Displaying publications 1 - 20 of 633 in total

Abstract:
Sort:
  1. Zainul R, Abd Azis N, Md Isa I, Hashim N, Ahmad MS, Saidin MI, et al.
    Sensors (Basel), 2019 Feb 22;19(4).
    PMID: 30813385 DOI: 10.3390/s19040941
    This paper presents the application of zinc/aluminium-layered double hydroxide-quinclorac (Zn/Al-LDH-QC) as a modifier of multiwalled carbon nanotubes (MWCNT) paste electrode for the determination of bisphenol A (BPA). The Zn/Al-LDH-QC/MWCNT morphology was examined by a transmission electron microscope and a scanning electron microscope. Electrochemical impedance spectroscopy was utilized to investigate the electrode interfacial properties. The electrochemical responses of the modified electrode towards BPA were thoroughly evaluated by using square-wave voltammetry technique. The electrode demonstrated three linear plots of BPA concentrations from 3.0 × 10-8⁻7.0 × 10-7 M (R² = 0.9876), 1.0 × 10-6⁻1.0 × 10-5 M (R² = 0.9836) and 3.0 × 10-5⁻3.0 × 10-4 M (R² = 0.9827) with a limit of detection of 4.4 × 10-9 M. The electrode also demonstrated good reproducibility and stability up to one month. The presence of several metal ions and organic did not affect the electrochemical response of BPA. The electrode is also applicable for BPA determination in baby bottle and mineral water samples with a range of recovery between 98.22% and 101.02%.
    Matched MeSH terms: Phenols
  2. Ismail N, Pihie AH, Nallapan M
    Anticancer Res, 2005 May-Jun;25(3B):2221-7.
    PMID: 16158967
    Xanthorrhizol is a sesquiterpenoid compound extracted from Curcuma xanthorrhiza, which is known locally as Temulawak. Traditionally, C. xanthorrhiza was found to have antibacterial, anticancer and anti-inflammatory activity. The rhizome has also been used to treat inflammation in postpartum uterine bleeding. An antiproliferative assay using methylene blue staining revealed that xanthorrhizol inhibited the proliferation of the cervical cancer cell line HeLa with an EC50 value of 6.16 microg/ml. Xanthorrhizol significantly increased apoptosis in HeLa cells, as evaluated by the Tdt-mediated dUTP nick end-labelling (TUNEL) assay and nuclear morphology by Hoechst 33258 staining. Western blot analysis, which was further confirmed by the immunostaining results, implied an up-regulation of tumor suppressor protein p53 and the pro-apoptotic protein Bax, following the treatment with xanthorrhizol. Xanthorrhizol, however, did not affect the expression of the anti-apoptotic protein, Bcl-2 and the viral oncoprotein, E6. Hence, xanthorrhizol is a promising antiproliferative and anticancer agent which induces p53 and Bax-dependent apoptosis in HeLa cervical cancer cells.
    Matched MeSH terms: Phenols/pharmacology*
  3. Tee TT, Cheah YH, Meenakshii N, Mohd Sharom MY, Azimahtol Hawariah LP
    Biochem Biophys Res Commun, 2012 Apr 20;420(4):834-8.
    PMID: 22465013 DOI: 10.1016/j.bbrc.2012.03.083
    Xanthorrhizol is a plant-derived pharmacologically active sesquiterpenoid compound isolated from Curcuma xanthorrhiza. Previously, we have reported that xanthorrhizol inhibited the proliferation of HepG2 human hepatoma cells by inducing apoptotic cell death via caspase activation. Here, we attempt to further elucidate the mode of action of xanthorrhizol. Apoptosis in xanthorrhizol-treated HepG2 cells as observed by scanning electron microscopy was accompanied by truncation of BID; reduction of both anti-apoptotic Bcl-2 and Bcl-X(L) expression; cleavage of PARP and DFF45/ICAD proteins and DNA fragmentation. Taken together, these results suggest xanthorrhizol as a potent antiproliferative agent on HepG2 cells by inducing apoptosis via Bcl-2 family members. Hence we proposed that xanthorrhizol could be used as an anti-liver cancer drug for future studies.
    Matched MeSH terms: Phenols/pharmacology*
  4. Cheah YH, Azimahtol HL, Abdullah NR
    Anticancer Res, 2006 Nov-Dec;26(6B):4527-34.
    PMID: 17201174
    Xanthorrhizol is a natural sesquiterpenoid compound isolated from the rhizome of Curcuma xanthorrhiza Roxb (Zingiberaceae). Xanthorrhizol was tested for a variety of important pharmacological activities including antioxidant and anti-inflammatory activities. An antiproliferation assay using the MTT method indicated that xanthorrhizol inhibited the proliferation of the human breast cancer cell line, MCF-7, with an EC50 value of 1.71 microg/ml. Three parameters including annexin-V binding assay, Hoechst 33258 staining and accumulation of sub-G1 population in DNA histogram confirmed the apoptosis induction in response to xanthorrhizol treatment. Western-blotting revealed down-regulation of the anti-apoptotic bcl-2 protein expression. However, xanthorrhizol did not affect the expression of the pro-apoptotic protein, bax, at a concentration of 1 microg/ml, 2.5 microg/ml and 5 microg/ml. The level of p53 was greatly increased, whilst PARP-1 was cleaved to 85 kDa subunits, following the treatment with xanthorrhizol at a dose-dependent manner. These results, thereby, suggest that xanthorrhizol has antiproliferative effects on MCF-7 cells by inducing apoptosis through the modulation of bcl-2, p53 and PARP-1 protein levels.
    Matched MeSH terms: Phenols/pharmacology*
  5. Deepa, R., Yin Yee, S., Afiqah Zulaikha R., Yun Li, C., Zhee Shah, C., Mei Ling, L., et al.
    MyJurnal
    Introduction: The use of crude herbs for well-being as well as curation and prevention of ailments is evident globally, including Malaysia. To understand the effectiveness and reliability, the presence of phytochemical compounds as the factor influencing the use of crude herbs shall be determined. This study was conducted to screen the presence of phytochemical compounds in the local crude herbs consumed by patients with chronic diseases. This is part of
    a larger study, where a cross-sectional study was conducted and reported elsewhere. Methods: In total, 15 types of crude herbs were reported by the patients with chronic diseases attending government health clinic at Kampar, Perak. The herbs were extracted using hot and standard cold methods respectively. Results: All the 15 crude herbs’ hot and cold extracts revealed the presence of eight phytochemical compounds, namely, phenols, quinones, tannins, terpenoids, saponins, flavonoids, glycosides, and alkaloids at varying intensity. Saponins, alkaloids, and glycosides were present in all the crude herbs extracts. However, terpenoids, tannins, and phenols were absent in Orthosiphon stamineus, Clinacanthus nutans, and Pandanus amaryllifolius extracts respectively. However, the cold extracts exhibited a higher intensity of phytochemicals compared to hot extracts. The present study confirms the presence of
    phytochemicals in the local crude herbs consumed by patients with chronic diseases. The screened phytochemicals are bioactive compounds that possess medicinal properties that may trigger the patients to treat their diseases’ underlying conditions. However, the use of prescribed medicine, particularly among aging patients must be taken into account while consuming crude herbs. Conclusion: The findings of this study indicate that structured-evidence based crude herbs use interventions for patients with chronic diseases is warranted.
    Matched MeSH terms: Phenols
  6. Ahmad R, Baharum SN, Bunawan H, Lee M, Mohd Noor N, Rohani ER, et al.
    Molecules, 2014 Nov 20;19(11):19220-42.
    PMID: 25420073 DOI: 10.3390/molecules191119220
    The aim of this research was to identify the volatile metabolites produced in different organs (leaves, stem and roots) of Polygonum minus, an important essential oil producing crop in Malaysia. Two methods of extraction have been applied: Solid Phase Microextraction (SPME) and hydrodistillation coupled with Gas Chromatography-Mass Spectrometry (GC-MS). Approximately, 77 metabolites have been identified and aliphatic compounds contribute significantly towards the aroma and flavour of this plant. Two main aliphatic compounds: decanal and dodecanal were found to be the major contributor. Terpenoid metabolites were identified abundantly in leaves but not in the stem and root of this plant. Further studies on antioxidant, total phenolic content, anticholinesterase and antimicrobial activities were determined in the essential oil and five different extracts. The plant showed the highest DPPH radical scavenging activity in polar (ethanol) extract for all the tissues tested. For anti-acetylcholinesterase activity, leaf in aqueous extract and methanol extract showed the best acetylcholinesterase inhibitory activities. However, in microbial activity, the non-polar extracts (n-hexane) showed high antimicrobial activity against Methicillin-resistant Staphylococcus aureus (MRSA) compared to polar extracts. This study could provide the first step in the phytochemical profiles of volatile compounds and explore the additional value of pharmacology properties of this essential oil producing crop Polygonum minus.
    Matched MeSH terms: Phenols/pharmacology
  7. Hashim YZ, Worthington J, Allsopp P, Ternan NG, Brown EM, McCann MJ, et al.
    Food Funct, 2014 Jul 25;5(7):1513-9.
    PMID: 24836598 DOI: 10.1039/c4fo00090k
    The decreased cancer risk associated with consumption of olive oil may be due to the presence of phenolics which can modulate pathways including apoptosis and invasion that are relevant to carcinogenesis. We have previously shown that a virgin olive oil phenolics extract (OVP) inhibited invasion of HT115 colon cancer cells in vitro. In the current study we assessed the in vitro effects of OVP (25 μg mL(-1)) on HT115 cell migration, spreading and integrin expression. Furthermore, the anti-metastatic activity of OVP - at a dose equivalent to 25 mg per kg per day for 2, 8 or 10 weeks - was assessed in a Severe Combined ImmunoDeficiency (SCID) Balb-c mouse model. After 24 h OVP did not inhibit cell migration but significantly reduced cell spreading on fibronectin (65% of control; p < 0.05) and expression of a range of α and β integrins was modulated. In vivo, OVP by gavage significantly (p < 0.05) decreased not only tumour volume but also the number of metastases in SCID Balb-c mice. Collectively, the data suggest that - possibly through modulation of integrin expression - OVP decreases invasion in vitro and also inhibits metastasis in vivo.
    Matched MeSH terms: Phenols/pharmacology*
  8. Yusof Z, Ramasamy S, Mahmood NZ, Yaacob JS
    Molecules, 2018 Jun 04;23(6).
    PMID: 29867000 DOI: 10.3390/molecules23061345
    This project studied the effect of vermicompost application on the composition of bioactive anthocyanin and phenolic compounds, and the antioxidant activity of Clinacanthus nutans. The correlation between the bioactive constituents and antioxidant capacity was also evaluated. In this project, a field study was conducted using a randomized complete block design (RCBD) with four treatment groups, including control plants (CC), plants supplied with chemical fertilizer (CF), plants supplied with vermicompost (VC), and plants supplied with mixed fertilizer (MF). The leaves of C. nutans from all treatment groups were harvested, subjected to solvent extraction, and used for quantification of total anthocyanin content (TAC), total phenolic content (TPC), and total flavonoid content (TFC). The initial antioxidant activity of the extracts was evaluated using 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays, as well as after two and four weeks of storage at -20 °C and 4 °C. Data analysis showed that CC plants contained the highest TAC (2180.14 ± 338.43 µg/g dry weight) and TFC (276.25 ± 3.09 mg QE/g dry weight). On the other hand, CF plants showed the highest TPC (181.53 ± 35.58 mg GAE/g dry weight). Moreover, we found that CC plants had the highest antioxidant potential against DPPH radicals whereas MF plants showed the lowest antioxidant potential. After four weeks of extract storage at -20 °C and 4 °C, the TPC, TFC, TAC, and antioxidant potential of the extracts decreased. Extracts from VC showed the lowest percentage of total phenolic and total flavonoid loss after extract storage at -20 °C and 4 °C compared with other plant extracts. At this juncture, it could be deduced that the application of vermicompost had little effect on the expression of phenolics, flavonoids, or anthocyanin in C. nutans. However, the extract from plants treated with vermicompost (VC and MF) showed better stability compared with CC and CF after extract storage at different temperatures.
    Matched MeSH terms: Phenols/pharmacology; Phenols/chemistry*
  9. Ghasemzadeh A, Jaafar HZ, Rahmat A
    Molecules, 2016 Jun 17;21(6).
    PMID: 27322227 DOI: 10.3390/molecules21060780
    The effects of different drying methods (freeze drying, vacuum oven drying, and shade drying) on the phytochemical constituents associated with the antioxidant activities of Z. officinale var. rubrum Theilade were evaluated to determine the optimal drying process for these rhizomes. Total flavonoid content (TFC), total phenolic content (TPC), and polyphenol oxidase (PPO) activity were measured using the spectrophotometric method. Individual phenolic acids and flavonoids, 6- and 8-gingerol and shogaol were identified by ultra-high performance liquid chromatography method. Ferric reducing antioxidant potential (FRAP) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assays were used for the evaluation of antioxidant activities. The highest reduction in moisture content was observed after freeze drying (82.97%), followed by vacuum oven drying (80.43%) and shade drying (72.65%). The highest TPC, TFC, and 6- and 8-shogaol contents were observed in samples dried by the vacuum oven drying method compared to other drying methods. The highest content of 6- and 8-gingerol was observed after freeze drying, followed by vacuum oven drying and shade drying methods. Fresh samples had the highest PPO activity and lowest content of flavonoid and phenolic acid compounds compared to dried samples. Rhizomes dried by the vacuum oven drying method represent the highest DPPH (52.9%) and FRAP activities (566.5 μM of Fe (II)/g DM), followed by freeze drying (48.3% and 527.1 μM of Fe (II)/g DM, respectively) and shade drying methods (37.64% and 471.8 μM of Fe (II)/g DM, respectively) with IC50 values of 27.2, 29.1, and 34.8 μg/mL, respectively. Negative and significant correlations were observed between PPO and antioxidant activity of rhizomes. Vacuum oven dried rhizomes can be utilized as an ingredient for the development of value-added food products as they contain high contents of phytochemicals with valuable antioxidant potential.
    Matched MeSH terms: Phenols/chemistry
  10. Ghasemzadeh A, Jaafar HZ, Ashkani S, Rahmat A, Juraimi AS, Puteh A, et al.
    BMC Complement Altern Med, 2016 Mar 22;16:104.
    PMID: 27004511 DOI: 10.1186/s12906-016-1072-6
    Zingiber zerumbet (L.) is a traditional Malaysian folk remedy that contains several interesting bioactive compounds of pharmaceutical quality.
    Matched MeSH terms: Phenols/analysis
  11. Nurul, S.R., Asmah, R
    MyJurnal
    The present work sought to investigate the nutritional composition and phytochemical properties of red pitaya (Hylocereus polyrhizus) juices from Malaysia and Australia and to determine the optimum ethanol concentration (in the range of 0 – 100% ethanol) for the extraction of phenolic, flavonoid and betacyanin contents. The predominant macronutrient in red pitaya juice was carbohydrate while potassium and vitamin A were the major mineral and vitamin content. Red pitaya juice from Malaysia achieved optimal total phenolic content at 20% of ethanol (20 mL ethanol in 100 mL water, v/v); total flavonoid content at 60% (v/v); and betacyanin content at 0% (v/v). Red pitaya juice from Australia achieved the maximum total phenolic content at 60% (v/v); total flavonoid content at 20% (v/v); and betacyanin content at 80% (v/v). Nutritional composition and the phytochemical properties of red pitaya in Malaysia and Australia were significantly different suggested the role of environmental factors like soil and climate on the phytochemical properties of red pitaya.
    Matched MeSH terms: Phenols
  12. Liang JL, Yeow CC, Teo KC, Gnanaraj C, Chang YP
    J Food Sci Technol, 2019 Oct;56(10):4696-4704.
    PMID: 31686701 DOI: 10.1007/s13197-019-03912-5
    The capsicum seed core and cabbage outer leaves are common wastes generated in the vegetable processing industry. We explored the in vitro health-promoting activity of these waste products for valorization. Freeze-dried and pulverized cabbage wastes had a high bile acid binding capacity and the capsicum wastes inhibited glucose dialysis more effectively. Methanolic extracts prepared with conventional solvent extraction and ultrasound-assisted extraction were analyzed to determine their 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity, in vitro α-amylase inhibitory, in vitro lipase inhibitory, and prebiotic activity. Crude extracts of cabbage and capsicum wastes were screened using GC-MS analysis. The cabbage waste extracts showed high antioxidant activities but did not inhibit α-amylase. The capsicum waste extracts inhibited both lipase and α-amylase activities and supported the growth of the probiotic bacterium, Lactobacilli brevis. Volatile compounds of the vegetables consisted mainly of phenols and fatty acid esters. In all assays except the α-amylase inhibition assay, the extracts prepared with ultrasound-assisted solvent extraction showed higher activity than those prepared using the conventional method. The capsicum seed core and cabbage outer leaves are potential sources of phytochemicals and antioxidant fibers. Capsicum waste extract supported probiotic bacterial growth without a lag phase. These waste products may be processed into high-value functional ingredients.
    Matched MeSH terms: Phenols
  13. Pang B, Lam SS, Shen XJ, Cao XF, Liu SJ, Yuan TQ, et al.
    ChemSusChem, 2020 Sep 07;13(17):4446-4454.
    PMID: 32118355 DOI: 10.1002/cssc.202000299
    The valorization of lignin to replace phenol is significant in the production of phenolic resins. However, a great challenge is to produce lignin-based resin (LR) with a suitable viscosity and high substitution rate of lignin to phenol. In this study, LRs were produced using hardwood technical lignin derived from the pulping industry. Structural analysis of the LRs indicated that the unsubstituted para and ortho carbon atoms of the aromatic ring influenced the curing temperature and activation energy of the resins. The curing kinetics and thermal decomposition study implied that urea and methylene groups in cured LRs were significant factors that affected the thermal stability negatively. The prepared LRs showed desirable features if used as adhesives to make plywood. This is the first approach in which a substitution rate of up to 65 % is achieved for low-reactive-site hardwood lignin, which provides a solution to the challenge of the simultaneous realization of the high addition of lignin and the adaptive viscosity of resins.
    Matched MeSH terms: Phenols
  14. Zhang Z, Alomirah H, Cho HS, Li YF, Liao C, Minh TB, et al.
    Environ Sci Technol, 2011 Aug 15;45(16):7044-50.
    PMID: 21732633 DOI: 10.1021/es200976k
    Bisphenol A (BPA) is an industrial chemical used in the manufacture of polycarbonate plastics and epoxy resins. Due to the potential of this compound to disrupt normal endocrinal functions, concerns over human exposure to BPA have been raised. Although several studies have reported human exposure to BPA in Western nations, little is known about exposure in Asian countries. In this study, we determined total urinary BPA concentrations (free plus conjugated) in 296 urine samples (male/female: 153/143) collected from the general population in seven Asian countries, China, India, Japan, Korea, Kuwait, Malaysia, and Vietnam, using high-performance liquid chromatography (HPLC) tandem mass spectrometry (MS/MS). On the basis of urinary BPA concentrations, we estimated the total daily intake. The results indicated that BPA was detected in 94.3% of the samples analyzed, at concentrations ranging from <0.1 to 30.1 ng/mL. The geometric mean concentration of BPA for the entire sample set from seven countries was 1.20 ng/mL. The highest concentration of BPA was found in samples from Kuwait (median: 3.05 ng/mL, 2.45 μg/g creatinine), followed by Korea (2.17 ng/mL, 2.40 μg/g), India (1.71 ng/mL, 2.09 μg/g), Vietnam (1.18 ng/mL, 1.15 μg/g), China (1.10 ng/mL, 1.38 μg/g), Malaysia (1.06 ng/mL, 2.31 μg/g), and Japan (0.95 ng/mL, 0.58 μg/g). Among the five age groups studied (≤ 19, 20-29, 30-39, 40-49, and ≥ 50 years), the highest median concentration of BPA was found in urine samples from the age group of ≤ 19 years. There was no significant difference in BPA concentrations between genders (male and female) or domicile of residence (rural and urban). The estimated median daily intakes of BPA for the populations in Kuwait, Korea, India, China, Vietnam, Malaysia, and Japan were 5.19, 3.69, 2.90, 2.13, 2.01, 1.80, and 1.61 μg/day, respectively. The estimated daily intake of BPA in the seven Asian countries was significantly lower than the tolerable daily intake recommended by the U.S. Environmental Protection Agency. This is the first study to document the occurrence of and human exposure to BPA in several Asian countries.
    Matched MeSH terms: Phenols/urine*
  15. Chua LS
    Plant Physiol Biochem, 2016 Sep;106:16-22.
    PMID: 27135814 DOI: 10.1016/j.plaphy.2016.04.040
    The identification of plant metabolites is very important for the understanding of plant physiology including plant growth, development and defense mechanism, particularly for herbal medicinal plants. The metabolite profile could possibly be used for future drug discovery since the pharmacological activities of the indigenous herbs have been proven for centuries. An untargeted mass spectrometric approach was used to identify metabolites from the leaves and stems of Impatiens balsamina using LC-DAD-MS/MS. The putative compounds are mostly from the groups of phenolic, organic and amino acids which are essential for plant growth and as intermediates for other compounds. Alanine appeared to be the main amino acid in the plant because many alanine derived metabolites were detected. There are also several secondary metabolites from the groups of benzopyrones, benzofuranones, naphthoquinones, alkaloids and flavonoids. The widely reported bioactive components such as kaempferol, quercetin and their glycosylated, lawsone and its derivatives were detected in this study. The results also revealed that aqueous methanol could extract flavonoids better than water, and mostly, flavonoids were detected from the leaf samples. The score plots of component analysis show that there is a minor variance in the metabolite profiles of water and aqueous methanolic extracts with 21.5 and 30.5% of the total variance for the first principal component at the positive and negative ion modes, respectively.
    Matched MeSH terms: Phenols/analysis
  16. Patil R, Ramli ANM, Xuan AS, Xin NZ, Azelee NIW, Bhuyar P
    J Zhejiang Univ Sci B, 2024 Apr 15;25(4):293-306.
    PMID: 38584092 DOI: 10.1631/jzus.B2300383
    The oyster mushroom (Pleurotus spp.) is one of the most widely cultivated mushroom species globally. The present study investigated the effect of synbiotics on the growth and quality of Pleurotus ostreatus and Pleurotus pulmonarius. Different synbiotics formulations were applied by spraying mushroom samples daily and measuring their growth parameters, yield, biological efficiency, proximate composition, mineral content, total phenolic content (TPC), and diphenyl-1-picryl-hydrazyl (DPPH) radical scavenging activity. Results demonstrated that the most significant yield of oyster mushrooms was harvested from synbiotics sprayed with inulin and Lactobacillus casei (56.92 g). Likewise, the highest biological efficiency obtained with a similar synbiotic was 12.65%. Combining inulin and L. casei was the most effective method of improving the mushrooms' growth performance and nutrient content in both samples. Furthermore, synbiotics that combined inulin and L. casei resulted in the highest TPC (20.550 mg gallic acid equivalent (GAE)/g dry extract (DE)) in white oyster mushrooms (P. ostreatus). In comparison, in grey mushroom (P. pulmonarius) the highest TPC was yielded by L. casei (1.098 mg GAE/g DE) followed by inulin and L. casei (1.079 mg GAE/g DE). The DPPH results indicated that the oyster mushroom could be an efficient antioxidant. The results revealed that applying synbiotics improved the mushrooms' quality by increasing their antioxidant capacity with higher amounts of phenolic compounds and offering better health benefits with the increased levels of mineral elements. Together, these studies demonstrated the potential of using synbiotics as a biofertilizer, which is helpful for mushroom cultivation; therefore, it might solve the challenge of inconsistent quality mushroom growers face.
    Matched MeSH terms: Phenols
  17. Xu YJ, Jiang F, Song J, Yang X, Shu N, Yuan L, et al.
    J Agric Food Chem, 2020 Aug 19;68(33):8847-8854.
    PMID: 32806128 DOI: 10.1021/acs.jafc.0c03539
    The thermal pretreatment of oilseed prior to oil extraction could increase the oil yield and improve the oil quality. Phenolic compounds are important antioxidants in rapeseed oil. In this study, we investigated the impact of thermal pretreatment method on the rapeseed oil based on phenolic compound levels. Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) analysis showed that the phenolic compound contents in the microwave-pretreated oil were higher than those in the oven- and infrared-treated oils. Sinapic acid (SA) and canolol (CA), which are the top two phenolic compounds in rapeseed oil, exerted well 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity with IC50 values of 8.45 and 8.80 μmol/L. The cell experiment uncovered that SA and CA have significant biological activities related to rapeseed oil quality, including increase of antioxidant enzymes superoxide dismutase (SOD), alleviation of reactive oxygen species (ROS), and cytotoxicity of HepG2 cells after the intake of excessive oleic acid. Further investigation indicated that SA and CA reduced cell apoptosis rate through Bax-Bcl-2-caspase-3 and p53-Bax-Bcl-2-caspase-3, respectively. Taken together, our findings suggest that microwave pretreatment is the best method to improve the content of phenolic compounds in rapeseed oil compared with oven and infrared pretreatments.
    Matched MeSH terms: Phenols/isolation & purification*; Phenols/chemistry*
  18. Alzorqi I, Sudheer S, Lu TJ, Manickam S
    Ultrason Sonochem, 2017 Mar;35(Pt B):531-540.
    PMID: 27161557 DOI: 10.1016/j.ultsonch.2016.04.017
    Ganoderma mushroom cultivated recently in Malaysia to produce chemically different nutritional fibers has attracted the attention of the local market. The extraction methods, molecular weight and degree of branching of (1-3; 1-6)-β-d-glucan polysaccharides is of prime importance to determine its antioxidant bioactivity. Therefore three extraction methods i.e. hot water extraction (HWE), soxhlet extraction (SE) and ultrasound assisted extraction (US) were employed to study the total content of (1-3; 1-6)-β-d-glucans, degree of branching, structural characteristics, monosaccharides composition, as well as the total yield of polysaccharides that could be obtained from the artificially cultivated Ganoderma. The physical characteristics by HPAEC-PAD, HPGPC and FTIR, as well as the antioxidant in vitro assays of DPPH scavenging activity and ferric reducing power (FRAP) indicated that (1-3; 1-6)-β-d-glucans of Malaysian mushroom have better antioxidant activity, higher molecular weight and optimal degree of branching when extracted by US in comparison with conventional methods.
    Matched MeSH terms: Phenols/analysis
  19. Hwa KY, Karuppaiah P, Gowthaman NSK, Balakumar V, Shankar S, Lim HN
    Ultrason Sonochem, 2019 Nov;58:104649.
    PMID: 31450344 DOI: 10.1016/j.ultsonch.2019.104649
    Hydroquinone (HQ), a phenolic compound is expansively used in many industrial applications and due to the utilization of HQ, water pollution tragedies frequently found by the improper handling and accidental outflows. When HQ is adsorbed directly through the skin that create toxic effects to human by affecting kidney, liver, lungs, and urinary tract and hence, a highly selective and sensitive technique is required for its quantification. Herein, we have developed the ultrasonic synthesis of copper oxide nanoflakes (CuO-NFs) using ultrasonic bath (20 kHz, 100 W) and successfully employed for the sensitive detection of the environmental hazardous pollutant HQ. The formed CuO-NFs were confirmed by X-ray diffraction, field emission scanning electron microscopy (FE-SEM), FT-IR spectroscopy and UV-visible spectroscopy and fabricated with the screen-printed carbon electrode (SPCE). The SEM images exhibited the uniform CuO-NFs with an average width of 85 nm. The linker-free CuO-NFs fabricated electrode showed the appropriate wide range of concentrations from 0.1 to 1400 µM and the limit of detection was found to be 10.4 nM towards HQ. The fabricated sensor having long term stability and sensitivity was successfully applied for the environmental and commercial real sample analysis and exhibited good recovery percentage, implying that the SPCE/CuO-NFs is an economically viable and benign robust scaffold for the determination of HQ.
    Matched MeSH terms: Phenols/analysis*; Phenols/chemistry
  20. Li B, Amin AH, Ali AM, Isam M, Lagum AA, Sabugaa MM, et al.
    Chemosphere, 2023 Sep;336:139208.
    PMID: 37321458 DOI: 10.1016/j.chemosphere.2023.139208
    UV and solar-based photocatalytic degradation of 2,4-dichlorophenol (2,4-DCP) as an organic contaminant in ceramics industry wastewater by ZnS and Fe-doped ZnS NPs was the focus of this research. Nanoparticles were prepared using a chemical precipitation process. The cubic, closed-packed structure of undoped ZnS and Fe-doped ZnS NPs was formed in spherical clusters, according to XRD and SEM investigations. According to optical studies, the optical band gaps of pure ZnS and Fe-doped ZnS nanoparticles are 3.35 and 2.51 eV, respectively, and Fe doping increased the number of carriers with high mobility, improved carrier separation and injection efficiency, and increased photocatalytic activity under UV or visible light. Doping of Fe increased the separation of photogenerated electrons and holes and facilitated charge transfer, according to electrochemical impedance spectroscopy investigations. Photocatalytic degradation studies revealed that in the present pure ZnS and Fe-doped ZnS nanoparticles, 100% treatment of 120 mL of 15 mg/L phenolic compound was obtained after 55- and 45-min UV-irradiation, respectively, and complete treatment was attained after 45 and 35-min solar light irradiation, respectively. Because of the synergistic effects of effective surface area, more effective photo-generated electron and hole separation efficiency, and enhanced electron transfer, Fe-doped ZnS demonstrated high photocatalytic degradation performance. The study of Fe-doped ZnS's practical photocatalytic treatment capability for removing 120 mL of 10 mg/L 2,4-DCP solution made from genuine ceramic industrial wastewater revealed Fe-doped ZnS's excellent photocatalytic destruction of 2,4-DCP from real industrial wastewater.
    Matched MeSH terms: Phenols
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links