroscopy study shows that the coating of iron oxide nanoparticles takes place due to the presence of some bands that were emerging after the coating process, which belong to the prindopril erbumine (PE). The thermal stability of the PE in an FCPE nanocomposite was remarkably enhanced. The release study showed that around 89% of PE could be released within about 93 hours by a phosphate buffer solution at pH 7.4, which was found to be of sustained manner governed by first order kinetic. Compared to the control (untreated), cell viability study in 3T3 cells at 72 h post exposure to both the nanoparticles and the pure drug was found to be sustained above 80% using different doses.
    Matched MeSH terms: Drug Carriers/chemistry*
  7. Hussein AS, Abdullah N, Ahmadun FR
    IET Nanobiotechnol, 2013 Jun;7(2):33-41.
    PMID: 24046903
    Linamarin-loaded poly (lactide-co-glycolide) (PLGA) nanoparticles (NPs) were prepared by the double emulsion solvent evaporation technique. The formulated PLGA (50:50) and PLGA (85:15) NPs were spherically shaped, having an average particle size < 190 nm, drug entrapment efficiency (50-52%) and zeta potentials ranging from -25 to -30 mV. Interestingly, all formulated PLGA NPs exhibited a controlled biphasic release profile. Polymer degradation was investigated in the current research to determine the major degradation products and then the polymer biocompatibility as well as safety. The PLGA NPs degradation behaviour was investigated by measuring water uptake, mass loss, change of pH of the degradation medium, morphological changes, and lactic and glycolic acid concentrations. Gravimetrical methods, pH meter, scanning electron microscope and high-performance liquid chromatography were employed, respectively. PLGA (50:50) NPs were found to degrade faster than PLGA (85:15) NPs. With regard to water uptake, mass loss and pH change, the degradation behaviour of PLGA (50:50) NPs was significantly (rho < 0.05) different from that of PLGA (85:15) NPs. A complete degradation of PLGA (50:50) NPs was achieved after 102 days, whereas, only about 60% of PLGA (85:15) NPs were degraded within the same period. Complete degradation and release of the degradation products naturally by the body ensures safety of the delivery carrier.
    Matched MeSH terms: Drug Carriers/chemistry
  8. Tan YT, Peh KK, Al-Hanba O
    J Pharm Pharm Sci, 2001 Jan-Apr;4(1):7-14.
    PMID: 11302785
    To investigate the interpolymer complexation between Carbopol 934P (CP) and various grades of polyvinylpyrrolidone (PVP) (K90, K32, C15, and VA/S-630).
    Matched MeSH terms: Drug Carriers/chemistry*
  9. Qidwai A, Khan S, Md S, Fazil M, Baboota S, Narang JK, et al.
    Drug Deliv, 2016 May;23(4):1476-85.
    PMID: 26978275 DOI: 10.3109/10717544.2016.1165310
    Topical photodynamic therapy (PDT) is a promising alternative for malignant skin diseases such as basal-cell carcinoma (BCC), due to its simplicity, enhanced patient compliance, and localization of the residual photosensitivity to the site of application. However, insufficient photosensitizer penetration into the skin is the major issue of concern with topical PDT. Therefore, the aim of the present study was to enable penetration of photosensitizer to the different strata of the skin using a lipid nanocarrier system. We have attempted to develop a nanostructured lipid carrier (NLC) for the topical delivery of second-generation photosensitizer, 5-amino levulinic acid (5-ALA), whose hydrophilicity and charge characteristic limit its percutaneous absorption. The microemulsion technique was used for preparing 5-ALA-loaded NLC. The mean particle size, polydispersity index, and entrapment efficiency of the optimized NLC of 5-ALA were found to be 185.2 ± 1.20, 0.156 ± 0.02, and 76.8 ± 2.58%, respectively. The results of in vitro release and in vitro skin permeation studies showed controlled drug release and enhanced penetration into the skin, respectively. Confocal laser scanning microscopy and cell line studies respectively demonstrated that encapsulation of 5-ALA in NLC enhanced its ability to reach deeper skin layers and consequently, increased cytotoxicity.
    Matched MeSH terms: Drug Carriers/chemistry*
  10. Jafarieh O, Md S, Ali M, Baboota S, Sahni JK, Kumari B, et al.
    Drug Dev Ind Pharm, 2015;41(10):1674-81.
    PMID: 25496439 DOI: 10.3109/03639045.2014.991400
    Parkinson disease (PD) is a common, progressive neurodegenerative disorder, characterized by marked depletion of striatal dopamine and degeneration of dopaminergic neurons in the substantia nigra.
    Matched MeSH terms: Drug Carriers/chemistry
  11. Shadab M, Haque S, Sheshala R, Meng LW, Meka VS, Ali J
    Curr Pharm Des, 2017;23(3):440-453.
    PMID: 27784250 DOI: 10.2174/1381612822666161026163201
    BACKGROUND: The drug delivery of macromolecules such as proteins and peptides has become an important area of research and represents the fastest expanding share of the market for human medicines. The most common method for delivering macromolecules is parenterally. However parenteral administration of some therapeutic macromolecules has not been effective because of their rapid clearance from the body. As a result, most macromolecules are only therapeutically useful after multiple injections, which causes poor compliance and systemic side effects.

    METHOD: Therefore, there is a need to improve delivery of therapeutic macromolecules to enable non-invasive delivery routes, less frequent dosing through controlled-release drug delivery, and improved drug targeting to increase efficacy and reduce side effects.

    RESULT: Non-invasive administration routes such as intranasal, pulmonary, transdermal, ocular and oral delivery have been attempted intensively by formulating macromolecules into nanoparticulate carriers system such as polymeric and lipidic nanoparticles.

    CONCLUSION: This review discusses barriers to drug delivery and current formulation technologies to overcome the unfavorable properties of macromolecules via non-invasive delivery (mainly intranasal, pulmonary, transdermal oral and ocular) with a focus on nanoparticulate carrier systems. This review also provided a summary and discussion of recent data on non-invasive delivery of macromolecules using nanoparticulate formulations.

    Matched MeSH terms: Drug Carriers/chemistry
  12. Nordin N, Yeap SK, Rahman HS, Zamberi NR, Mohamad NE, Abu N, et al.
    Molecules, 2020 Jun 09;25(11).
    PMID: 32526880 DOI: 10.3390/molecules25112670
    Cancer nano-therapy has been progressing rapidly with the introduction of many novel drug delivery systems. The previous study has reported on the in vitro cytotoxicity of citral-loaded nanostructured lipid carrier (NLC-Citral) on MDA-MB-231 cells and some preliminary in vivo antitumor effects on 4T1 breast cancer cells challenged mice. However, the in vivo apoptosis induction and anti-metastatic effects of NLC-Citral have yet to be reported. In this study, the in vitro cytotoxic, anti-migration, and anti-invasion effects of NLC-Citral were tested on 4T1 breast cancer cells. In addition, the in vivo antitumor effects of oral delivery of NLC-Citral was also evaluated on BALB/c mice induced with 4T1 cells. In vitro cytotoxicity results showed that NLC-Citral and citral gave similar IC50 values on 4T1 cells. However, wound healing, migration, and invasion assays reflected better in vitro anti-metastasis potential for NLC-Citral than citral alone. Results from the in vivo study indicated that both NLC-Citral and citral have anti-tumor and anti-metastasis effects, whereby the NLC-Citral showed better efficacy than citral in all experiments. Also, the delay of tumor progression was through the suppression of the c-myc gene expression and induction of apoptosis in the tumor. In addition, the inhibition of metastasis of 4T1 cells to lung and bone marrow by the NLC-Citral and citral treatments was correlated with the downregulation of metastasis-related genes expression including MMP-9, ICAM, iNOS, and NF-kB and the angiogenesis-related proteins including G-CSF alpha, Eotaxin, bFGF, VEGF, IL-1alpha, and M-CSF in the tumor. Moreover, NLC-Citral showed greater downregulation of MMP-9, iNOS, ICAM, Eotaxin, bFGF, VEGF, and M-CSF than citral treatment in the 4T1-challenged mice, which may contribute to the better anti-metastatic effect of the encapsulated citral. This study suggests that NLC is a potential and effective delivery system for citral to target triple-negative breast cancer.
    Matched MeSH terms: Drug Carriers/chemistry*
  13. Nordin N, Yeap SK, Rahman HS, Zamberi NR, Abu N, Mohamad NE, et al.
    Sci Rep, 2019 02 07;9(1):1614.
    PMID: 30733560 DOI: 10.1038/s41598-018-38214-x
    Very recently, we postulated that the incorporation of citral into nanostructured lipid carrier (NLC-Citral) improves solubility and delivery of the citral without toxic effects in vivo. Thus, the objective of this study is to evaluate anti-cancer effects of NLC-Citral in MDA MB-231 cells in vitro through the Annexin V, cell cycle, JC-1 and fluorometric assays. Additionally, this study is aimed to effects of NLC-Citral in reducing the tumor weight and size in 4T1 induced murine breast cancer model. Results showed that NLC-Citral induced apoptosis and G2/M arrest in MDA MB-231 cells. Furthermore, a prominent anti-metastatic ability of NLC-Citral was demonstrated in vitro using scratch, migration and invasion assays. A significant reduction of migrated and invaded cells was observed in the NLC-Citral treated MDA MB-231 cells. To further evaluate the apoptotic and anti-metastatic mechanism of NLC-Citral at the molecular level, microarray-based gene expression and proteomic profiling were conducted. Based on the result obtained, NLC-Citral was found to regulate several important signaling pathways related to cancer development such as apoptosis, cell cycle, and metastasis signaling pathways. Additionally, gene expression analysis was validated through the targeted RNA sequencing and real-time polymerase chain reaction. In conclusion, the NLC-Citral inhibited the proliferation of breast cancer cells in vitro, majorly through the induction of apoptosis, anti-metastasis, anti-angiogenesis potentials, and reducing the tumor weight and size without altering the therapeutic effects of citral.
    Matched MeSH terms: Drug Carriers/chemistry
  14. Rahman HS, Othman HH, Hammadi NI, Yeap SK, Amin KM, Abdul Samad N, et al.
    Int J Nanomedicine, 2020;15:2439-2483.
    PMID: 32346289 DOI: 10.2147/IJN.S227805
    Many types of research have distinctly addressed the efficacy of natural plant metabolites used for human consumption both in cell culture and preclinical animal model systems. However, these in vitro and in vivo effects have not been able to be translated for clinical use because of several factors such as inefficient systemic delivery and bioavailability of promising agents that significantly contribute to this disconnection. Over the past decades, extraordinary advances have been made successfully on the development of novel drug delivery systems for encapsulation of plant active metabolites including organic, inorganic and hybrid nanoparticles. The advanced formulas are confirmed to have extraordinary benefits over conventional and previously used systems in the manner of solubility, bioavailability, toxicity, pharmacological activity, stability, distribution, sustained delivery, and both physical and chemical degradation. The current review highlights the development of novel nanocarrier for plant active compounds, their method of preparation, type of active ingredients, and their biomedical applications.
    Matched MeSH terms: Drug Carriers/chemistry
  15. Pandey M, Mohamad N, Amin MC
    Mol Pharm, 2014 Oct 6;11(10):3596-608.
    PMID: 25157890 DOI: 10.1021/mp500337r
    The objective of this study is to synthesize and evaluate acute toxicity of the bacterial cellulose (BC)/acrylamide (Am) hydrogels as noncytotoxic and biocompatible oral drug delivery vehicles. A novel series of solubilized BC/Am hydrogels were synthesized using a microwave irradiation method. The hydrogels were characterized by Fourier transform infrared spectroscopy (FTIR), swelling ratio, porosity, drug release, and in vitro and in vivo biocompatibility experiments. FTIR spectra revealed that the BC crystallinity and gel fraction decreased as the NaOH concentration increased from 2% to 10% w/v, whereas the optical transparency, pH sensitivity, and porosity were enhanced with increasing alkali concentration. Theophylline was used as a model drug for drug loading and release studies. The percentage of drug released was higher at pH 7.4 compared to pH 1.5. In vitro cytotoxicity and hemolytic tests indicated that the BC/Am hydrogel is noncytotoxic and hemocompatible. Results of acute oral toxicity tests on ICR mice suggested that the hydrogels are nontoxic up to 2000 mg/kg when administered orally, as no toxic response or histopathological changes were observed in comparison to control mice. The results of this study demonstrated that the pH-sensitive smart hydrogel makes it a possible safe carrier for oral drug delivery.
    Matched MeSH terms: Drug Carriers/chemistry*
  16. Das SS, Alkahtani S, Bharadwaj P, Ansari MT, ALKahtani MDF, Pang Z, et al.
    Int J Pharm, 2020 Jul 30;585:119556.
    PMID: 32574684 DOI: 10.1016/j.ijpharm.2020.119556
    In recent years, due to the effective drug delivery and preciseness of tumor sites or microenvironment, the targeted drug delivery approaches have gained ample attention for tumor metastasis therapy. The conventional treatment approaches for metastasis therapy have reported with immense adverse effects because they exhibited maximum probability of killing the carcinogenic cells along with healthy cells. The tumor vasculature, comprising of vasculogenic impressions and angiogenesis, greatly depends upon the growth and metastasis in the tumors. Therefore, various nanocarriers-based delivery approaches for targeting to tumor vasculature have been attempted as efficient and potential approaches for the treatment of tumor metastasis and the associated lesions. Furthermore, the targeted drug delivery approaches have found to be most apt way to overcome from all the limitations and adverse effects associated with the conventional therapies. In this review, various approaches for efficient targeting of pharmacologically active chemotherapeutics against tumor metastasis with the cohesive objectives of prognosis, tracking and therapy are summarized.
    Matched MeSH terms: Drug Carriers/chemistry
  17. Kusrini E, Arbianti R, Sofyan N, Abdullah MA, Andriani F
    PMID: 24177873 DOI: 10.1016/j.saa.2013.09.132
    In the presence of hydroxyl and amine groups, chitosan is highly reactive; therefore, it could be used as a carrier in drug delivery. For this study, chitosan-Sm complexes with different concentrations of samarium from 2.5 to 25 wt.% have been successfully synthesized by the impregnation method. Chitosan combined with Sm3+ ions produced a drug carrier material with fluorescence properties; thus, it could also be used as an indicator of drug release with ibuprofen (IBU) as a model drug. We evaluated the spectroscopic and interaction properties of chitosan and Sm3+ ions, the interaction of chitosan-Sm matrices with IBU as a model drug, and the effect of Sm3+ ions addition on the chitosan ability to adsorb the drug. The result showed that the hypersensitive fluorescence intensity of chitosan-Sm (2.5 wt.%) is higher than the others, even though the adsorption efficiency of chitosan-Sm 2.5wt.% is lower (29.75%) than that of chitosan-Sm 25 wt.% (33.04%). Chitosan-Sm 25 wt.% showed the highest efficiency of adsorption of ibuprofen (33.04%). In the release process of ibuprofen from the chitosan-Sm-IBU matrix, the intensity of orange fluorescent properties in the hypersensitive peak of 4G5/2→6H7/2 transition at 590 nm was observed. Fluorescent intensity increased with the cumulative amount of IBU released; therefore, the release of IBU from the Sm-modified chitosan complex can be monitored by the changes in fluorescent intensity.
    Matched MeSH terms: Drug Carriers/chemistry*
  18. Kura AU, Hussein Al Ali SH, Hussein MZ, Fakurazi S, Arulselvan P
    Int J Nanomedicine, 2013;8:1103-10.
    PMID: 23524513 DOI: 10.2147/IJN.S39740
    A new layered organic-inorganic nanocomposite material with an anti-parkinsonian active compound, L-3-(3,4-dihydroxyphenyl) alanine (levodopa), intercalated into the inorganic interlayers of a Zn/Al-layered double hydroxide (LDH) was synthesized using a direct coprecipitation method. The resulting nanocomposite was composed of the organic moiety, levodopa, sandwiched between Zn/Al-LDH inorganic interlayers. The basal spacing of the resulting nano-composite was 10.9 Å. The estimated loading of levodopa in the nanocomposite was approximately 16% (w/w). A Fourier transform infrared study showed that the absorption bands of the nanocomposite were characteristic of both levodopa and Zn/Al-LDH, which further confirmed intercalation, and that the intercalated organic moiety in the nanocomposite was more thermally stable than free levodopa. The resulting nanocomposite showed sustained-release properties, so can be used in a controlled-release formulation. Cytotoxicity analysis using an MTT assay also showed increased cell viability of 3T3 cells exposed to the newly synthesized nanocomposite compared with those exposed to pure levodopa after 72 hours of exposure.
    Matched MeSH terms: Drug Carriers/chemistry*
  19. Ngan CL, Asmawi AA
    Drug Deliv Transl Res, 2018 10;8(5):1527-1544.
    PMID: 29881970 DOI: 10.1007/s13346-018-0550-4
    Inhalation therapy of lipid-based carriers has great potential in direct target towards the root of respiratory diseases, which make them superior over other drug deliveries. With the successful entry of lipid carriers into the target cells, drugs can be absorbed in a sustained release manner and yield extended medicinal effects. Nevertheless, translation of inhalation therapy from laboratory to clinic especially in drug delivery remains a key challenge to the formulators. An ideal drug vehicle should safeguard the drugs from any premature elimination, facilitate cellular uptake, and promote maximum drug absorption with negligible toxicity. Despite knowing that lung treatment can be done via systemic delivery, pulmonary administration is capable of enhancing drug retention within the lungs, while minimizing systemic toxicity with local targeting. Current inhalation therapy of lipid-based carriers can be administered either intratracheally or intranasally to reach deep lung. However, the complex dimensions of lung architectural and natural defense mechanism poise major barriers towards targeted pulmonary delivery. Delivery systems have to be engineered in a way to tackle various diseases according to their biological conditions. This review highlights on the developmental considerations of lipid-based delivery systems cater for the pulmonary intervention of different lung illnesses.
    Matched MeSH terms: Drug Carriers/chemistry
  20. Budiman A, Rusdin A, Subra L, Aulifa DL
    Int J Nanomedicine, 2023;18:5473-5493.
    PMID: 37791322 DOI: 10.2147/IJN.S426120
    In 2020, there were 2.21 million new instances of lung cancer, making it the top cause of mortality globally, responsible for close to 10 million deaths. The physicochemical problems of chemotherapy drugs are the primary challenge that now causes a drug's low effectiveness. Solubility is a physicochemical factor that has a significant impact on a drug's biopharmaceutical properties, starting with the rate at which it dissolves and extending through how well it is absorbed and bioavailable. One of the most well-known methods for addressing a drug's solubility is mesoporous silica, which has undergone excellent development due to the conjugation of polymers and ligands that increase its effectiveness. However, there are still very few papers addressing the success of this discovery, particularly those addressing its molecular pharmaceutics and mechanism. Our study's objectives were to explore and summarize the effects of targeting mediator on drug development using mesoporous silica with and without functionalized polymer. We specifically focused on highlighting the molecular pharmaceutics and mechanism in this study's innovative findings. Journals from the Scopus, PubMed, and Google Scholar databases that were released during the last ten years were used to compile this review. According to inclusion and exclusion standards adjusted. This improved approach produced very impressive results, a very significant change in the characteristics of mesoporous silica that can affect effectiveness. Mesoporous silica approaches have the capacity to greatly enhance a drug's physicochemical issues, boost therapeutic efficacy, and acquire superb features.
    Matched MeSH terms: Drug Carriers/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links