Displaying publications 1 - 20 of 106 in total

Abstract:
Sort:
  1. A/L B Vasanth Rao VR, Tan SH, Candasamy M, Bhattamisra SK
    Diabetes Metab Syndr, 2018 11 30;13(1):754-762.
    PMID: 30641802 DOI: 10.1016/j.dsx.2018.11.054
    Diabetic nephropathy (DN) is a major cause of end-stage renal disease and affects a large number of individuals with diabetes. However, the development of specific treatments for DN has not yet been identified. Hence, this review is concisely designed to understand the molecular pathways leading to DN in order to develop suitable therapeutic strategies. Extensive literature search have been carried in regard with the pathogenesis and pathophysiology of DN, drug targets and updates on clinical trials, the consequences associated with DN and the potential biomarkers for diagnosis and prediction of DN are discussed in this review. DN is characterised by microalbuminuria and macroalbuminuria, and morphological changes such as glomerular thickening, interstitial fibrosis, formation of nodular glomerulosclerosis and decreased endothelial cell fenestration. Besides, the involvement of renin-angiotensin-aldosterone system, inflammation and genetic factors are the key pathways in the progression of DN. In regard with drug development drugs targeted to epidermal growth factor, inflammatory cytokines, ACTH receptor and TGFβ1 receptors are in pipeline for clinical trials whereas, several drugs have also failed in phase III and phase IV of clinical trials due to lack of efficacy and severe adverse effect. The research on DN is limited with respect to its pathogenesis and drug development. Thus, a more detailed understanding of the pathogenesis of DN is very essential to progress in the drug development process.
    Matched MeSH terms: Inflammation Mediators/antagonists & inhibitors; Inflammation Mediators/metabolism
  2. Abd Rashid N, Abd Halim SAS, Teoh SL, Budin SB, Hussan F, Adib Ridzuan NR, et al.
    Biomed Pharmacother, 2021 Dec;144:112328.
    PMID: 34653753 DOI: 10.1016/j.biopha.2021.112328
    Cisplatin is a potent platinum-based anticancer drug approved by the Food Drug Administration (FDA) in 1978. Despite its advantages against solid tumors, cisplatin confers toxicity to various tissues that limit its clinical uses. In cisplatin-induced hepatotoxicity, few mechanisms have been identified, which started as excess generation of reactive oxygen species that leads to oxidative stress, inflammation, DNA damage and apoptosis in the liver. Various natural products, plant extracts and oil rich in flavonoids, terpenoids, polyphenols, and phenolic acids were able to minimize oxidative stress by restoring the level of antioxidant enzymes and acting as an anti-inflammatory agent. Likewise, treatment with honey and royal jelly was demonstrated to decrease serum transaminases and scavenge free radicals in the liver after cisplatin administration. Medicinal properties of these natural products have a promising potential as a complementary therapy to counteract cisplatin-induced hepatotoxicity. This review concentrated on the protective role of several natural products, which has been proven in the laboratory findings to combat cisplatin-induced hepatotoxicity.
    Matched MeSH terms: Inflammation Mediators/metabolism
  3. Abu Bakar MH, Shariff KA, Tan JS, Lee LK
    Eur J Pharmacol, 2020 Sep 15;883:173371.
    PMID: 32712089 DOI: 10.1016/j.ejphar.2020.173371
    Accumulating evidence indicates that adipose tissue inflammation and mitochondrial dysfunction in skeletal muscle are inextricably linked to obesity and insulin resistance. Celastrol, a bioactive compound derived from the root of Tripterygium wilfordii exhibits a number of attributive properties to attenuate metabolic dysfunction in various cellular and animal disease models. However, the underlying therapeutic mechanisms of celastrol in the obesogenic environment in vivo remain elusive. Therefore, the current study investigated the metabolic effects of celastrol on insulin sensitivity, inflammatory response in adipose tissue and mitochondrial functions in skeletal muscle of the high fat diet (HFD)-induced obese rats. Our study revealed that celastrol supplementation at 3 mg/kg/day for 8 weeks significantly reduced the final body weight and enhanced insulin sensitivity of the HFD-fed rats. Celastrol noticeably improved insulin-stimulated glucose uptake activity and increased expression of plasma membrane GLUT4 protein in skeletal muscle. Moreover, celastrol-treated HFD-fed rats showed attenuated inflammatory responses via decreased NF-κB activity and diminished mRNA expression responsible for classically activated macrophage (M1) polarization in adipose tissues. Significant improvement of muscle mitochondrial functions and enhanced antioxidant defense machinery via restoration of mitochondrial complexes I + III linked activity were effectively exhibited by celastrol treatment. Mechanistically, celastrol stimulated mitochondrial biogenesis attributed by upregulation of the adenosine monophosphate-activated protein kinase (AMPK) and sirtuin 1 (SIRT1) signaling pathways. Together, these results further demonstrate heretofore the conceivable therapeutic mechanisms of celastrol in vivo against HFD-induced obesity mediated through attenuation of inflammatory response in adipose tissue and enhanced mitochondrial functions in skeletal muscle.
    Matched MeSH terms: Inflammation Mediators/metabolism
  4. Abu Bakar MH, Azmi MN, Shariff KA, Tan JS
    Appl Biochem Biotechnol, 2019 May;188(1):241-259.
    PMID: 30417321 DOI: 10.1007/s12010-018-2920-2
    Withaferin A (WA), a bioactive constituent derived from Withania somnifera plant, has been shown to exhibit many qualifying properties in attenuating several metabolic diseases. The current investigation sought to elucidate the protective mechanisms of WA (1.25 mg/kg/day) on pre-existing obese mice mediated by high-fat diet (HFD) for 12 weeks. Following dietary administration of WA, significant metabolic improvements in hepatic insulin sensitivity, adipocytokines with enhanced glucose tolerance were observed. The hepatic oxidative functions of obese mice treated with WA were improved via augmented antioxidant enzyme activities. The levels of serum pro-inflammatory cytokines and hepatic mRNA expressions of toll-like receptor (TLR4), nuclear factor κB (NF-κB), tumor necrosis factor-α (TNF-α), chemokine (C-C motif) ligand-receptor, and cyclooxygenase 2 (COX2) in HFD-induced obese mice were reduced. Mechanistically, WA increased hepatic mRNA expression of peroxisome proliferator-activated receptors (PPARs), cluster of differentiation 36 (CD36), fatty acid synthase (FAS), carnitine palmitoyltransferase 1 (CPT1), glucokinase (GCK), phosphofructokinase (PFK), and phosphoenolpyruvate carboxykinase (PCK1) that were associated with enhanced lipid and glucose metabolism. Taken together, these results indicate that WA exhibits protective effects against HFD-induced obesity through attenuation of hepatic inflammation, oxidative stress, and insulin resistance in mice.
    Matched MeSH terms: Inflammation Mediators/metabolism
  5. Ahmad S, Israf DA, Lajis NH, Shaari K, Mohamed H, Wahab AA, et al.
    Eur J Pharmacol, 2006 May 24;538(1-3):188-94.
    PMID: 16650843
    Some chalcones, such as hydroxychalcones have been reported previously to inhibit major pro-inflammatory mediators such as nitric oxide (NO), prostaglandin E(2) (PGE(2)), tumor necrosis factor-alpha (TNF-alpha) and reactive oxygen species production by suppressing inducible enzyme expression via inhibition of the mitogen-activated protein kinase (MAPK) pathway and nuclear translocation of critical transcription factors. In this report, the effects of cardamonin (2',4'-dihydroxy-6'-methoxychalcone), a chalcone that we have previously isolated from Alpinia rafflesiana, was evaluated upon two cellular systems that are repeatedly used in the analysis of anti-inflammatory bioactive compounds namely RAW 264.7 cells and whole blood. Cardamonin inhibited NO and PGE(2) production from lipopolysaccharide- and interferon-gamma-induced RAW cells and whole blood with IC(50) values of 11.4 microM and 26.8 microM, respectively. Analysis of thromboxane B(2) (TxB(2)) secretion from whole blood either stimulated via the COX-1 or COX-2 pathway revealed that cardamonin inhibits the generation of TxB(2) via both pathways with IC(50) values of 2.9 and 1.1 microM, respectively. Analysis of IC(50) ratios determined that cardamonin was more COX-2 selective in its inhibition of TxB(2) with a ratio of 0.39. Cardamonin also inhibited the generation of intracellular reactive oxygen species and secretion of TNF-alpha from RAW 264.7 cells in a dose responsive manner with IC(50) values of 12.8 microM and 4.6 microM, respectively. However, cardamonin was a moderate inhibitor of lipoxygenase activity when tested in an enzymatic assay system, in which not a single concentration tested was able to cause an inhibition of more than 50%. Our results suggest that cardamonin acts upon major pro-inflammatory mediators in a similar fashion as described by previous work on other closely related synthetic hydroxychalcones and strengthens the conclusion of the importance of the methoxyl moiety substitution on the 4' or 6' locations of the A benzene ring.
    Matched MeSH terms: Inflammation Mediators/blood; Inflammation Mediators/metabolism*
  6. Al-Fahdawi MQ, Al-Doghachi FAJ, Abdullah QK, Hammad RT, Rasedee A, Ibrahim WN, et al.
    Biomed Pharmacother, 2021 Jun;138:111483.
    PMID: 33744756 DOI: 10.1016/j.biopha.2021.111483
    The aim of this study was to prepare, characterize, and determine the in vitro anticancer effects of platinum-doped magnesia (Pt/MgO) nanoparticles. The chemical compositions, functional groups, and size of nanoparticles were determined using X-ray diffraction, Fourier transform infrared spectroscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, and scanning electron microscopy. Pt/MgO nanoparticles were cuboid and in the nanosize range of 30-50 nm. The cytotoxicity of Pt/MgO nanoparticles was determined via the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay on the human lung and colonic cancer cells (A549 and HT29 respectively) and normal human lung and colonic fibroblasts cells (MRC-5 and CCD-18Co repectively). The Pt/MgO nanoparticles were relatively innocuous to normal cells. Pt/MgO nanoparticles downregulated Bcl-2 and upregulated Bax and p53 tumor suppressor proteins in the cancer cells. Pt/MgO nanoparticles also induced production of reactive oxygen species, decreased cellular glutathione level, and increased lipid peroxidation. Thus, the anticancer effects of Pt/MgO nanoparticles were attributed to the induction of oxidative stress and apoptosis. The study showed the potential of Pt/MgO nanoparticles as an anti-cancer compound.
    Matched MeSH terms: Inflammation Mediators/metabolism
  7. Ali NM, Mohd Yusof H, Yeap SK, Ho WY, Beh BK, Long K, et al.
    PMID: 25045389 DOI: 10.1155/2014/350507
    Evaluation of anti-inflammatory and antinociceptive activities of untreated mung bean (MB), germinated mung bean (GMB), and fermented mung bean (FMB) was performed on both in vitro (inhibition of inflammatory mediator, nitric oxide(NO)) and in vivo (inhibition of ear oedema and reduction of response to pain stimulus) studies. Results showed that both GMB and FMB aqueous extract exhibited potent anti-inflammatory and antinociceptive activities in a dose-dependent manner. In vitro results showed that GMB and FMB were potent inflammatory mediator (NO) inhibitors at both 2.5 and 5 mg/mL. Further in vivo studies showed that GMB and FMB aqueous extract at 1000 mg/kg can significantly reduce ear oedema in mice caused by arachidonic acid. Besides, both 200 mg/kg and 1000 mg/kg concentrations of GMB and FMB were found to exhibit potent antinociceptive effects towards hotplate induced pain. With these, it can be concluded that GMB and FMB aqueous extract exhibited potential anti-inflammatory and antinociceptive effects.
    Matched MeSH terms: Inflammation Mediators
  8. Ali SS, Ahmad WANW, Budin SB, Zainalabidin S
    Rev Cardiovasc Med, 2020 Jun 30;21(2):225-240.
    PMID: 32706211 DOI: 10.31083/j.rcm.2020.02.49
    In spite of medical advances, cardiovascular disease remains a significant concern, imposing a great burden upon the economy and public health of nations by causing the highest morbidity and mortality cases globally. Moreover, it is well established that inflammation is closely linked to the pathogenesis of cardiovascular diseases. Hence, targeting inflammation seems to be a promising strategy in reducing cardiovascular risks. Currently, the importance of natural products in modern medicine is well recognised and continues to be of interest to the pharmaceutical industry. Phenolic acids are a class of phytochemical compounds that are well-known for their health benefits. They consists of various phytochemical constituents and have been widely studied in various disease models. Research involving both animals and humans has proven that phenolic acids possess cardioprotective properties such as anti-hypertensive, anti-hyperlipidemia, anti-fibrotic and anti-hypertrophy activity. Furthermore, numerous studies have proven that phenolic acids in phytochemical constituents such as gallic acid, caffeic acid and chlorogenic acid are promising anti-inflammatory agents. Hence, in this review, we outline and review recent evidence on the role of phenolic acids and their anti-inflammatory significance in studies published during the last 5 years. We also discuss their possible mechanisms of action in modulating inflammation related to cardiovascular disease.
    Matched MeSH terms: Inflammation Mediators/metabolism*
  9. Ali SS, Noordin L, Bakar RA, Zainalabidin S, Jubri Z, Wan Ahmad WAN
    Cardiovasc Toxicol, 2021 08;21(8):605-618.
    PMID: 34114196 DOI: 10.1007/s12012-021-09666-x
    Clinically, timely reperfusion strategies to re-establish oxygenated blood flow in ischemic heart diseases seem to salvage viable myocardium effectively. Despite the remarkable improvement in cardiac function, reperfusion therapy could paradoxically trigger hypoxic cellular injury and dysfunction. Experimental laboratory models have been developed over the years to explain better the pathophysiology of cardiac ischemia-reperfusion injury, including the in vitro hypoxia-reoxygenation cardiac injury model. Furthermore, the use of nutritional myocardial conditioning techniques have been successful. The cardioprotective potential of flavonoids have been greatly linked to its anti-oxidant, anti-apoptotic and anti-inflammatory properties. While several studies have reviewed the cardioprotective properties of flavonoids, there is a scarce evidence of their function in the hypoxia-reoxygenation injury cell culture model. Hence, the aim of this review was to lay out and summarize our current understanding of flavonoids' function in mitigating hypoxia-reoxygenation cardiac injury based on evidence from the last five years. We also discussed the possible mechanisms of flavonoids in modulating the cardioprotective effects as such information would provide invaluable insight on future therapeutic application of flavonoids.
    Matched MeSH terms: Inflammation Mediators/metabolism
  10. Angelopoulou E, Paudel YN, Shaikh MF, Piperi C
    Pharmacol Res, 2020 08;158:104930.
    PMID: 32445958 DOI: 10.1016/j.phrs.2020.104930
    Neuroinflammation plays a crucial role in the pathogenesis of Parkinson's disease (PD) with the dysregulation of microglial activity being tightly linked to dopaminergic degeneration. Fractalkine (CX3CL1), a chemokine mainly expressed by neurons, can modulate microglial activity through binding to its sole G-protein-coupled receptor (CX3CR1), expressed by microglia. Fractalkine/CX3CR1 signaling is one of the most important mediators of the communication between neurons and microglia, and its emerging role in neurodegenerative disorders including PD has been increasingly recognized. Pre-clinical evidence has revealed that fractalkine signaling axis exerts dual effects on PD-related inflammation and degeneration, which greatly depend on the isoform type (soluble or membrane-bound), animal model (mice or rats, toxin- or proteinopathy-induced), route of toxin administration, time course and specific brain region (striatum, substantia nigra). Furthermore, although existing clinical evidence is scant, it has been indicated that fractalkine may be possibly associated with PD progression, paving the way for future studies investigating its biomarker potential. In this review, we discuss recent evidence on the role of fractalkine/CX3CR1 signaling axis in PD pathogenesis, aiming to shed more light on the molecular mechanisms underlying the neuroinflammation commonly associated with the disease, as well as potential clinical and therapeutic implications.
    Matched MeSH terms: Inflammation Mediators/antagonists & inhibitors; Inflammation Mediators/metabolism*
  11. Ankathil R, Mustapha MA, Abdul Aziz AA, Mohd Shahpudin SN, Zakaria AD, Abu Hassan MR, et al.
    Asian Pac J Cancer Prev, 2019 06 01;20(6):1621-1632.
    PMID: 31244280 DOI: 10.31557/APJCP.2019.20.6.1621
    AIM: To investigate the frequencies and association of polymorphic genotypes of IL-8 -251 T>A, TNF-α -308
    G>A, ICAM-1 K469E, ICAM-1 R241G, IL-6 -174 G>C, and PPAR-γ 34 C>G in modulating susceptibility risk in
    Malaysian colorectal cancer (CRC) patients. Methods: In this case-control study, peripheral blood samples of 560
    study subjects (280 CRC patients and 280 controls) were collected, DNA extracted and genotyped using PCR-RFLP
    and Allele Specific PCR. The association between polymorphic genotype and CRC susceptibility risk was determined
    using Logistic Regression analysis deriving Odds ratio (OR) and 95% CI. Results: On comparing the frequencies of
    genotypes of all single nucleotide polymorphisms ( SNPs ) in patients and controls, the homozygous variant genotypes
    IL-8 -251 AA and TNF-α -308 AA and variant A alleles were significantly higher in CRC patients. Investigation on
    the association of the variant alleles and genotypes singly, with susceptibility risk showed the homozygous variant A
    alleles and genotypes IL-8 -251 AA and TNF-α -308 AA to be at higher risk for CRC predisposition. Analysis based
    on age, gender and smoking habits showed that the polymorphisms IL8 -251 T>A and TNF – α 308 G>A contribute
    to a significantly higher risk among male and female who are more than 50 years and for smokers in this population.
    Conclusion: We observed an association between variant allele and genotypes of IL-8-251 T>A and TNF-α-308
    G>A polymorphisms and CRC susceptibility risk in Malaysian patients. These two SNPs in inflammatory response
    genes which undoubtedly contribute to individual risks to CRC susceptibility may be considered as potential genetic
    predisposition factors for CRC in Malaysian population.
    Matched MeSH terms: Inflammation Mediators
  12. Arya A, Cheah SC, Looi CY, Taha H, Mustafa MR, Mohd MA
    Food Chem Toxicol, 2012 Nov;50(11):4209-20.
    PMID: 22939938 DOI: 10.1016/j.fct.2012.08.012
    This study aimed to ascertain the potential of Centratherum anthelminticum seeds methanolic fraction (CAMFs) for the management of type 2 diabetes and its associated complications. CAMFs was initially tested on β-TC6 cells for H(2)O(2)-induced nuclear factor-κB (NF-κB) translocation effects. The result displayed that CAMFs significantly inhibited NF-κB translocation from cytoplasm into the nucleus, dose-dependently. Furthermore, a 12-week sub-chronic CAMFs study was carried out on streptozotocin (STZ)-nicotinamide-induced type 2 diabetic rat model to evaluate glycemia, essential biochemical parameters, lipid levels, oxidative stress markers, and pro-inflammatory cytokines level. Our study result showed that CAMFs reduced hyperglycemia by increasing serum insulin, C-peptide, total protein, and albumin levels, significantly. Whereas, elevated blood glucose, glycated hemoglobin, lipids and enzyme activities were restored to near normal. CAMFs confirmed antioxidant potential by elevating glutathione (GSH) and reducing malondialdehyde (MDA) levels in diabetic rats. Interestingly, CAMFs down-regulated elevated tumor necrosis factor α (TNF-α), interleukin (IL)-1β and IL-6 in the tissues and serum of the diabetic rats. We conclude that CAMFs exerted apparent antidiabetic effects and demonstrated as a valuable candidate nutraceutical for insulin-resistant type 2 diabetes and its associated complications such as dyslipidemia, oxidative stress, and inflammation.
    Matched MeSH terms: Inflammation Mediators/metabolism
  13. Barathan M, Mariappan V, Shankar EM, Abdullah BJ, Goh KL, Vadivelu J
    Cell Death Dis, 2013;4:e697.
    PMID: 23807226 DOI: 10.1038/cddis.2013.219
    Photodynamic therapy (PDT) has emerged as a capable therapeutic modality for the treatment of cancer. PDT is a targeted cancer therapy that reportedly leads to tumor cell apoptosis and/or necrosis by facilitating the secretion of certain pro-inflammatory cytokines and expression of multiple apoptotic mediators in the tumor microenvironment. In addition, PDT also triggers oxidative stress that directs tumor cell killing and activation of inflammatory responses. However, the cellular and molecular mechanisms underlying the role of PDT in facilitating tumor cell apoptosis remain ambiguous. Here, we investigated the ability of PDT in association with hypericin (HY) to induce tumor cell apoptosis by facilitating the induction of reactive oxygen species (ROS) and secretion of Th1/Th2/Th17 cytokines in human hepatocellular liver carcinoma cell line (HepG2) cells. To discover if any apoptotic mediators were implicated in the enhancement of cell death of HY-PDT-treated tumor cells, selected gene profiling in response to HY-PDT treatment was implemented. Experimental results showed that interleukin (IL)-6 was significantly increased in all HY-PDT-treated cells, especially in 1 μg/ml HY-PDT, resulting in cell death. In addition, quantitative real-time PCR analysis revealed that the expression of apoptotic genes, such as BH3-interacting-domain death agonist (BID), cytochrome complex (CYT-C) and caspases (CASP3, 6, 7, 8 and 9) was remarkably higher in HY-PDT-treated HepG2 cells than the untreated HepG2 cells, entailing that tumor destruction of immune-mediated cell death occurs only in PDT-treated tumor cells. Hence, we showed that HY-PDT treatment induces apoptosis in HepG2 cells by facilitating cytotoxic ROS, and potentially recruits IL-6 and apoptosis mediators, providing additional hints for the existence of alternative mechanisms of anti-tumor immunity in hepatocellular carcinoma, which contribute to long-term suppression of tumor growth following PDT.
    Matched MeSH terms: Inflammation Mediators/metabolism
  14. Barathan M, Mohamed R, Vadivelu J, Chang LY, Vignesh R, Krishnan J, et al.
    Cell Immunol, 2017 03;313:1-9.
    PMID: 28104239 DOI: 10.1016/j.cellimm.2016.12.002
    Hepatitis C virus (HCV)-specific CD4+ and CD8+ T cells are key to successful viral clearance in HCV disease. Accumulation of exhausted HCV-specific T cells during chronic infection results in considerable loss of protective functional immune responses. The role of T-cell exhaustion in chronic HCV disease remains poorly understood. Here, we studied the frequency of HCV peptide-stimulated T cells expressing negative immune checkpoints (PD-1, CTLA-4, TRAIL, TIM-3 and BTLA) by flow cytometry, and measured the levels of Th1/Th2/Th17 cytokines secreted by T cells by a commercial Multi-Analyte ELISArray™ following in vitro stimulation of T cells using HCV peptides and phytohemagglutinin (PHA). HCV peptide-stimulated CD4+ and CD8+ T cells of chronic HCV (CHC) patients showed significant increase of CTLA-4. Furthermore, HCV peptide-stimulated CD4+ T cells of CHC patients also displayed relatively higher levels of PD-1 and TRAIL, whereas TIM-3 was up-regulated on HCV peptide-stimulated CD8+ T cells. Whereas the levels of IL-10 and TGF-β1 were significantly increased, the levels of pro-inflammatory cytokines IL-2, TNF-α, IL-17A and IL-6 were markedly decreased in the T cell cultures of CHC patients. Chronic HCV infection results in functional exhaustion of CD4+ and CD8+ T cells likely contributing to viral persistence.
    Matched MeSH terms: Inflammation Mediators/metabolism
  15. Barden A, Phillips M, Mas E, Hill LM, Mowat I, Loh PS, et al.
    PMID: 32084530 DOI: 10.1016/j.prostaglandins.2020.106427
    BACKGROUND: Dexamethasone is commonly given as an antiemetic during surgical procedures. It has immunosuppressive effects and can affect key enzymes involved in the synthesis of specialised lipid mediators of inflammation resolution (SPM) that direct inflammation resolution and have anti-nociceptive actions. This study examined the effect of dexamethasone on plasma SPM, and the relationship between SPM and perceived pain in women undergoing surgery.

    METHODS: Plasma SPM were measured in samples obtained from two double-blind controlled interventions. The first, included 51 women mean age 53 ± 1.5 years, undergoing breast surgery allocated to either intravenous saline, or dexamethasone (4 mg or 8 mg) after induction of anaesthesia. The second study included 31 women of mean age 44 ± 0.5 years undergoing laparoscopic gynecological surgery that were allocated to either saline, or dexamethasone (4 mg). SPM (18-HEPE, 17-HDHA, RvE2, RvD1 17R-RvD1 and RvD2) were measured in plasma collected prior to induction of anaesthesia and at 24 h, and 6 weeks post-surgery. Pain was assessed using a verbal analogue scale at discharge from the post-anaesthesia recovery unit. The data from each study was combined to examine the effect of dexamethasone on plasma SPM. The relationship between pain score and SPM was examined using ordinal logistic regression.

    RESULTS: The SPM 18-HEPE, 17-HDHA, RvE2, RvD1 17R-RvD1 and RvD2 were detectable in all plasma samples. There was no significant difference in any SPM due to dexamethasone over the duration of the study. There was a fall in 17-HDHA between baseline and 24 h in both the dexamethasone and saline groups (P = 0.003) but no change in the downstream SPM (RvD1, 17R-RvD1 and RvD2) or 18-HEPE and RvE2. Pain score was negatively related to levels of RvE2 measured prior to induction of anaesthesia (rho = -0.2991, P = 0.006) and positively related to BMI (rho = 0.279, P = 0.011). In ordinal logistic regression the odds ratio for RvE2 was 0.931 (CI 0.880, 0.986; P = 0.014); after adjusting for the effect of BMI indicating that an increase in RvE2 of 1 pg/ml would result in a 6.9 % fall in pain score. Allocation to a dexamethasone group did not influence the pain score or the relationship between RvE2 and pain score.

    CONCLUSION: Dexamethasone administered as an anti-emetic does not affect plasma SPM levels. An elevated RvE2 level prior to surgery is predictive of a lower perceived pain score post-anaesthesia.

    Matched MeSH terms: Inflammation Mediators
  16. Candasamy M, Mohamed Elhassan SA, Kumar Bhattamisra S, Hua WY, Sern LM, Binti Busthamin NA, et al.
    Panminerva Med, 2020 Sep;62(3):155-163.
    PMID: 32208408 DOI: 10.23736/S0031-0808.20.03879-3
    Alzheimer's disease (AD) and type 2 diabetes mellitus (T2D) are two of the most commonly occurring diseases worldwide, especially among the elderly population. In particular, the increased prevalence of AD has imposed tremendous psychological and financial burdens on society. Growing evidence suggests both AD and T2D share many similar pathological traits. AD is characterized as a metabolic disorder whereby the glucose metabolism in the brain is impaired. This closely resembles the state of insulin resistance in T2D. Insulin resistance of the brain has been heavily implicated two prominent pathological features of AD, Aβ plaques and neurofibrillary tangles. Brain insulin resistance is known to elicit a positive feed-forward loop towards the formation of AD pathology in which they affect each other in a synergistic manner. Other physiological traits shared between the two diseases include inflammation, oxidative stress and autophagic dysfunction, which are also closely associated with brain insulin resistance. In this review and depending on these underlying pathways that link these two diseases, we have discussed the potential therapeutic implications of AD. By expanding our knowledge of the overlapping pathophysiology involved, we hope to provide scientific basis to the discovery of novel therapeutic strategies to improve the clinical outcomes of AD in terms of diagnosis and treatment.
    Matched MeSH terms: Inflammation Mediators/metabolism
  17. Chan PM, Tan YS, Chua KH, Sabaratnam V, Kuppusamy UR
    PLoS One, 2015;10(10):e0139593.
    PMID: 26427053 DOI: 10.1371/journal.pone.0139593
    Amauroderma rugosum, commonly known as "Jiǎzī" in China, is a wild mushroom traditionally used by the Chinese to reduce inflammation, to treat diuretic and upset stomach, and to prevent cancer. It is also used by the indigenous communities in Malaysia to prevent epileptic episodes and incessant crying by babies. The aim of this study was to compare the wild and domesticated basidiocarps of A. rugosum for antioxidant and in vitro anti-inflammatory effects in LPS-stimulated RAW264.7 cells. The wild basidiocarps of A. rugosum were collected from the Belum Forest, Perak, Malaysia and the domesticated basidiocarps of A. rugosum were cultivated in the mushroom house located in the University of Malaya, Kuala Lumpur, Malaysia. Both the wild and domesticated basidiocarps were subjected to ethanolic extraction and the extracts were tested for antioxidant and anti-inflammatory activities. In this study, the crude ethanolic extract of wild (WB) and domesticated (DB) basidiocarps of A. rugosum had comparable total phenolic content and DPPH scavenging activity. However, WB (EC50 = 222.90 μg/mL) displayed a better ABTS cation radical scavenging activity than DB (EC50 = 469.60 μg/mL). Both WB and DB were able to scavenge nitric oxide (NO) radical and suppress the NO production in LPS-stimulated RAW264.7 cells and this effect was mediated through the down-regulation of inducible nitric oxide synthase (iNOS) gene. In addition, both WB and DB caused down-regulation of the inflammatory gene TNF-α and the up-regulation of the anti-inflammatory gene IL-10. There was no inhibitory effect of WB and DB on nuclear translocation of NF-κB p65. In conclusion, the wild and domesticated basidiocarps of A. rugosum possessed antioxidant and in vitro anti-inflammatory properties. WB and DB inhibited downstream inflammatory mediators (TNF-α and NO) and induced anti-inflammatory cytokine IL-10 production. No inhibitory effects shown on upstream nuclear translocation of NF-κB p65. WB and DB exhibited antioxidant activity and attenuation of proinflammatory mediators and therefore, A. rugosum may serve as a potential therapeutic agent in the management of inflammation.
    Matched MeSH terms: Inflammation Mediators/metabolism*
  18. Cheong HC, Lee CYQ, Cheok YY, Shankar EM, Sabet NS, Tan GMY, et al.
    Immunobiology, 2019 01;224(1):34-41.
    PMID: 30477893 DOI: 10.1016/j.imbio.2018.10.010
    BACKGROUND: Persistent inflammation caused by Chlamydia trachomatis in the female genital compartment represents one of the major causes of pelvic inflammatory disease (PID), ectopic pregnancy and infertility in females. Here, we examined the pro-inflammatory cytokine response following stimulation with three different types of C. trachomatis antigens, viz. chlamydial protease-like factor (CPAF), heat shock protein 60 (HSP60) and major outer membrane protein (MOMP).

    METHODS: A total of 19 patients with genital C. trachomatis infection and 10 age-matched healthy controls were recruited for the study. Peripheral blood mononuclear cells (PBMCs) isolated from genital C. trachomatis-infected females were cultured in the presence of CPAF, HSP60 and MOMP antigens, and cytokines were measured by ELISA assay.

    RESULTS: We reported that pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) were robustly secreted following antigenic exposure. Notably, CPAP and MOMP were more potent in triggering IL-1β, as compared to HSP60. Elevated levels of the proinflammatory cytokines were also noted in the samples infected with plasmid-bearing C. trachomatis as compared to those infected with plasmid-free strains.

    CONCLUSIONS: Our study highlights distinct ability of chlamydial antigens in triggering pro-inflammatory response in the host immune cells.

    Matched MeSH terms: Inflammation Mediators/metabolism
  19. Chong YJ, Musa NF, Ng CH, Shaari K, Israf DA, Tham CL
    J Ethnopharmacol, 2016 Nov 04;192:248-255.
    PMID: 27404229 DOI: 10.1016/j.jep.2016.07.032
    PHARMOCOLOGICAL RELEVANCE: 2,4,6-trihydroxy-3-geranyl acetophenone (tHGA), is a phloroglucinol compound found naturally in Melicope ptelefolia. Melicope ptelefolia has been used traditionally for centuries as natural remedy for wound infections and inflammatory diseases.

    AIM OF THE STUDY: Endothelial barrier dysfunction is a pathological hallmark of many diseases and can be caused by lipopolysaccharides (LPS) stimulation. Therefore, this study aims to investigate the possible barrier protective effects of tHGA upon LPS-stimulated inflammatory responses in human umbilical vein endothelial cells (HUVECs).

    MATERIALS AND METHODS: HUVECs were pretreated with tHGA prior to LPS stimulation, where inflammatory parameters including permeability, monocyte adhesion and migration, and release of pro-inflammatory mediators were examined. Additionally, the effect of tHGA on F-actin rearrangement and adhesion protein expression of LPS-stimulated HUVECs was evaluated.

    RESULTS: It was found that pretreatment with tHGA inhibited monocyte adhesion and transendothelial migration, reduced endothelial hyperpermeability and secretion of prostaglandin E2 (PGE2). Additionally, tHGA inhibited cytoskeletal rearrangement and adhesion protein expression on LPS-stimulated HUVECs.

    CONCLUSION: As the regulation of endothelial barrier dysfunction can be one of the therapeutic strategies to improve the outcome of inflammation, tHGA may be able to preserve vascular barrier integrity of endothelial cells following LPS-stimulated dysfunction, thereby endorsing its potential usefulness in vascular inflammatory diseases.

    Matched MeSH terms: Inflammation Mediators/metabolism
  20. Chua KH, Lee TH, Nagandran K, Md Yahaya NH, Lee CT, Tjih ET, et al.
    PMID: 23339380 DOI: 10.1186/1472-6882-13-19
    Osteoarthritis (OA) is a degenerative joint disease that results in the destruction of cartilage. Edible Bird's Nest (EBN) extract contains important components, which can reduce the progression of osteoarthritis and helps in the regeneration of the cartilage. The present study aimed to investigate the effect of EBN extract on the catabolic and anabolic activities of the human articular chondrocytes (HACs) isolated from the knee joint of patients with OA.
    Matched MeSH terms: Inflammation Mediators/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links