Displaying publications 1 - 20 of 31 in total

Abstract:
Sort:
  1. Zhou H, Wu L, Wang HQ, Zheng JC, Zhang L, Kisslinger K, et al.
    Nat Commun, 2017 11 14;8(1):1474.
    PMID: 29133800 DOI: 10.1038/s41467-017-01655-5
    Multi-layer structure of functional materials often involves the integration of different crystalline phases. The film growth orientation thus frequently exhibits a transformation, owing to multiple possibilities caused by incompatible in-plane structural symmetry. Nevertheless, the detailed mechanism of the transformation has not yet been fully explored. Here we thoroughly probe the heteroepitaxially grown hexagonal zinc oxide (ZnO) films on cubic (001)-magnesium oxide (MgO) substrates using advanced scanning transition electron microscopy, X-ray diffraction and first principles calculations, revealing two distinct interface models of (001) ZnO/(001) MgO and (100) ZnO/(001) MgO. We have found that the structure alternatives are controlled thermodynamically by the nucleation, while kinetically by the enhanced Zn adsorption and O diffusion upon the phase transformation. This work not only provides a guideline for the interface fabrication with distinct crystalline phases but also shows how polar and non-polar hexagonal ZnO films might be manipulated on the same cubic substrate.
    Matched MeSH terms: Magnesium Oxide
  2. Wee JL, Chan YS, Law MC
    ACS Appl Bio Mater, 2023 Nov 20;6(11):4972-4987.
    PMID: 37910790 DOI: 10.1021/acsabm.3c00515
    The use of nanometal oxides in nanoagronomy has garnered considerable attention due to their excellent antifungal and plant growth promotion properties. Hybrid nanometal oxides, which combine the strengths of individual nanomaterials, have emerged as a promising class of materials. In this study, nanomagnesium oxide (n-MgO) and hybrid magnetic nanomagnesium oxide (m/n-MgO) were successfully synthesized via the ultrasound-mediated sol-gel method. Characterization results, including TGA, XRD, VSM, and FTIR, confirmed the successful synthesis of m/n-MgO. Both n-MgO and m/n-MgO underwent antifungal assays and plant growth promotion ability studies, benchmarked against the conventional fungicide-copper oxychloride. This study bridges a significant gap by simultaneously reporting the antifungal properties of both n-MgO and m/n-MgO and their impact on plant growth. The disc diffusion assay suggested that the antifungal activity of n-MgO and m/n-MgO against F. oxysporum was inversely related to the particle size. Notably, n-MgO exhibited superior antifungal performance (lower minimum inhibitory concentration (MIC)) and sustained efficacy compared with m/n-MgO, owing to distinct antifungal mechanisms. Nanorod-shaped MgO, with a smaller size (8.24 ± 5.61 nm) and higher aspect ratio, allowed them to penetrate the fungal cell wall and cause intercellular damage. In contrast, cubical m/n-MgO, with a larger size (20.95 ± 9.99 nm) and lower aspect ratio, accumulate on the fungal cell wall surface, disrupting the wall integrity, albeit less effectively against F. oxysporum. Moreover, in plant growth promotion studies, m/n-MgO-treated samples exhibited a 15.7% stronger promotion effect compared to n-MgO at their respective MICs. In addition, both n-MgO and m/n-MgO outperformed copper oxychloride in terms of antifungal and plant growth promoting activities. Thus, m/n-MgO presents a promising alternative to conventional copper-based fungicides, offering dual functionality as a fungicide and plant growth promoter, while the study also delves into the antifungal mechanisms at the intracellular level, enhancing its novelty.
    Matched MeSH terms: Magnesium Oxide/pharmacology
  3. Taoufik N, Janani FZ, Khiar H, Sadiq M, Abdennouri M, Sillanpää M, et al.
    Environ Sci Pollut Res Int, 2023 Feb;30(9):23938-23964.
    PMID: 36329247 DOI: 10.1007/s11356-022-23690-6
    In the present work, we prepared MgO-La2O3-mixed-metal oxides (MMO) as efficient photocatalysts for degradation of organic pollutants. First, a series of MgAl-%La-CO3-layered double hydroxide (LDH) precursors with different contents of La (5, 10, and 20 wt%) were synthesized by the co-precipitation process and then calcined at 600 °C. The prepared materials were characterized by XRD, SEM-EDX, FTIR, TGA, ICP, and UV-vis diffuse reflectance spectroscopy. XRD indicated that MgO, La2O3, and MgAl2O4 phases were found to coexist in the calcined materials. Also, XRD confirms the orthorhombic-tetragonal phases of MgO-La2O3. The samples exhibited a small band gap of 3.0-3.22 eV based on DRS. The photocatalytic activity of the catalysts was assessed for the degradation of two dyes, namely, tartrazine (TZ) and patent blue (PB) as model organic pollutants in aqueous mediums under UV-visible light. Detailed photocatalytic tests that focused on the impacts of dopant amount of La, catalyst dose, initial pH of the solution, irradiation time, dye concentration, and reuse were carried out and discussed in this research. The experimental findings reveal that the highest photocatalytic activity was achieved with the MgO-La2O3-10% MMO with photocatalysts with a degradation efficiency of 97.4% and 93.87% for TZ and PB, respectively, within 150 min of irradiation. The addition of La to the sample was responsible for its highest photocatalytic activity. Response surface methodology (RSM) and gradient boosting regressor (GBR), as artificial intelligence techniques, were employed to assess individual and interactive influences of initial dye concentration, catalyst dose, initial pH, and irradiation time on the degradation performance. The GBR technique predicts the degradation efficiency results with R2 = 0.98 for both TZ and PB. Moreover, ANOVA analysis employing CCD-RSM reveals a high agreement between the quadratic model predictions and the experimental results for TZ and PB (R2 = 0.9327 and Adj-R2 = 0.8699, R2 = 0.9574 and Adj-R2 = 0.8704, respectively). Optimization outcomes indicated that maximum degradation efficiency was attained under the following optimum conditions: catalyst dose 0.3 g/L, initial dye concentration 20 mg/L, pH 4, and reaction time 150 min. On the whole, this study confirms that the proposed artificial intelligence (AI) techniques constituted reliable and robust computer techniques for monitoring and modeling the photodegradation of organic pollutants from aqueous mediums by MgO-La2O3-MMO heterostructure catalysts.
    Matched MeSH terms: Magnesium Oxide*
  4. Suguna S, Shankar S, Jaganathan SK, Manikandan A
    J Nanosci Nanotechnol, 2018 Feb 01;18(2):1019-1026.
    PMID: 29448527 DOI: 10.1166/jnn.2018.13960
    Ni-doped cobalt aluminate NixCo1-xAl2O4 (x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) spinel nanoparticles were successfully synthesized by a simple microwave combustion method using urea as the fuel and as well as reducing agent. X-ray powder diffraction (XRD) was confirmed the formation of single phase, cubic spinel cobalt-nickel aluminate structure without any other impurities. Average crystallite sizes of the samples were found to be in the range of 18.93 nm to 21.47 nm by Scherrer's formula. Fourier transform infrared (FT-IR) spectral analysis was confirmed the corresponding functional groups of the M-O, Al-O and M-Al-O (M = Co and Ni) bonds of spinel NixCo1-xAl2O4 structure. Scanning electron microscope (SEM) and transmission electron microscope (TEM) images was confirmed the particle like nanostructured morphology. Energy band gap (Eg) value was calculated using UV-Visible diffuse reflectance spectra (DRS) and the Eg values increased with increasing Ni2+ dopant from x = 0.2 (3.58 eV) to x = 1.0 (4.15 eV). Vibrating sample magnetometer (VSM) measurements exposed that undoped and Ni-doped CoAl2O4 samples have superparamagnetic behavior and the magnetization (Ms) values were increased with increasing Ni2+ ions. Spinel NixCo1-xAl2O4 samples has been used for the catalytic oxidation of benzyl alcohol into benzaldehyde and was found that the sample Ni0.6Co0.4Al2O4 showed higher conversion 94.37% with 100% selectivity than other samples, which may be due to the smaller particle size and higher surface area.
    Matched MeSH terms: Magnesium Oxide
  5. Siaw YM, Jeevanandam J, Hii YS, Chan YS
    Naunyn Schmiedebergs Arch Pharmacol, 2020 Dec;393(12):2253-2264.
    PMID: 32632566 DOI: 10.1007/s00210-020-01934-x
    In recent times, magnesium oxide (MgO) nanoparticles are proven to be an excellent antibacterial agent which inhibits the growth of bacteria by generating reactive oxygen species (ROS). Release of ROS by nanoparticles will damage the cell membrane of bacteria and leads to the leakage of bacterial internal components and cell death. However, chemically synthesized MgO nanoparticles may possess toxic functional groups which may inhibit healthy human cells along with bacterial cells. Thus, the aim of the present study is to synthesize MgO nanoparticles using leaf extracts of Amaranthus tricolor and photo-irradiation of visible light as a catalyst, without addition of any chemicals. Optimization was performed using Box-Behnken design (BBD) to obtain the optimum condition required to synthesize smallest nanoparticles. The parameters such as time of reaction, the concentration of precursor, and light intensity have been identified to affect the size of biosynthesized nanoparticles and was optimized. The experiment performed with optimized conditions such as 0.001 M concentration of magnesium acetate as precursor, 5 cm distance of light (intensity), and 15 min of reaction time (light exposure) has led to the formation of 74.6 nm sized MgO nanoparticles. The antibacterial activities of MgO nanoparticles formed via photo-irradiation and conventional biosynthesis approach were investigated and compared. The lethal dosage of E. coli for photo-irradiated and conventional biosynthesis MgO nanoparticles was 0.6 ml and 0.4 ml, respectively. Likewise, the lethal dosage of S. aureus for both biosynthesis approaches was found to be 0.4 ml. The results revealed that the antibacterial activity of MgO nanoparticles from both biosynthesis approaches was similar. Thus, photo-irradiated MgO nanoparticles were beneficial over heat-mediated conventional method due to the reduced synthesis duration.
    Matched MeSH terms: Magnesium Oxide/chemical synthesis*; Magnesium Oxide/pharmacology; Magnesium Oxide/radiation effects
  6. Sagadevan S, Marlinda AR, Johan MR, Umar A, Fouad H, Alothman OY, et al.
    J Colloid Interface Sci, 2020 Jan 15;558:68-77.
    PMID: 31585223 DOI: 10.1016/j.jcis.2019.09.081
    We demonstrate the preparation of nanostructures cobalt oxide/reduced graphene oxide (Co3O4/rGO) nanocomposites by a simple one-step cost-effective hydrothermal technique for possible electrode materials in supercapacitor application. The X-ray diffraction patterns were employed to confirm the nanocomposite crystal system of Co3O4/rGO by demonstrating the existence of normal cubic spinel structure of Co3O4 in the matrix of Co3O4/rGO nanocomposite. FTIR and FT-Raman studies manifested the structural behaviour and quality of prepared Co3O4/rGO nanocomposite. The optical properties of the nanocomposite Co3O4/rGO have been investigated by UV absorption spectra. The SEM/TEM images showed that the Co3O4 nanoparticles in the Co3O4/rGO nanocomposites were covered over the surface of the rGO sheets. The electrical properties were analyzed in terms of real and imaginary permittivity, dielectric loss and AC conductivity. The electrocatalytic activities of synthesized Co3O4/rGO nanocomposites were determined by cyclic voltammetry and charge-discharge cycle to evaluate the supercapacitive performance. The specific capacitance of 754 Fg-1 was recorded for Co3O4/rGO nanocomposite based electrode in three electrode cell system. The electrode material exhibited an acceptable capability and excellent long-term cyclic stability by maintaining 96% after 1000 continuous cycles. These results showed that the prepared sample could be an ideal candidate for high-energy application as electrode materials. The synthesized Co3O4/rGO nanocomposite is a versatile material and can be used in various application such as fuel cells, electrochemical sensors, gas sensors, solar cells, and photocatalysis.
    Matched MeSH terms: Magnesium Oxide
  7. Sagadevan S, Venilla S, Marlinda AR, Johan MR, Wahab YA, Zakaria R, et al.
    J Nanosci Nanotechnol, 2020 Apr 01;20(4):2488-2494.
    PMID: 31492266 DOI: 10.1166/jnn.2020.17185
    Herein, we report the effect of synthesis temperature on the morphologies, optical and electronic properties of magnesium oxide (MgO) nanostructures. The MgO nanostructures were synthesized at different temperatures, i.e., 100 °C, 300 °C, and 600 °C by simple chemical reaction process and their morphology, particle size, optical, and electrical properties were examined by different techniques such as scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and UV-Vis. spectroscopy. The morphological investigations revealed that various morphologies of MgO nanostructures, i.e., nanoparticles, nanosheet networks, and nanoneedles were synthesized at 100 °C, 300 °C, and 600 °C. The XRD results confirmed that with increasing the synthesis temperature, the crystallinity of the synthesized nanostructures increases. Further, the dielectric properties and AC conductivity at various frequencies for MgO nanostructures were studied which revealed that the dielectric losses decrease with increase in frequency and temperature. In addition, the observed band gap decreases from 4.89 eV to 4.438 eV (100 °C to 600 °C) representing its increase in the conductivity.
    Matched MeSH terms: Magnesium Oxide
  8. Sabbagh F, Muhamad II, Nazari Z, Mobini P, Taraghdari SB
    Mater Sci Eng C Mater Biol Appl, 2018 Nov 01;92:20-25.
    PMID: 30184743 DOI: 10.1016/j.msec.2018.06.022
    This study conducted on the structure of modified acrylamide-based hydrogel by synthesizing the nano composites. The hydrogels employed in this study were provided through a combination of acrylamide monomers, sodium carboxymethyl cellulose (NaCMC) and magnesium oxide (MgO) nanoparticles by crosslinking polymerization. N,N,N',N'-tetramethylethylenediamine and ammonium persulfate as the initiator was applied in the structure of the polymer. Findings of the study considered the nano composites consisting of MgO have the highest swelling ratio compared to pure Aam hydrogels. Thus, MgO is an appropriate nanoparticle to be used in the nano composites. Response surface methodology (RSM) based on a central composite design (CCD Design) was applied to optimize the preparation variables of a hydrogel consisted of MgO, NaCMC. With the swelling ratio for acrylamide-based hydrogel as the response, the effects of two variables, i.e. MgO and NaCMC were investigated. The effects of pH, temperature, MgO, and NaCMC on the drug release were investigated using the CCD design. The predicted appropriate drug release conditions for the hydrogel at the highest rate of temperature (37.50 °C) and pH: 4.10, is at its highest value, while the lower drug release is at temperature 38 °C and pH 3.50. With the desired value of MgO (0.01 g) and amount of NaCMC (0.1 g).
    Matched MeSH terms: Magnesium Oxide/chemistry
  9. Roslinda Shamsudin, Abdul Razak Daud, Muhammad Azmi Abdul Hamid, Saiful Rizam Shamsudin
    Sains Malaysiana, 2007;36:195-200.
    Nitridation behaviour of Al-Mg-Si alloys was studied as a function of temperature by means of thermogravimetry method. A reactive gas, N2-4%H2 at a rate of 10 ml/min was purged into the thermogravimetry analyser chamber. The Al alloys were heated from 25oC to 625oC at the heating rate of 15oC/min and then reduced to 3oC/min until it reached 1500oC. It was found that by varying the amount of Mg and Si in Al-Mg-Si alloys significantly influenced the growth of the composites. A differential thermogravimetric curve shows the Mg containing alloys experienced many steps of chemical reactions. This indicates that besides AlN presence as a major phase, other compounds also exist in the final product. The X-ray diffraction results confirmed the existence of oxide phases such as a-Al2O3, MgAl2O4 and MgO in addition to residual Si and Al metal. The presence of oxide compounds is believed to be due to the reaction between the alloying elements and residual oxygen gas left in the reaction atmosphere. It was also found that Si could play a role in promoting the weight gain of the composite produced. The heating rate has also a profound effect on the weight gain, whereby higher heating rate resulted in low yielded of AlN during the nitridation reaction of the Al-Mg-Si alloys.
    Matched MeSH terms: Magnesium Oxide
  10. Rahman NA, Olutoye MA, Hameed BH
    Bioresour Technol, 2011 Oct;102(20):9749-54.
    PMID: 21855332 DOI: 10.1016/j.biortech.2011.07.023
    The potential of Mg(x)Co(2-)(x)O(2) as heterogeneous reusable catalyst in transesterification of palm oil to methyl ester was investigated. The catalyst was prepared via co-precipitation of the metal hydroxides at different Mg-Co ratios. Mg(1.7)Co(0.3)O(2) catalyst was more active than Mg(0.3)Co(1.7)O(2) in the transesterification of palm oil with methanol. The catalysts calcined at temperature 300 °C for 4 h resulted in highly active oxides and the highest transesterification of 90% was achieved at methanol/oil molar ratio of 9:1, catalyst loading of 5.00 wt.%, reaction temperature of 150 °C and reaction time of 2 h. The catalyst could easily be removed from reaction mixture, but showed 50% decrease in activity when reused due to leaching of active sites.
    Matched MeSH terms: Magnesium Oxide/chemistry*
  11. Rahman MA, Ahamed E, Faruque MRI, Islam MT
    Sci Rep, 2018 Oct 08;8(1):14948.
    PMID: 30297730 DOI: 10.1038/s41598-018-33295-0
    Various techniques are commonly used to produce nano-crystalline NiAl2O4 materials; however, their practical applications in the microwave region remain very limited. In this work, flexible substrates for metamaterials containing two different concentrations of NiAl2O4 (labelled Ni36 and Ni42) have been synthesised using a sol-gel method. The formation of spinel structures in the synthesised materials is confirmed, and their crystalline sizes are determined using scanning electron microscopy, X-ray diffraction, and energy dispersive X-ray techniques. The dielectric properties, conductivities, loss tangents, and other parameters of the NiAl2O4-based substrates are analysed to evaluate their applicability as dielectric materials for the microwave frequency range. The obtained results show that the fabricated Ni36 and Ni42 nickel aluminates possess dielectric constants of 4.94 and 4.97 and loss tangents of 0.01 and 0.007, respectively; in addition, they exhibit high flexibility and light weight, which make them suitable for applications as metamaterial substrates. The synthesised structures are also validated experimentally using a commercially available electromagnetic simulator; as a result, double negative behaviour of the flexible metamaterials has been observed. Furthermore, it is found that the prepared NiAl2O4 substrates can be used in the S-, C-, and X-bands of the microwave frequency region.
    Matched MeSH terms: Magnesium Oxide
  12. Pan GT, Chong S, Yang TC, Huang CM
    Materials (Basel), 2017 Mar 31;10(4).
    PMID: 28772727 DOI: 10.3390/ma10040370
    Mesoporous Mn1.5Co1.5O₄ (MCO) spinel films were prepared directly on a conductive nickel (Ni) foam substrate via electrodeposition and an annealing treatment as supercapacitor electrodes. The electrodeposition time markedly influenced the surface morphological, textural, and supercapacitive properties of MCO/Ni electrodes. The (MCO/Ni)-15 min electrode (electrodeposition time: 15 min) exhibited the highest capacitance among three electrodes (electrodeposition times of 7.5, 15, and 30 min, respectively). Further, an asymmetric supercapacitor that utilizes (MCO/Ni)-15 min as a positive electrode, a plasma-treated activated carbon (PAC)/Ni electrode as a negative electrode, and carboxymethyl cellulose-lithium nitrate (LiNO₃) gel electrolyte (denoted as (PAC/Ni)//(MCO/Ni)-15 min) was fabricated. In a stable operation window of 2.0 V, the device exhibited an energy density of 27.6 Wh·kg-1 and a power density of 1.01 kW·kg-1 at 1 A·g-1. After 5000 cycles, the specific energy density retention and power density retention were 96% and 92%, respectively, demonstrating exceptional cycling stability. The good supercapacitive performance and excellent stability of the (PAC/Ni)//(MCO/Ni)-15 min device can be ascribed to the hierarchical structure and high surface area of the (MCO/Ni)-15 min electrode, which facilitate lithium ion intercalation and deintercalation at the electrode/electrolyte interface and mitigate volume change during long-term charge/discharge cycling.
    Matched MeSH terms: Magnesium Oxide
  13. Nik Nur Syafika Pahri, Nur Huda Syazwani Jafri, Husna Ahmad Tajuddin, Yusilawati Ahmad Nor
    MyJurnal
    Effective treatment of wastewater is crucial in order to achieve a sustainable development. For instance, highly efficient treatment processes with low capital requirements are the major prerequisite for implementation of the advanced wastewater treatment operations. Among various available treatment methods, the application of coagulation-flocculation process by using natural coagulant; chitosan has vast advantages such as low operating cost, environmental friendly and highly effective in the wastewater treatment operations. The application of nanotechnology in numerous treatment techniques are considered as the most significant advances in water and wastewater treatment practices. The utilization of magnesium oxide (MgO) as nano-adsorbent has recently gained attention as a potential treatment method in water remediation particularly for treating effluents with high amount of organic dyes and heavy metals due to its high treatment efficiency, low cost, versatility and environment compatibility. The purpose of this study was to determine the effectiveness of coagulation-flocculation process when using novel coagulant in which MgO coated with chitosan by investigating the percentage removal of several significant parameters which were turbidity, chemical oxygen demand (COD) and suspended solid. The removal efficiencies were determined throughout a series of experiments carried out using a standard jar test procedure in which three different coagulants; chitosan, MgO coated with chitosan and MgO were tested on water samples taken from Sg. Pusu. In addition, a set of experiments was designed using response surface methodology (RSM) in order to optimize adsorption of chitosan into MgO. The experiments were conducted at various concentrations of chitosan (10-30 mg/ml) and selected MgO dosage ranges (10-30 mg). From the obtained results, it was found that chitosan-MgO coagulant has good removal efficiencies of turbidity, chemical oxygen demand (COD) and suspended solids at 92%, 91%, and 98% respectively from the optimization of adsorption of chitosan-MgO. The MgO coated with chitosan is the best coagulant in this study compared to chitosan and MgO alone because of the ability of treating the river water with up to 90 % removal for all the main parameters. The results showed that coagulation-flocculation is effective as a treatment for treating river water.
    Matched MeSH terms: Magnesium Oxide
  14. Moogi S, Jang SH, Rhee GH, Ko CH, Choi YJ, Lee SH, et al.
    Chemosphere, 2022 Jan;287(Pt 2):132224.
    PMID: 34826918 DOI: 10.1016/j.chemosphere.2021.132224
    Food waste, a renewable resource, was converted to H2-rich gas via a catalytic steam gasification process. The effects of basic oxides (MgO, CaO, and SrO) with 10 wt% Ni/Al2O3 on the gasification properties of food waste were investigated using a U-shaped gasifier. All catalysts prepared by the precipitation method were analyzed by X-ray diffraction, H2-temperature-programmed reduction, NH3-temperature-programmed desorption, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The Ni/Al2O3 catalyst was reduced incompletely, and low nickel concentrations were detected on the surface of the alumina. The basic oxides minimized the number of acid sites and suppressed the formation of nickel-aluminate (NiAlxOy) phase in catalyst. In addition, the basic oxides shifted nickel-aluminate reduction reaction to lower temperatures. It resulted in enhancing nickel concentration on the catalyst surface and increasing gas yield and hydrogen selectivity. The low gas yield of the Ni/Al2O3 catalyst was attributed to the low nickel concentration on the surface. The maximum gas yield (66.0 wt%) and hydrogen selectivity (63.8 vol%) of the 10 wt% SrO- 10 wt% Ni/Al2O3 catalyst correlated with the highly dispersed nickel on the surface and low acidity. Furthermore, coke deposition during steam gasification varied with the surface acidity of the catalysts and less coke was formed on 10 wt% SrO- 10 wt% Ni/Al2O3 due to efficient tar cracking. This study showed that the steam gasification efficiency of the Ni/Al2O3 catalyst could be improved significantly by the addition of SrO.
    Matched MeSH terms: Magnesium Oxide
  15. Khan SA, Mohd Zain Z, Siddiqui Z, Khan W, Aabid A, Baig M, et al.
    PLoS One, 2024;19(1):e0296793.
    PMID: 38227597 DOI: 10.1371/journal.pone.0296793
    Ceramics are the oxides of metals and nonmetals with excellent compressive strength. Ceramics usually exhibit inert behavior at high temperatures. Magnesium aluminate (MgAl2O4), a member of the ceramic family, possesses a high working temperature up to 2000°C, low thermal conductivity, high strength even at elevated temperatures, and good corrosion resistance. Moreover, Magnesium Aluminate Nanoparticles (MANPs) can be used in the making of refractory crucible applications. This study focuses on the thermal behavior of Magnesium Aluminate Nanoparticles (MANPs) and their application in the making of refractory crucibles. The molten salt method is used to obtain MANPs. The presence of MANPs is seen by XRD peaks ranging from 66° to 67°. The determination of the smallest crystallite size of the sample is achieved by utilizing the Scherrer formula and is found to be 15.3 nm. The SEM micrographs provided further information, indicating an average particle size of 91.2 nm. At 600°C, DSC curves show that only 0.05 W/g heat flows into the material, and the TGA curve shows only 3% weight loss, which is prominent for thermal insulation applications. To investigate the thermal properties, crucibles of pure MANPs and the different compositions of MANPs and pure alumina are prepared. During the sintering, cracks appear on the crucible of pure magnesium aluminate. To explore the reason for crack development, tablets of MgAl2O4 are made and sintered at 1150°C. Ceramography shows the crack-free surfaces of all the tablets. Results confirm the thermal stability of MANPs at high temperatures and their suitability for melting crucible applications.
    Matched MeSH terms: Magnesium Oxide
  16. Khalajabadi SZ, Abu ABH, Ahmad N, Yajid MAM, Hj Redzuan NB, Nasiri R, et al.
    J Mech Behav Biomed Mater, 2018 Jan;77:360-374.
    PMID: 28985616 DOI: 10.1016/j.jmbbm.2017.09.032
    This study was aimed to improve of the corrosion resistance and mechanical properties of Mg/15TiO2/5HA nanocomposite by silicon and magnesium oxide coatings prepared using a powder metallurgy method. The phase evolution, chemical composition, microstructure and mechanical properties of uncoated and coated samples were characterized. Electrochemical and immersion tests used to investigate the in vitro corrosion behavior of the fabricated samples. The adhesion strength of ~36MPa for MgO and ~32MPa for Si/MgO coatings to substrate was measured by adhesion test. Fabrication a homogenous double layer coating with uniform thicknesses consisting micro-sized particles of Si as outer layer and flake-like particles of MgO as the inner layer on the surface of Mg/15TiO2/5HA nanocomposite caused the corrosion resistance and ductility increased whereas the ultimate compressive stress decreased. However, after immersion in SBF solution, Si/MgO-coated sample indicates the best mechanical properties compared to those of the uncoated and MgO-coated samples. The increase of cell viability percentage of the normal human osteoblast (NHOst) cells indicates the improvement in biocompatibility of Mg/15TiO2/5HA nanocomposite by Si/MgO coating.
    Matched MeSH terms: Magnesium Oxide/chemistry*
  17. Jeevanandam J, Chan YS, Danquah MK, Law MC
    Appl Biochem Biotechnol, 2020 Apr;190(4):1385-1410.
    PMID: 31776944 DOI: 10.1007/s12010-019-03166-z
    Insulin resistance is one of the major factors that leads to type 2 diabetes. Although insulin therapies have been shown to overcome insulin resistance, overweight and hypoglycemia are still observed in most cases. The disadvantages of insulin therapies have driven the interest in developing novel curative agents with enhanced insulin resistance reversibility. Magnesium deficiency has also been recognized as a common problem which leads to insulin resistance in both type 1 and 2 diabetes. Oxide nanoparticles demonstrate highly tunable physicochemical properties that can be exploited by engineers to develop unique oxide nanoparticles for tailored applications. Magnesium supplements for diabetic cells have been reported to increase the insulin resistance reversibility. Hence, it is hypothesized that magnesium oxide (MgO) nanoparticles could be molecularly engineered to offer enhanced therapeutic efficacy in reversing insulin resistance. In the present work, morphologically different MgO nanoparticles were synthesized and evaluated for biophysical characteristics, biocompatibility, cytotoxicity, and insulin resistance reversibility. MTT assay revealed that hexagonally shaped MgO nanoparticles are less toxic to 3T3-L1 adipose cells (diabetic) compared with spherically and rod-shaped MgO nanoparticles. MTT assays using VERO cells (normal, non-diabetic) showed that 400 μg/ml of hexagonal MgO nanoparticles were less toxic to both diabetic and non-diabetic cells. DNS glucose assay and western blot showed that hexagonally shaped MgO nanoparticles had reversed 29.5% of insulin resistance whilst fluorescence microscopy studies indicated that the insulin resistance reversal is due to the activation of intracellular enzymes. The probable mechanism for MgO nanoparticles to induce cytotoxic effect and insulin resistance reversal is discussed.
    Matched MeSH terms: Magnesium Oxide/chemistry*
  18. Islam A, Hwa Teo S, Awual MR, Taufiq-Yap YH
    Sci Rep, 2020 Feb 11;10(1):2324.
    PMID: 32047187 DOI: 10.1038/s41598-020-59325-4
    Since the complexity of photocatalyst synthesis process and high cost of noble cocatalyst leftovers a major hurdle to producing hydrogen (H2) from water, a noble metal-free Ni-Si/MgO photocatalyst was realized for the first time to generate H2 effectively under illumination with visible light. The catalyst was produced by means of simple one-pot solid reaction using self-designed metal reactor. The physiochemical properties of photocatalyst were identified by XRD, FESEM, HRTEM, EDX, UV-visible, XPS, GC and PL. The photocatalytic activities of Ni-Si/MgO photocatalyst at different nickel concentrations were evaluated without adjusting pH, applied voltage, sacrificial agent or electron donor. The ultrathin-nanosheet with hierarchically porous structure of catalyst was found to exhibit higher photocatalytic H2 production than hexagonal nanorods structured catalyst, which suggests that the randomly branched nanosheets are more active surface to increase the light-harvesting efficiency due to its short electron diffusion path. The catalyst exhibited remarkable performance reaching up to 714 µmolh-1 which is higher among the predominant semiconductor catalyst. The results demonstrated that the photocatalytic reaction irradiated under visible light illumination through the production of hydrogen and hydroxyl radicals on metals. The outcome indicates an important step forward one-pot facile approach to prepare noble ultrathin photocatalyst for hydrogen production from water.
    Matched MeSH terms: Magnesium Oxide
  19. Hezaveh H, Muhamad II
    J Mater Sci Mater Med, 2013 Jun;24(6):1443-53.
    PMID: 23515904 DOI: 10.1007/s10856-013-4914-5
    In this study, MgO nanoparticles are applied to control the initial burst release by modification of matrix structure, thereby affecting the release mechanism. The effects of MgO nanofiller loading on the in vitro release of a model drug are investigated. Surface topography and release kinetics of hydrogel nanocomposites are also studied in order to have better insight into the release mechanism. It was found that the incorporation of MgO nanofillers can significantly decrease the initial burst release. The effect of genipin (GN) on burst release was also compared with MgO nanoparticles, and it was found that the impact of MgO on burst release reduction is more obvious than GN; however, GN cross-linking caused greater final release compared to blanks and nanocomposites. To confirm the capability of nanocomposite hydrogels to reduce burst release, the release of β-carotene in Simulated Gastric Fluid and Simulated Intestinal Fluid was also carried out. Thus, the application of MgO nanoparticles seems to be a promising strategy to control burst release.
    Matched MeSH terms: Magnesium Oxide/chemistry*
  20. Hezaveh H, Muhamad II
    Int J Biol Macromol, 2012 Jun 1;50(5):1334-40.
    PMID: 22484730 DOI: 10.1016/j.ijbiomac.2012.03.017
    In this article, modified κ-carrageenan hydrogel nanocomposites were synthesized to increase the release ability of carrageenan hydrogels under gastrointestinal conditions. The effect of MgO nanoparticle loading in a model drug (methylene blue) release is investigated. Characterization of hydrogels were carried out using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM) and Differential Scanning Calorimetry (DSC). Genipin was used to increase the delivery performance in gastrointestinal tract delivery by decreasing release in simulated stomach conditions and increasing release in simulated intestine conditions. It is shown that the amount of methylene blue released from genipin-cross-linked nanocomposites can be 67.5% higher in intestine medium and 56% lower in the stomach compared to κ-carrageenan hydrogel. It was found that by changing the nanoparticle loading and genipin concentration in the composite, the amount of drug released can be monitored. Therefore, applying nanoparticles appears to be a potential strategy to develop controlled drug delivery especially in gastrointestinal tract studies.
    Matched MeSH terms: Magnesium Oxide/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links