Displaying publications 1 - 20 of 200 in total

Abstract:
Sort:
  1. Sow AY, Ismail A, Zulkifli SZ
    Bull Environ Contam Toxicol, 2013 Jul;91(1):6-12.
    PMID: 23666324 DOI: 10.1007/s00128-013-1009-4
    Livers and muscles of swamp eels (Monopterus albus) were analyzed for bioaccumulation of heavy metals during the plowing stage of a paddy cycle. Results showed heavy metals were bioaccumulated more highly in liver than muscle. Zinc (Zn) was the highest bioaccumulated metal in liver (98.5 ± 8.95 μg/g) and in muscle (48.8 ± 7.17 μg/g). The lowest bioaccumulated metals were cadmium (Cd) in liver (3.44 ± 2.42 μg/g) and copper (Cu) in muscle (0.65 ± 0.20 μg/g). In sediments, Zn was present at the highest mean concentration (52.7 ± 2.85 μg/g), while Cd had the lowest mean concentration (1.04 ± 0.24 μg/g). The biota-sediment accumulation factor (BSAF) for Cu, Zn, Cd and nickel (Ni) in liver tissue was greater than the corresponding BSAF for muscle tissue. For the three plowing stages, metal concentrations were significantly correlated between liver and muscle tissues in all cases, and between sediment and either liver or muscle in most cases. Mean measured metal concentrations in muscle tissue were below the maximum permissible limits established by Malaysian and U.S. governmental agencies, and were therefore regarded as safe for human consumption.
    Matched MeSH terms: Liver/metabolism
  2. Azman KF, Safdar A, Zakaria R
    Exp Gerontol, 2021 07 15;150:111372.
    PMID: 33905879 DOI: 10.1016/j.exger.2021.111372
    Aging is associated with a variety of morphological and functional changes in the liver. Oxidative stress and inflammation are now widely accepted as the main mechanisms involved in the aging process that may subsequently cause severe injury to mitochondrial DNA which leads to apoptosis. As aging may increase the risks for various liver diseases and plays as an adverse prognostic factor increasing the mortality rate, knowledge regarding the mechanisms of age-related liver susceptibility and the possible therapeutic interventions is imperative. Due to cost and time constraints, a mimetic aging model is generally preferred to naturally aged animals to study the underlying mechanisms of aging liver. The use of D-galactose in aging research is dated back to 1962 and has since been used widely. This review aims to comprehensively summarize the effects of D-galactose-induced aging on the liver and the underlying mechanisms involved. Its potential therapeutic interventions are also discussed. It is hoped that this invaluable information may facilitate researchers in choosing the appropriate aging model and provide a valuable platform for testing potential therapeutic strategies for the prevention and treatment of age-related liver diseases.
    Matched MeSH terms: Liver/metabolism
  3. Seto WK, Lo YR, Pawlotsky JM, Yuen MF
    Lancet, 2018 11 24;392(10161):2313-2324.
    PMID: 30496122 DOI: 10.1016/S0140-6736(18)31865-8
    Chronic hepatitis B virus infection is a global public health threat that causes considerable liver-related morbidity and mortality. It is acquired at birth or later via person-to-person transmission. Vaccination effectively prevents infection and chronic hepatitis B virus carriage. In chronically infected patients, an elevated serum hepatitis B virus DNA concentration is the main risk factor for disease progression, although there are other clinical and viral parameters that influence disease outcomes. In addition to liver biochemistry, virological markers, and abdominal ultrasonography, non-invasive assessment of liver fibrosis is emerging as an important assessment modality. Long-term nucleos(t)ide-analogue therapy is safe and well tolerated, achieves potent viral suppression, and reduces the incidence of liver-related complications. However, a need to optimise management remains. Promising novel therapies are at the developmental stage. With current vaccines, therapies, and an emphasis on improving linkage to care, WHO's goal of eliminating hepatitis B virus as a global health threat by 2030 is achievable.
    Matched MeSH terms: Liver/metabolism
  4. Magosso E, Ansari MA, Gopalan Y, Shuaib IL, Wong JW, Khan NA, et al.
    Nutr J, 2013;12(1):166.
    PMID: 24373555 DOI: 10.1186/1475-2891-12-166
    Nonalcoholic fatty liver disease (NAFLD) is one of the commonest liver disorders. Obesity, insulin resistance, lipid peroxidation and oxidative stress have been identified amongst the possible hits leading to the onset and progression of this disease. Nutritional evaluation of NAFLD patients showed a lower-than-recommended intake of vitamin E. Vitamin E is a family of 8 isoforms, 4 tocopherols and 4 tocotrienols. Alpha-tocopherol has been widely investigated in liver diseases, whereas no previous clinical trial has investigated tocotrienols for NAFLD. Aim of the study was to determine the effects of mixed tocotrienols, in normalising the hepatic echogenic response in hypercholesterolaemic patients with ultrasound-proven NAFLD.
    Matched MeSH terms: Liver/metabolism
  5. Koriem KM, Abdelhamid AZ, Younes HF
    Toxicol. Mech. Methods, 2013 Feb;23(2):134-43.
    PMID: 22992185 DOI: 10.3109/15376516.2012.730561
    Caffeic acid (CA) (3,4-dihydroxycinnamic acid) is among the major hydroxycinnamic acids. Hydroxycinnamic acid is the major subgroup of phenolic compounds. Methamphetamine (METH) is a potent addictive psychostimulant. Chronic use and acute METH intoxication can cause substantial medical consequences, including spleen, kidney, liver and heart. The objective of the present study was to evaluate the antioxidant activity of CA to protect against oxidative stress and DNA damage to various organs in METH toxicity. Thirty-two male Sprague Dawley (SD) rats were divided into four equal groups: group 1 was injected (i.p) with saline (1 mL/kg) while groups 2,3 and 4 were injected (i.p) with METH (10 mg/kg) twice a day over five days period. Where 100 & 200 mg/kg of CA were injected (i.p) into groups 3 and 4, respectively one day before exposure to METH injections. Tissue antioxidants and DNA content were evaluated in different tissues. METH decreased glutathione (GSH) and glutathione peroxidase (GPx) levels while increased malondialdehyde (MDA), catalase (CAT) and protein carbonyl levels in brain (hypothalamus), liver, and kidney tissues of rats. METH increased hyperdiploidy in these tissues and DNA damage results. Prior treatment of CA to animals exposed to METH restores the above parameters to the normal levels and preserves the DNA content of these tissues. These results were supported by histopathological investigations. In conclusion, METH induced oxidative stress and DNA damage and pretreatment of CA before METH injections prevented tissue oxidative stress and DNA damage in METH-treated animals.
    Matched MeSH terms: Liver/metabolism
  6. Ismael LQ, Keong YY, Bahari H, Lan CA, Yin KB
    Mol Biol Rep, 2024 Feb 01;51(1):271.
    PMID: 38302795 DOI: 10.1007/s11033-023-09080-2
    BACKGROUND: Bisphenol A (BPA) is an exogenous endocrine disruptor mimicking hormones closely associated with health complications, such as cancer progression. BPA is also related to an increase in the prevalence of obesity-related diseases due to its obesogenic action. Bombesin-like receptor 3 (BRS3) is an important factor that should be considered in the adipogenic gene network, as depletion of this gene alters adiposity.

    METHODS: Therefore, the present study aimed to investigate the messenger ribonucleic acid (mRNA) expression of BRS3 in human liver THLE-2 cells post-BPA treatment by real-time polymerase chain reaction. The effects of BPA on the levels of pro-inflammatory proteins, interleukin 6 (IL6) and CC motif chemokine ligand 2 (CCL2), in conditioned media of BPA-treated THLE-2 cells and deoxyribonucleic acid (DNA) synthesis in replicating BPA-treated THLE-2 cells during the cell cycle were also examined by enzyme-linked immunosorbent assay (ELISA) and flow cytometry, respectively.

    RESULTS: The study found that the mRNA expression of BRS3 was increased in THLE-2 cells treated with BPA. The study also showed that the expression levels of IL6 and CCL2 reached an optimum level in the conditioned media of BPA-treated THLE-2 cells after 48 h of treatment. Subsequently, the DNA synthesis analysis showed that bromodeoxyuridine/propidium iodide (BrdU/PI) stained positive cells were decreased in BPA-treated THLE-2 cells at 72 h of treatment.

    CONCLUSION: The study demonstrates that BRS3 expression induced by BPA is likely associated with reduced cell proliferation by inhibiting DNA synthesis and inducing cellular inflammation in liver cells.

    Matched MeSH terms: Liver/metabolism
  7. Karami A, Romano N, Hamzah H, Simpson SL, Yap CK
    Environ Pollut, 2016 May;212:155-165.
    PMID: 26845363 DOI: 10.1016/j.envpol.2016.01.055
    Information on the biological responses of polyploid animals towards environmental contaminants is scarce. This study aimed to compare reproductive axis-related gene expressions in the brain, plasma biochemical responses, and the liver and gill histopathological alterations in diploid and triploid full-sibling juvenile African catfish (Clarias gariepinus). Fish were exposed for 96 h to one of the two waterborne phenanthrene (Phe) concentrations [mean measured (SD): 6.2 (2.4) and 76 (4.2) μg/L]. In triploids, exposure to 76 μg/L Phe increased mRNA level of fushi tarazu-factor 1 (ftz-f1). Expression of tryptophan hydroxylase2 (tph2) was also elevated in both ploidies following the exposure to 76 μg/L Phe compared to the solvent control. In triploids, 76 μg/L Phe increased plasma alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) levels compared to the other Phe-exposed group. It also elevated lactate and glucose contents relative to the other groups. In diploids, however, biochemical biomarkers did not change. Phenanthrene exposures elevated glycogen contents and the prevalence of histopathological lesions in the liver and gills of both ploidies. This study showed substantial differences between diploids and triploids on biochemical and molecular biomarker responses, but similar histopathological alterations following acute Phe exposures.
    Matched MeSH terms: Liver/metabolism*
  8. Devaraj S, Ismail S, Ramanathan S, Yam MF
    ScientificWorldJournal, 2014;2014:353128.
    PMID: 25133223 DOI: 10.1155/2014/353128
    Curcuma xanthorrhiza (CX) has been used for centuries in traditional system of medicine to treat several diseases such as hepatitis, liver complaints, and diabetes. It has been consumed as food supplement and "jamu" as a remedy for hepatitis. Hence, CX was further explored for its potential as a functional food for liver related diseases. As such, initiative was taken to evaluate the antioxidant and hepatoprotective potential of CX rhizome. Antioxidant activity of the standardized CX fractions was determined using in vitro assays. Hepatoprotective assay was conducted against carbon tetrachloride- (CCl4-) induced hepatic damage in rats at doses of 125, 250, and 500 mg/kg of hexane fraction. Highest antioxidant activity was found in hexane fraction. In the case of hepatoprotective activity, CX hexane fraction showed significant improvement in terms of a biochemical liver function, antioxidative liver enzymes, and lipid peroxidation activity. Good recovery was observed in the treated hepatic tissues histologically. Hence, the results concluded that CX hexane fraction possessed prominent hepatoprotective activities which might be due to its in vitro antioxidant activity. These findings also support the use of CX as a functional food for hepatitis remedy in traditional medicinal system.
    Matched MeSH terms: Liver/metabolism
  9. Al Zarzour RH, Ahmad M, Asmawi MZ, Kaur G, Saeed MAA, Al-Mansoub MA, et al.
    Nutrients, 2017 Jul 18;9(7).
    PMID: 28718838 DOI: 10.3390/nu9070766
    Non-alcoholic fatty liver disease (NAFLD) is one of the major global health issues, strongly correlated with insulin resistance, obesity and oxidative stress. The current study aimed to evaluate anti-NAFLD effects of three different extracts of Phyllanthus niruri (P. niruri). NAFLD was induced in male Sprague-Dawley rats using a special high-fat diet (HFD). A 50% methanolic extract (50% ME) exhibited the highest inhibitory effect against NAFLD progression. It significantly reduced hepatomegaly (16%) and visceral fat weight (22%), decreased NAFLD score, prevented fibrosis, and reduced serum total cholesterol (TC) (48%), low-density lipoprotein (LDL) (65%), free fatty acids (FFAs) (25%), alanine aminotransferase (ALT) (45%), alkaline phosphatase (ALP) (38%), insulin concentration (67%), homeostatic model assessment of insulin resistance (HOMA-IR) (73%), serum atherogenic ratios TC/high-density lipoprotein (HDL) (29%), LDL/HDL (66%) and (TC-HDL)/HDL (64%), hepatic content of cholesterol (43%), triglyceride (29%) and malondialdehyde (MDA) (40%) compared to a non-treated HFD group. In vitro, 50% ME of P. niruri inhibited α-glucosidase, pancreatic lipase enzymes and cholesterol micellization. It also had higher total phenolic and total flavonoid contents compared to other extracts. Ellagic acid and phyllanthin were identified as major compounds. These results suggest that P. niruri could be further developed as a novel natural hepatoprotective agent against NAFLD and atherosclerosis.
    Matched MeSH terms: Liver/metabolism
  10. Zarzour RHA, Alshawsh MA, Asif M, Al-Mansoub MA, Mohamed Z, Ahmad M, et al.
    Nutrients, 2018 Aug 09;10(8).
    PMID: 30096951 DOI: 10.3390/nu10081057
    The growth of adipose tissues is considered angiogenesis-dependent during non-alcoholic fatty liver disease (NAFLD). We have recently reported that our standardized 50% methanolic extract (ME) of Phyllanthus niruri (50% ME of P. niruri) has alleviated NAFLD in Sprague⁻Dawley rats. This study aimed to assess the molecular mechanisms of action, and to further evaluate the antiangiogenic effect of this extract. NAFLD was induced by eight weeks of high-fat diet, and treatment was applied for four weeks. Antiangiogenic activity was assessed by aortic ring assay and by in vitro tests. Our findings demonstrated that the therapeutic effects of 50% ME among NAFLD rats, were associated with a significant increase in serum adiponectin, reduction in the serum levels of RBP4, vaspin, progranulin, TNF-α, IL-6, and significant downregulation of the hepatic gene expression of PPARγ, SLC10A2, and Collα1. Concomitantly, 50% ME of P. niruri has exhibited a potent antiangiogenic activity on ring assay, cell migration, vascular endothelial growth factor (VEGF), and tube formation, without any cytotoxic effect. Together, our findings revealed that the protective effects of P. niruri against NAFLD might be attributed to its antiangiogenic effect, as well as to the regulation of adipocytokines and reducing the expression of adipogenic genes.
    Matched MeSH terms: Liver/metabolism
  11. Balveer K, Pyar K, Wonke B
    Med J Malaysia, 2000 Dec;55(4):493-7.
    PMID: 11221163
    Thalassaemics in Malaysia are poorly chelated because desferrioxamine is too expensive and cumbersome for long term compliance. The efficacy and tolerability of the oral chelator deferiprone, and the effects of using a combination therapy in our patients were studied. Ten patients completed the study and the mean serum ferritin reduced from 7066.11 ug/L (2577-12,896 ug/L) to 3242.24 ug/L (955-6120 ug/L). The liver iron concentration did not show a significant drop (19.6 vs 18.2 mg/g dry weight) although 3 patients showed reductions ranging from 30-40%. Concomitant use of desferrioxamine increased the urinary excretion from a mean of 13.66 mg/day to 27.38 mg/day. Main side effects seen were nausea and rashes.
    Matched MeSH terms: Liver/metabolism
  12. Vadivelu J, Vellasamy KM, Thimma J, Mariappan V, Kang WT, Choh LC, et al.
    PLoS Negl Trop Dis, 2017 01;11(1):e0005241.
    PMID: 28045926 DOI: 10.1371/journal.pntd.0005241
    BACKGROUND: During infection, successful bacterial clearance is achieved via the host immune system acting in conjunction with appropriate antibiotic therapy. However, it still remains a tip of the iceberg as to where persistent pathogens namely, Burkholderia pseudomallei (B. pseudomallei) reside/hide to escape from host immune sensors and antimicrobial pressure.

    METHODS: We used transmission electron microscopy (TEM) to investigate post-mortem tissue sections of patients with clinical melioidosis to identify the localisation of a recently identified gut microbiome, B. pseudomallei within host cells. The intranuclear presence of B. pseudomallei was confirmed using transmission electron microscopy (TEM) of experimentally infected guinea pig spleen tissues and Live Z-stack, and ImageJ analysis of fluorescence microscopy analysis of in vitro infection of A549 human lung epithelial cells.

    RESULTS: TEM investigations revealed intranuclear localization of B. pseudomallei in cells of infected human lung and guinea pig spleen tissues. We also found that B. pseudomallei induced actin polymerization following infection of A549 human lung epithelial cells. Infected A549 lung epithelial cells using 3D-Laser scanning confocal microscopy (LSCM) and immunofluorescence microscopy confirmed the intranuclear localization of B. pseudomallei.

    CONCLUSION: B. pseudomallei was found within the nuclear compartment of host cells. The nucleus may play a role as an occult or transient niche for persistence of intracellular pathogens, potentially leading to recurrrent episodes or recrudescence of infection.

    Matched MeSH terms: Liver/metabolism
  13. Marlini M, Mabuchi A, Mallard BL, Hairulhisyam N, Akashi-Takamura S, Harper JL, et al.
    Exp Physiol, 2016 12 01;101(12):1492-1505.
    PMID: 27634415 DOI: 10.1113/EP085727
    NEW FINDINGS: What is the central question of this study? The liver regenerative process is complex and involves a sequence of signalling events, but the possible involvement of structural and haemodynamic changes in vivo during this process has never been explored. What is the main finding and its importance? Normal sinusoidal blood flow and velocity are crucial for a normal regenerative response, and delays in these haemodynamic events resulted in impaired liver regeneration in lipopolysaccharide-insensitive, C3H/HeJ mice. Toll-like receptor 4 signalling is required for restoration of normal liver architecture during the liver regenerative process. Liver regeneration is delayed in mice with a defective Toll-like receptor 4 (TLR4; C3H/HeJ mice) but is normal in TLR4 knockouts (TLR4-/- ). Here, we investigated the possible involvement of structural and haemodynamic changes in vivo in the underlying mechanism. In lipopolysaccharide-sensitive (C3H/HeN and C57BL/6) and lipopolysaccharide-insensitive (C3H/HeJ and TLR4-/- ) mice, a 70% partial hepatectomy (PH) was performed under inhalational anaesthesia. At days 3 and 7 after PH, the hepatic microcirculation was interrogated using intravital microscopy. Delayed liver regeneration was confirmed in C3H/HeJ, but not in C3H/HeN, C57BL/6 (WT) or TLR4-/- mice by liver weight-to-body-weight ratio, the percentage of proliferating cell nuclear antigen (PCNA)-positive cells and mitotic index data. At day 3 after PH, sinusoidal red blood cell velocity increased by 100% in C3H/HeN mice, but by only 40% in C3H/HeJ mice. Estimated sinusoidal blood flow was significantly higher at day 7 after PH in C3H/HeN than in C3H/HeJ mice. The hepatic cord width was significantly larger in C3H/HeN than in C3H/HeJ mice at day 3 and it was significantly larger in TLR4-/- than in C57BL/6 WT mice at day 7 after PH. Hepatocyte nucleus density and functional sinusoidal density was significantly reduced at days 3 and 7 after PH in all mouse strains compared with their zero-time controls. Functional sinusoidal density was significantly lower in C3H/HeJ compared with C3H/HeN mice at day 7 after PH. The present study indicates that altered sinusoidal blood flow and velocity in C3H/HeJ mice may contribute to the observed delay in the regenerative response in these mice. In addition, restoration of normal liver architecture may be delayed in TLR4-/- mice.
    Matched MeSH terms: Liver/metabolism
  14. Montgomery MK, Mokhtar R, Bayliss J, Parkington HC, Suturin VM, Bruce CR, et al.
    Diabetes, 2018 04;67(4):594-606.
    PMID: 29378767 DOI: 10.2337/db17-0923
    Lipid droplets (LDs) are critical for the regulation of lipid metabolism, and dysregulated lipid metabolism contributes to the pathogenesis of several diseases, including type 2 diabetes. We generated mice with muscle-specific deletion of the LD-associated protein perilipin 5 (PLIN5, Plin5MKO ) and investigated PLIN5's role in regulating skeletal muscle lipid metabolism, intracellular signaling, and whole-body metabolic homeostasis. High-fat feeding induced changes in muscle lipid metabolism of Plin5MKO mice, which included increased fatty acid oxidation and oxidative stress but, surprisingly, a reduction in inflammation and endoplasmic reticulum (ER) stress. These muscle-specific effects were accompanied by whole-body glucose intolerance, adipose tissue insulin resistance, and reduced circulating insulin and C-peptide levels in Plin5MKO mice. This coincided with reduced secretion of fibroblast growth factor 21 (FGF21) from skeletal muscle and liver, resulting in reduced circulating FGF21. Intriguingly, muscle-secreted factors from Plin5MKO , but not wild-type mice, reduced hepatocyte FGF21 secretion. Exogenous correction of FGF21 levels restored glycemic control and insulin secretion in Plin5MKO mice. These results show that changes in lipid metabolism resulting from PLIN5 deletion reduce ER stress in muscle, decrease FGF21 production by muscle and liver, and impair glycemic control. Further, these studies highlight the importance for muscle-liver cross talk in metabolic regulation.
    Matched MeSH terms: Liver/metabolism*
  15. Yan L, Luo H, Tang X, Wang H
    J Biochem Mol Toxicol, 2023 Feb;37(2):e23260.
    PMID: 36453646 DOI: 10.1002/jbt.23260
    Cannabinoids (CBs) are psychoactive compounds, with reported anticancer, anti-inflammatory, and anti-neoplastic properties. The study was aimed at assessing the hepatoprotective effects of CB against ethanol (EtOH)-induced liver toxicity in rats. The animals were divided into seven groups: control (Group I) and Group II were treated with 50% ethanol (EtOH 5 mg/kg). Groups III, IV, and VI were treated with (EtOH + CB 10 mg/kg), (EtOH + CB 20 mg/kg), and (EtOH + CB 30 mg/kg), respectively. Groups V and VII consisted of animals treated with 20 and 30 mg/kg, of CB, respectively. Biochemical analysis revealed that Group IV (EtOH + CB 20 mg/kg) had reduced levels of ALT-alanine transferase, AST-aspartate aminotransferase, ALP-alanine peroxidase, MDA-malondialdehyde and increased levels of GSH-reduced glutathione. Histopathological analysis of liver and kidney tissues showed that EtOH + CB (20 and 30 mg/kg) treated animal groups exhibited normal tissue architecture similar to that of the control group. ELISA revealed that the inflammatory markers were reduced in the animal groups that were treated with EtOH + CB 20 mg/kg, in comparison to the animals treated only with EtOH. The mRNA expression levels of COX-2, CD-14, and MIP-2 showed a remarkable decrease in EtOH + CB treated animal groups to control groups. Western blot analysis revealed that CB downregulated p38/JNK/ERK thereby exhibiting its hepatoprotective property by inhibiting mitogen-activated protein kinase pathways. Thus, our findings suggest that CB is a potential candidate for the treatment of alcohol-induced hepatotoxicity.
    Matched MeSH terms: Liver/metabolism
  16. Abdul Rahman Sazli F, Jubri Z, Abdul Rahman M, Karsani SA, Md Top AG, Wan Ngah WZ
    PMID: 25886747 DOI: 10.1186/s12906-015-0590-y
    To determine the antiproliferative effect of gamma-tocotrienol (GTT) treatment on differential protein expression in HepG2 cells.
    Matched MeSH terms: Liver/metabolism
  17. Adam A, Marzuki A, Ngah WZ, Top GM
    Pharmacol. Toxicol., 1996 Dec;79(6):334-9.
    PMID: 9000262
    The hepatic and pulmonary effects of nitrofurantoin (40 mg/kg, intraperitoneally) were determined at 4 and 24 hr following its administration in mice fed for 10 weeks with a vitamin E sufficient, deficient or enriched diet. Liver glutathione (GSH) was reduced by nitrofurantoin at 4 hr but was unchanged 20 hr later. Nitrofurantoin did not affect liver glutathione peroxidase, glutathione reductase or superoxide dismutase activities. Liver catalase activities were decreased by nitrofurantoin at 4 hr. Lung GSH levels were increased whilst glutathione peroxidase activity was decreased at 4 and 24 hr. Lung glutathione reductase activity was reduced in certain groups. Nitrofurantoin did not affect lung superoxide dismutase, but catalase was decreased at 24 hr. Liver malondialdehyde levels were increased by nitrofurantoin in the vitamin E deficient group whilst lung malondialdehyde levels remained unchanged. Both liver and lung malondialdehyde levels were unaffected by vitamin E supplementation when compared to the vitamin E-sufficient group. These results suggest that nitrofurantoin (40 mg/kg) was deleterious to the liver and lung. Nitrofurantoin-induced lipid peroxidation was seen in vitamin E deficiency but an increase in dietary vitamin E content did not provide additional protection compared to the recommended daily allowance. The antioxidant activities of alpha-tocopherol and gamma-enriched tocotrienol were similar.
    Matched MeSH terms: Liver/metabolism
  18. Kwan TK, Thambyrajah V
    Med J Malaysia, 1978 Dec;33(2):178-83.
    PMID: 755172
    Matched MeSH terms: Liver/metabolism*
  19. Cai J, Ashraf MA, Luo L, Tang H
    Pak J Pharm Sci, 2017 May;30(3(Special)):1179-1183.
    PMID: 28671103
    This paper aims to observe and analyze effects of Codonopsis pilosula water extract on micro RNA (miRNA) expression profile in liver tissue of senile mice. The 110 Konminmice were randomly divided into five groups, including D-galactose-induced senile model group, normal control group, and low, middle and high dose intervention groups. Continuous modeling lasted 40 days. General symptoms and changes of body mass of the model mice were monitored and observed. The levels of serum glutamic pyruvic transaminase (ALT) and alkaline phosphatase (ALP) of mice were compared, and miRNA of differential expression during aging of D-galactose-induction and high-dose Codonopsis pilosula intervention was analyzed. The serum ALT and ALP levels in the aging model group were significantly higher than those in the normal control group (P<0.05). The serum ALT and ALP levels of Codonopsis pilosula intervention group were lower than those of aging model group, and decrease in ALP value of high dose intervention group was higher (P<0.05). The expression profile of miRNA in the aging model group was significantly different from that in normal control group and high-dose Codonopsis pilosula intervention group, and miRNA expression profile in high-dose Codonopsis pilosula intervention group was clustered with that in the normal control group. The differentially expressed miRNAs of D-galactose-induced senescence and Codonopsis pilosula anti-aging usually belong to 7 miRNA clusters. The target gene function of the differentially expressed miRNAs during senescence process was enriched in 29 signal pathways. There were 67 regulatory signal pathways in differentially expressed miRNA target genes during Codonopsis pilosula intervention. The effect of miRNA targeting may play an important role during D-galactose-induced senescence and Codonopsis pilosula anti-aging period.
    Matched MeSH terms: Liver/metabolism*
  20. Wang S, Tan KS, Beng H, Liu F, Huang J, Kuai Y, et al.
    Pharmacol Res, 2021 Oct;172:105781.
    PMID: 34302975 DOI: 10.1016/j.phrs.2021.105781
    Sepsis is a severe inflammatory disorder that can lead to multiple organ injury. Isosteviol sodium (STV-Na) is a terpenoid derived from stevioside that exerts anti-inflammatory, antioxidant and antiapoptotic activities. However, the influence of STV-Na on sepsis remains unknown. Here, we assessed the potential effects of STV-Na on sepsis and multiple organ injury induced by lipopolysaccharide (LPS). We found that STV-Na increased the survival rate of mice treat with LPS, significantly improved the functions of the heart, lung, liver, and kidney, reduced the production of inflammatory cytokines and decreased macrophage infiltration. Moreover, Multiorgan metabolomics analysis demonstrated that glutathione metabolism, purine metabolism, glycerophospholipid metabolism and pantothenate and CoA biosynthesis, were significantly altered by STV-Na. This study provides novel insights into the metabolite changes of multiple organ injury in septic mice, which may help characterize the underlying mechanism and provide an improved understanding of the therapeutic effects of STV-Na on sepsis.
    Matched MeSH terms: Liver/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links