RESULTS: Three acylated analogues were produced: quercetin 4'-oleate (C33H42O8), quercetin 3',4'-dioleate (C51H74O9) and quercetin 7,3',4'-trioleate (C69H106O10). Their identities were confirmed with UPLC-ESI-MS and (1)H NMR analyses. The effects of temperature, duration and molar ratio of substrates on the bioconversion yields varied across conditions. The regioselectivity of the acylated quercetin analogues was affected by the molar ratio of substrates. TLC showed the acylated analogues had higher lipophilicity (152% increase) compared to quercetin. Partition coefficient (log P) of quercetin 4'-oleate was higher than those of quercetin and oleic acid. Quercetin 4'-oleate was also stable over 28 days of storage.
CONCLUSIONS: Quercetin oleate esters with enhanced lipophilicity can be produced via lipase-catalyzed reaction using C. antarctica lipase B to be used in topical applications.
OBJECTIVE: Quercetin-decorated liposomes of curcumin (QCunp) are perceived to be able to overcome these biopharmaceutical drawbacks.
METHODS: Curcumin liposomes with/without quercetin were prepared by lipid hydration technique. The liposomes were characterized for their particle size, zeta potential, surface morphology, drug loading and release characteristics. The toxicity of the liposomes were evaluated in-vitro and their invivo efficacy were tested against Dalton's ascites lymphoma in mice.
RESULTS: Liposomes designed showed particle size of 261.8 ± 2.1 nm with a negative zeta potential of -22.6±1.6 mV. Quercetin decorated liposomes were more effective in increasing the life span and body weight of lymphoma inflicted mice compared to those without quercetin. Similarly, the presence of quercetin also contributed to enhanced cytotoxicity of the liposomal formulation towards HT-29 cells and HCT-15 cells.
CONCLUSION: Newer liposomal design exhibited promising potential to emerge as alternative anticancer therapeutics.