Displaying publications 1 - 20 of 290 in total

Abstract:
Sort:
  1. Touri M, Moztarzadeh F, Osman NAA, Dehghan MM, Mozafari M
    Mater Sci Eng C Mater Biol Appl, 2018 Mar 01;84:236-242.
    PMID: 29519434 DOI: 10.1016/j.msec.2017.11.037
    Tissue engineering scaffolds with oxygen generating elements have shown to be able to increase the level of oxygen and cell survivability in specific conditions. In this study, biphasic calcium phosphate (BCP) scaffolds with the composition of 60% hydroxyapatite (HA) and 40% beta-tricalcium phosphate (β-TCP), which have shown a great potential for bone tissue engineering applications, were fabricated by a direct-write assembly (robocasting) technique. Then, the three-dimensional (3D)-printed scaffolds were coated with different ratios of an oxygen releasing agent, calcium peroxide (CPO), which encapsulated within a polycaprolactone (PCL) matrix through dip-coating, and used for in situ production of oxygen in the implanted sites. The structure, composition and morphology of the prepared scaffolds were characterized by different techniques. The oxygen release kinetics and biological investigations of the scaffolds were also studied in vitro. The results showed that oxygen release behaviour was sustained and dependant on the concentration of CPO encapsulated in the PCL coating matrix. It was also demonstrated that the coated scaffolds, having 3% CPO in the coating system, could provide a great potential for promoting bone ingrowth with improving osteoblast cells viability and proliferation under hypoxic conditions. The findings indicated that the prepared scaffolds could play a significant role in engineering of large bone tissue implants with limitations in oxygen diffusion.
    Matched MeSH terms: Calcium Phosphates/chemistry*
  2. Toussaint ND, Pedagogos E, Lioufas NM, Elder GJ, Pascoe EM, Badve SV, et al.
    J Am Soc Nephrol, 2020 11;31(11):2653-2666.
    PMID: 32917784 DOI: 10.1681/ASN.2020040411
    BACKGROUND: Hyperphosphatemia is associated with increased fibroblast growth factor 23 (FGF23), arterial calcification, and cardiovascular mortality. Effects of phosphate-lowering medication on vascular calcification and arterial stiffness in CKD remain uncertain.

    METHODS: To assess the effects of non-calcium-based phosphate binders on intermediate cardiovascular markers, we conducted a multicenter, double-blind trial, randomizing 278 participants with stage 3b or 4 CKD and serum phosphate >1.00 mmol/L (3.10 mg/dl) to 500 mg lanthanum carbonate or matched placebo thrice daily for 96 weeks. We analyzed the primary outcome, carotid-femoral pulse wave velocity, using a linear mixed effects model for repeated measures. Secondary outcomes included abdominal aortic calcification and serum and urine markers of mineral metabolism.

    RESULTS: A total of 138 participants received lanthanum and 140 received placebo (mean age 63.1 years; 69% male, 64% White). Mean eGFR was 26.6 ml/min per 1.73 m2; 45% of participants had diabetes and 32% had cardiovascular disease. Mean serum phosphate was 1.25 mmol/L (3.87 mg/dl), mean pulse wave velocity was 10.8 m/s, and 81.3% had abdominal aortic calcification at baseline. At 96 weeks, pulse wave velocity did not differ significantly between groups, nor did abdominal aortic calcification, serum phosphate, parathyroid hormone, FGF23, and 24-hour urinary phosphate. Serious adverse events occurred in 63 (46%) participants prescribed lanthanum and 66 (47%) prescribed placebo. Although recruitment to target was not achieved, additional analysis suggested this was unlikely to have significantly affected the principle findings.

    CONCLUSIONS: In patients with stage 3b/4 CKD, treatment with lanthanum over 96 weeks did not affect arterial stiffness or aortic calcification compared with placebo. These findings do not support the role of intestinal phosphate binders to reduce cardiovascular risk in patients with CKD who have normophosphatemia.

    CLINICAL TRIAL REGISTRY NAME AND REGISTRATION NUMBER: Australian Clinical Trials Registry, ACTRN12610000650099.

    Matched MeSH terms: Phosphates/blood*; Phosphates/urine
  3. Ngalimat MS, Yahaya RSR, Baharudin MMA, Yaminudin SM, Karim M, Ahmad SA, et al.
    Microorganisms, 2021 Mar 17;9(3).
    PMID: 33802666 DOI: 10.3390/microorganisms9030614
    Bacteria under the operational group Bacillus amyloliquefaciens (OGBa) are all Gram-positive, endospore-forming, and rod-shaped. Taxonomically, the OGBa belongs to the Bacillus subtilis species complex, family Bacillaceae, class Bacilli, and phylum Firmicutes. To date, the OGBa comprises four bacterial species: Bacillus amyloliquefaciens, Bacillus siamensis, Bacillus velezensis and Bacillus nakamurai. They are widely distributed in various niches including soil, plants, food, and water. A resurgence in genome mining has caused an increased focus on the biotechnological applications of bacterial species belonging to the OGBa. The members of OGBa are known as plant growth-promoting bacteria (PGPB) due to their abilities to fix nitrogen, solubilize phosphate, and produce siderophore and phytohormones, as well as antimicrobial compounds. Moreover, they are also reported to produce various enzymes including α-amylase, protease, lipase, cellulase, xylanase, pectinase, aminotransferase, barnase, peroxidase, and laccase. Antimicrobial compounds that able to inhibit the growth of pathogens including non-ribosomal peptides and polyketides are also produced by these bacteria. Within the OGBa, various B. velezensis strains are promising for use as probiotics for animals and fishes. Genome mining has revealed the potential applications of members of OGBa for removing organophosphorus (OPs) pesticides. Thus, this review focused on the applicability of members of OGBa as plant growth promoters, biocontrol agents, probiotics, bioremediation agents, as well as producers of commercial enzymes and antibiotics. Here, the bioformulations and commercial products available based on these bacteria are also highlighted. This review will better facilitate understandings of members of OGBa and their biotechnological applications.
    Matched MeSH terms: Phosphates
  4. Sadeghinezhad E, Kazi SN, Dahari M, Safaei MR, Sadri R, Badarudin A
    Crit Rev Food Sci Nutr, 2015;55(12):1724-43.
    PMID: 24731003 DOI: 10.1080/10408398.2012.752343
    Heat exchanger performance degrades rapidly during operation due to formation of deposits on heat transfer surfaces which ultimately reduces service life of the equipment. Due to scaling, product deteriorates which causes lack of proper heating. Chemistry of milk scaling is qualitatively understood and the mathematical models for fouling at low temperatures have been produced but the behavior of systems at ultra high temperature processing has to be studied further to understand in depth. In diversified field, the effect of whey protein fouling along with pressure drop in heat exchangers were conducted by many researchers. Adding additives, treatment of heat exchanger surfaces and changing of heat exchanger configurations are notable areas of investigation in milk fouling. The present review highlighted information about previous work on fouling, influencing parameters of fouling and its mitigation approach and ends up with recommendations for retardation of milk fouling and necessary measures to perform the task.
    Matched MeSH terms: Calcium Phosphates/chemistry
  5. Shukor Y, Shamsuddin B, Mohamad O, Ithnin K
    Pak J Biol Sci, 2008 Feb 15;11(4):672-5.
    PMID: 18817148
    In this research, we modify a previously developed assay for the quantification molybdenum blue to determine whether inhibitors to molybdate reduction in bacteria inhibits cellular reduction or inhibit the chemical formation of one of the intermediate of molybdenum blue; phosphomolybdate. We manage to prove that inhibition of molybdate reduction by phosphate and arsenate is at the level of phosphomolybdate and not cellular. We also prove that mercury is a physiological inhibitor to molybdate reduction. We suggest the use of this method to assess the effect of inhibitors and activators to molybdate reduction in bacteria.
    Matched MeSH terms: Phosphates/chemistry
  6. REID JA, LIM CS
    Med J Malaya, 1959 Mar;13(3):239-42.
    PMID: 13666192
    Matched MeSH terms: Phosphates*
  7. Cui M, Jang M, Kang K, Kim D, Snyder SA, Khim J
    Chemosphere, 2016 Feb;144:2081-90.
    PMID: 26583290 DOI: 10.1016/j.chemosphere.2015.10.107
    A novel and economic sequential process consisting of precipitation, adsorption, and oxidation was developed to remediate actual rare-earth (RE) wastewater containing various toxic pollutants, including radioactive species. In the precipitation step, porous air stones (PAS) containing waste oyster shell (WOS), PASWOS, was prepared and used to precipitate most heavy metals with >97% removal efficiencies. The SEM-EDS analysis revealed that PAS plays a key role in preventing the surface coating of precipitants on the surface of WOS and in releasing the dissolved species of WOS successively. For the adsorption step, a polyurethane (PU) impregnated by coal mine drainage sludge (CMDS), PUCMDS, was synthesized and applied to deplete fluoride (F), arsenic (As), uranium (U), and thorium (Th) that remained after precipitation. The continuous-mode sequential process using PAS(WOS), PU(CMDS), and ozone (O3) had 99.9-100% removal efficiencies of heavy metals, 99.3-99.9% of F and As, 95.8-99.4% of U and Th, and 92.4% of COD(Cr) for 100 days. The sequential process can treat RE wastewater economically and effectively without stirred-tank reactors, pH controller, continuous injection of chemicals, and significant sludge generation, as well as the quality of the outlet met the EPA recommended limits.
    Matched MeSH terms: Phosphates
  8. Nurimatussolehah Sarijan, Sabariah Md Noor, Tun Maizura Mohd Fathullah, Malina Osman, Zainina Seman
    MyJurnal
    Percentage of haemolysis is widely used as a quality parameter to assess red blood cell viability in blood banking. In certain blood banks, serum potassium level is used due to the unavailability of the former test. The relationship between these two tests, however, is still unclear. The objective of this study is to determine the association between haemolysis measured using two different methods for quality control. Methods: A total of forty-four samples of packed red cell in citrate-phosphate-dextrose with optisol were randomly selected from donation drives. Nine millilitres of blood was collected weekly starting from day-2 of storage, followed by day-7, 14, 21, 28, 35 and 42 for assessment of red blood cell haemolysis by measuring serum potassium level and percentage of haemolysis.Results: These two parameters were correlated significantly with a positive moderate linear relationship on day 7, 21 and 28 with r = 0.393, 0.448 and 0.425, respectively and p-values less than 0.01. The linear regression analysis showed there was a significant regression equation which could be used to predict the serum potassium level from the percentage of haemolysis. Conclusion: There were significant increases in the percentage of haemolysis and serum potassium level in the packed red cell units with storage. The serum potassium level would be able to be predicted from the percentage of haemolysis using the regression equations on day 7, 21 and 28. The serum potassium measurement could be used as an alternative test to the percentage of haemolysis before issuing blood.
    Matched MeSH terms: Phosphates
  9. Minhat FI, Yahya K, Talib A, Ahmad O
    Trop Life Sci Res, 2013 Aug;24(1):35-43.
    PMID: 24575240 MyJurnal
    The distribution of benthic Foraminifera throughout the coastal waters of Taman Negara Pulau Pinang (Penang National Park), Malaysia was studied to assess the impact of various anthropogenic activities, such as fishing, ecotourism and floating cage culture. Samples were obtained at 200 m intervals within the subtidal zone, extending up to 1200 m offshore at Teluk Bahang, Teluk Aling, Teluk Ketapang and Pantai Acheh. The depth within coastal waters ranged between 1.5 m and 10.0 m, with predominantly muddy substrate at most stations. Water quality analysis showed little variation in micronutrient (nitrite, NO2; nitrate, NO3; ammonia, NH4 and orthophosphate, PO4) concentrations between sampling stations. Temperature (29.6±0.48°C), salinity (29.4±0.28 ppt), dissolved oxygen content (5.4±0.95 mg/l) and pH (8.5± 0.13) also showed little fluctuation between stations. A total of nine genera of foraminifera were identified in the study (i.e., Ammonia, Elphidium, Ammobaculites, Bigenerina, Quinqueloculina, Reopax, Globigerina, Textularia and Nonion). The distribution of benthic foraminifera was dominated by opportunistic groups that have a high tolerance to anthropogenic stressors. Ammonia had the highest frequency of occurrence (84.7%), followed by Bigenerina (50%), Ammobaculites (44.2%) and Elphidium (38.9%). The Ammonia-Elphidium Index (AEI) was used to describe the hypoxic condition of benthic communities at all sites. Teluk Bahang had the highest AEI value. The foraminiferal assemblages and distribution in Teluk Bahang, Teluk Aling, Teluk Ketapang and Pantai Acheh showed no correlation with physical or chemical environmental parameters.
    Matched MeSH terms: Phosphates
  10. Basri HF, Anuar AN, Halim MHA, Yuzir MA, Muda K, Omoregie AI, et al.
    Environ Monit Assess, 2023 Feb 21;195(3):420.
    PMID: 36809517 DOI: 10.1007/s10661-023-11028-9
    This paper presents an assessment of the start-up performance of aerobic granular sludge (AGS) for the treatment of low-strength (chemical oxygen demand, COD 
    Matched MeSH terms: Phosphates
  11. Ab Halim MH, Nor Anuar A, Azmi SI, Jamal NS, Wahab NA, Ujang Z, et al.
    Bioresour Technol, 2015 Jun;185:445-9.
    PMID: 25851807 DOI: 10.1016/j.biortech.2015.03.024
    With inoculum sludge from a conventional activated sludge wastewater treatment plant, three sequencing batch reactors (SBRs) fed with synthetic wastewater were operated at different high temperatures (30, 40 and 50±1°C) to study the formation of aerobic granular sludge (AGS) for simultaneous organics and nutrients removal with a complete cycle time of 3h. The AGS were successfully cultivated with influent loading rate of 1.6CODg(Ld)(-1). The COD/N ratio of the influent wastewater was 8. The results revealed that granules developed at 50°C have the highest average diameter, (3.36mm) with 98.17%, 94.45% and 72.46% removal efficiency observed in the system for COD, ammonia and phosphate, respectively. This study also demonstrated the capabilities of AGS formation at high temperatures which is suitable to be applied for hot climate conditions.
    Matched MeSH terms: Phosphates/chemistry
  12. Mojiri A, Ahmad Z, Tajuddin RM, Arshad MF, Gholami A
    Environ Monit Assess, 2017 Jul;189(7):337.
    PMID: 28612336 DOI: 10.1007/s10661-017-6052-x
    Water pollution is a global problem. During current study, ammonia, phosphate, phenol, and copper(II) were removed from aqueous solution by subsurface and surface flow constructed wetland. In current investigation, distilled water was polluted with four contaminants including ammonia, phosphate, copper (Cu), and phenol. Response surface methodology and central composite design were applied to optimize pollutant removal during treatment by subsurface flow constructed wetland (SSFCW). Contact time (12 to 80 h) and initial pollutant concentration (20 to 85 mg/L) were selected as independent factors; some upper and lower ranges were also monitored for accuracy. In SSFCW, water hyacinth transplanted in two substrate layers, namely zeolite and cockle shell. SSFCW removed 87.7, 81.4, 74.7, and 54.9% of ammonia, phosphate, Cu, and phenol, respectively, at optimum contact time (64.5 h) and initial pollutant concentration (69.2 mg/L). Aqueous solution was moved to a surface flow constructed wetland (SFCW) after treating via SSFCW at optimum conditions. In SFCW, Typha was transplanted to a fixed powdered substrate layer, including bentonite, zeolite, and cockle shell. SFCW could develop performance of this combined system and could improve elimination efficacy of the four contaminants to 99.99%. So this combined CW showed a good performance in removing pollutants. Graphical abstract Wetlands arrangement for treating aqueous solution in current study.
    Matched MeSH terms: Phosphates/analysis
  13. Lee HS, Singh JK, Ismail MA
    Sci Rep, 2017 02 03;7:41935.
    PMID: 28157233 DOI: 10.1038/srep41935
    A new technique was accepted to fill the porosity of Al coating applied by arc thermal spray process to enhance corrosion resistance performance in artificial ocean water. The porosity is the inherent property of arc thermal spray coating process. In this study, applied coating was treated with different concentrations of ammonium phosphate mono basic (NH4H2PO4: AP) solution thereafter dried at room temperature and kept in humidity chamber for 7d to deposit uniform film. The corrosion resistance of Al coating and treated samples have been evaluated using electrochemical impedance spectroscopy (EIS) and potentiodynamic techniques with exposure periods in artificial ocean water. Electrochemical techniques, X-ray diffraction (XRD), Raman spectroscopy, atomic force microscopy (AFM) and field emission-scanning electron microscopy (FE-SEM) indicated that phosphate ion would have been retarding corrosion of Al coating effectively. The formation of AHP (Ammonium Aluminum Hydrogen Phosphate Hydrate: NH4)3Al5H6(PO4)8.18H2O) on Al coating surface after treatment with AP is nano sized, crystalline and uniformly deposited but after exposure them in artificial ocean water, they form AHPH (Aluminum hydroxide phosphate hydrate Al3(PO4)2(OH)3(H2O)5) that is very protective, adherent, uniform and plate like morphology of corrosion products. The AHPH is sparingly soluble and adherent to surface and imparted improved corrosion resistance.
    Matched MeSH terms: Phosphates
  14. Mohamed Abdelrasoul, Jahangir Bin Kamaldin, Jer Ping Ooi, Ahmed Abd El-Fattah, Gihan Kotry, Omneya Ramadan, et al.
    MyJurnal
    Introduction: Melatonin (MEL) loaded alginate-chitosan/beta-tricalcium phosphate (Alg-CH/β-TCP) composite hy- drogel has been formulated as a scaffold for bone regeneration. MEL in the scaffold was anticipated to accelerate bone regeneration. The objective of this study is to observe signs of systemic toxicity and physical changes on surface defected bone for bone regenerative performance of the composite. Methods: The proximal-medial metaphyseal cortex of the left tibia of New Zealand white rabbit was the surgical site of the defect. A total of nine rabbits were randomly allocated to three groups; Group I; implanted with MEL loaded Alg-CH/β-TCP, Group II; Alg-CH/β-TCP and Group III defects were sham control. The rabbits were daily observed to determine systemic toxicity effects by composites. The physical changes to implanted site were observed using digital x-ray radiography and computerized tomography at weeks 0, 2, 4, 6 and 8 of post-implantation. Results: There were no clinical signs of systemic toxicity for all groups of rabbits. Digital radiography did not show adverse effects to the bone. Computerized tomography showed reduction in the area size and depth volume of the implantation site, but accelerated regeneration within the 8 weeks was not significantly different (P
    Matched MeSH terms: Calcium Phosphates
  15. Shukor MY, Rahman MF, Shamaan NA, Lee CH, Karim MI, Syed MA
    Appl Biochem Biotechnol, 2008 Mar;144(3):293-300.
    PMID: 18556818
    Molybdenum-reducing activity in the heterotrophic bacteria is a phenomenon that has been reported for more than 100 years. In the presence of molybdenum in the growth media, bacterial colonies turn to blue. The enzyme(s) responsible for the reduction of molybdenum to molybdenum blue in these bacteria has never been purified. In our quest to purify the molybdenum-reducing enzyme, we have devised a better substrate for the enzyme activity using laboratory-prepared phosphomolybdate instead of the commercial 12-phosphomolybdate we developed previously. Using laboratory-prepared phosphomolybdate, the highest activity is given by 10:4-phosphomolybdate. The apparent Michaelis constant, Km for the laboratory-prepared 10:4-phosphomolybdate is 2.56 +/- 0.25 mM (arbitrary concentration), whereas the apparent V(max) is 99.4 +/- 2.85 nmol Mo-blue min(-1) mg(-1) protein. The apparent Michaelis constant or Km for NADH as the electron donor is 1.38 +/- 0.09 mM, whereas the apparent V(max) is 102.6 +/- 1.73 nmol Mo-blue min(-1) mg(-l) protein. The apparent Km and V(max) for another electron donor, NADPH, is 1.43 +/- 0.10 mM and 57.16 +/- 1.01 nmol Mo-blue min(-1) mg(-1) protein, respectively, using the same batch of molybdenum-reducing enzyme. The apparent V(max) obtained for NADH and 10:4-phosphomolybdate is approximately 13 times better than 12-phoshomolybdate using the same batch of enzyme, and hence, the laboratory-prepared phosphomolybdate is a much better substrate than 12-phoshomolybdate. In addition, 10:4-phosphomolybdate can be routinely prepared from phosphate and molybdate, two common chemicals in the laboratory.
    Matched MeSH terms: Phosphates/metabolism
  16. Nor Hazliana Harun, Rabiatul Basria S.M.N. Mydin, Khairul Anuar Shariff, Nur Adila Rosdi, Davamunisvari Rames
    MyJurnal
    Introduction: This study aims to investigate different residue sizes of β-tricalcium phosphate (β-TCP) micro-granules as carriers to assess antibacterial activity and drug-control release behavior of ampicillin (AMP-) and antimycotic (AMC-). Incorporation of antibiotic into the β-TCP micro-granules and it sustain release behavior could be used as alternative solution to reduce the risk of osteomyelitis and bone infections risks. Methods: Three different residue sizes (less than 300 µm, 300 µm and 600 µm) were prepared and coated with antibiotics solution (20 µg/µl of ampi- cillin and 100X antimycotic solution) by using two methods; dip and stream coating. After 72 h, 1.5 mL of distilled water was added to the treated (β-TCP) micro-granules at two different pH value (5.0 and 7.4). The extracted solution was further analyzed by Kirby Bauer disc diffusion test and spectrophotometer assay. Results: The solution con- taining AMC-(β-TCP) micro-granules with the size of 300 µm residue produced the largest inhibition zones against Escherichia coli (E. coli). All residue sizes coated with AMP- showed no antibacterial activity against both strains; Staphylococcus aureus (S. aureus) and E.coli. Additionally, the release behavior of AMC-(β-TCP) micro-granules was found not depending on the pH, but on the size of residue. Complete drug release was rapidly observed within 48
    h. Conclusion: Based on this findings, it showed AMC-(β-TCP) micro-granules had an antibacterial activity against Gram-negative strain. Specifically, it can reduced the growth rate of E. coli and the rapid release behavior of AMC- (β-TCP) micro-granules help in minimizing the risk-infections in early stage of implantation.
    Matched MeSH terms: Calcium Phosphates
  17. Panhwar QA, Jusop S, Naher UA, Othman R, Razi MI
    ScientificWorldJournal, 2013;2013:272409.
    PMID: 24288473 DOI: 10.1155/2013/272409
    A study was conducted at Universiti Putra Malaysia to determine the effect of phosphate-solubilizing bacteria (PSB) and organic acids (oxalic & malic) on phosphate (P) solubilization from phosphate rock (PR) and growth of aerobic rice. Four rates of each organic acid (0, 10, 20, and 30 mM), and PSB strain (Bacillus sp.) were applied to aerobic rice. Total bacterial populations, amount of P solubilization, P uptake, soil pH, and root morphology were determined. The results of the study showed significantly high P solubilization in PSB with organic acid treatments. Among the two organic acids, oxalic acid was found more effective compared to malic acid. Application of oxalic acid at 20 mM along with PSB16 significantly increased soluble soil P (28.39 mg kg(-1)), plant P uptake (0.78 P pot(-1)), and plant biomass (33.26 mg). Addition of organic acids with PSB and PR had no influence on soil pH during the planting period. A higher bacterial population was found in rhizosphere (8.78 log10 cfu g(-1)) compared to the nonrhizosphere and endosphere regions. The application of organic acids along with PSB enhanced soluble P in the soil solution, improved root growth, and increased plant biomass of aerobic rice seedlings without affecting soil pH.
    Matched MeSH terms: Phosphates/metabolism*
  18. Azizah Endut, Fathurrahman Lananan, Ahmad Jusoh, Wan Norsani Wan Nik, Nora'aini Ali
    MyJurnal
    The current and escalating extent of soil degradation, water scarcity and environmental concern
    plaguing agricultural productivity, demands re-assessing the direction of food production. Aquaponics
    is a concept relatively new to modern food production methods and can contribute to food security.
    This study was conducted to establish sustainable aquaculture systems that maximize benefits and
    minimize the accumulation of detrimental compounds and other types of negative impacts on both
    natural and social environments. This study carried out at an average inflow rate of 1.28 m/day to
    evaluate the operation of the aquaponics recirculation system (ARS) on nutrients removal and growth
    and yield of African catfish as well as water spinach. A special design of ARS was used to provide
    nitrification of fishery wastewater, where the combination of sands and gravels in hydroponics trough,
    providing both surfaces for biofuel development and cultivation area for plants. Removal efficiencies
    of 5-day biochemical oxygen demand (BOD5), total suspended solids (TSS), total ammonia nitrogen
    (TAN), nitrite-nitrogen (NO2-N), nitrate-nitrogen (NO3-N), and orthophosphate (PO4
    3-
    ) were 82%, 89%,
    93%, 94%, 81%, and 80%, respectively. The feed conversion ratio (FCR) and specific growth rate
    (SGR) of African catfish were 1.08 and 3.34% day-1
    , respectively. The average water spinach
    production was 3.56 kg per m2
    . This study showed that ARS is a method of producing crop along with
    a healthy protein source and among the best alternatives for achieving economic and environmental
    sustainability.
    Matched MeSH terms: Phosphates
  19. Siti Farah Nadiah Rusli, Mimi Hani Abu Bakar, Loh Kee Shyuan, Mohd Shahbudin Mastar, Seratul Jemiah Abdul Rani, Mohd Shahbudin Mastar
    Sains Malaysiana, 2018;47:3017-3023.
    Aryl diazonium salts are coupling agents that assist in molecules attachment to interfaces for sensing purposes. Despite
    not being fully explored and not yet widely applicable for cell-based sensors, the high stability of aryl diazonium salt
    formed sensing system is highly favorable in biological applications. Carbon-based electrodes are the most commonly
    used in aryl diazonium modification due to its post grafting stable C-C bond formation. Here, salt bridge based microbial
    fuel cells (MFCs) were used to study on the effect of aryl diazonium modification on the anode graphite fibre brush. Aryl
    diazonium salts were in situ generated by the diazonation of p-phenylenediamine with NaNO2 in HCl solution. The
    electrochemical performance of the aryl diazonium modified graphite brush MFC was measured and compared with the
    unmodified graphite brush MFC. The power output of the modified graphite brush bioanode was higher (8.33 W/m3
    )
    than the unmodified graphite brush (7.60 W/m3
    ) after 20 days of operation with ferricyanide as the catholyte. After 70
    days of operation using phosphate buffer solution as the catholyte, the Pmax of modified brush was three times higher
    (0.06 W/m3
    ) than of the unmodified brush (0.02 W/m3
    ), which indicates an enhanced binding towards the substrate that
    facilitates a better electron transfer between the microbial and electrode surface.
    Matched MeSH terms: Phosphates
  20. Siraz MMM, Al Mahmud J, Alam MS, Rashid MB, Hossain Z, Osman H, et al.
    Environ Monit Assess, 2024 Jan 23;196(2):192.
    PMID: 38263472 DOI: 10.1007/s10661-024-12328-4
    Miners, factory workers, traders, end-users, and foodstuff consumers all run the risk of encountering health hazards derived from the presence of elevated levels of radiation in fertilizers, as these groups often come into direct or indirect contact with fertilizers as well as raw materials throughout various linked processes such as mineral extractions, fertilizer production, agricultural practices. A total of 30 samples of various kinds of fertilizer produced in different factories in Dhaka megacity were analyzed to quantify the concentrations of primordial radionuclides using HPGe detector. Among the analyzed samples, average (range) concentration of 40K was found to be 9920 ± 1091 (8700 ± 957-11,500 ± 1265), 9100 ± 1001 (8600 ± 946-9600 ± 1056), 2565 ± 282 (2540 ± 279-2590 ± 285), and 3560 ± 392 (2620 ± 288-4500 ± 495) Bq/kg in the samples of Muriate of Potash Fertilizer, Sulphate of Potash Fertilizer, Humic Acid Fertilizer, and NPKS Fertilizer, respectively. Elevated concentration of 226Ra was found in Triple Super Phosphate Fertilizer with a mean (range) of 335 ± 37 (290 ± 32-380 ± 42) Bq/kg. The higher activity of 40K can be linked to the greater levels of elemental potassium in phosphate fertilizer. Elevated concentrations of radionuclides may also result from variations in chemical processes as well as the local geology of the mining areas where the raw materials were extracted for fertilizer production. Numerous fertilizer brands surpass prescribed limits for various hazardous parameters, presenting significant health risks to factory workers, farmers, and consumers of agricultural products. This study provides baseline information on the radioactivity of fertilizers, which could be used to develop mitigation methods, establish national fertilizer usage limits, justify regulatory frameworks, and raise public awareness of fertilizer overuse. The findings of the study could potentially help to explore the impact of fertilizer on the food chain.
    Matched MeSH terms: Phosphates
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links