MATERIALS AND METHODS: The elemental composition of tungsten carbide was analysed using Field-Emission Scanning Electron Microscopy (FESEM) with energy dispersive X-ray (EDX). The purity of tungsten carbide was 99.9%, APS: 40-50 µm. Three discs of tungsten carbide was fabricated with thickness of 0.1 cm, 0.5 cm and 1.0 cm. Three lead discs with similar thickness were used to compare the attenuation properties with tungsten carbide discs. Energy calibration of gamma spectroscopy was performed by using 123I, 133Ba, 152Eu, and 137Cs. Gamma radiation from these sources were irradiated on both materials at energies ranging from 0.160 MeV to 0.779 MeV. The experimental attenuation coefficients of lead and tungsten carbide were compared with theoretical attenuation coefficients of both materials from NIST database. The half value layer and mean free path of both materials were also evaluated in this study.
RESULTS: This study found that the peaks obtained from gamma spectroscopy have linear relationship with all energies used in this study. The relative differences between the measured and theoretical mass attenuation coefficients are within 0.19-5.11% for both materials. Tungsten carbide has low half value layer and mean free path compared to lead for all thickness at different energies.
CONCLUSION: This study shows that tungsten carbide has high potential to replace lead as new lead-free radiation shielding material in nuclear medicine.
METHODS: The study looked at the thermoluminescence dosimeters (TLDs) records of 50 medical professionals who were exposed to radiation while working at KFMC from 2019 to 2020 in Taif city, Saudi Arabia. In Riyadh, radiation exposure is read from skin TLDs using Harshaw model 6600 plus detectors. The Excel software was utilized to process the obtained data for calculating effective doses. A questionnaire was also distributed to the medical staff to assess their radiation protection procedures. The Statistical Package for Social Sciences (SPSS) program version 23 was used to analyze the obtained data.
RESULTS: The mean annual effective doses of the medical staff in 2019 and 2020 were determined to be 1.14 mSv and 1.4645 mSv, respectively, with no significant difference in effective doses between males and females in either year. The socio-demographic features of the medical personnel were examined, and the findings revealed that the majority of participants were male radiological technologists. The rate of adherence to radiation protection techniques was 68%, with a normally distributed dispersal. The amount of adherence varied significantly depending on nationality, occupation, and academic qualification.
CONCLUSION: According to the research, the mean annual effective dosage for medical professionals at KFMC was significantly below the recommended level, indicating satisfactory compliance with the ALARA radiation safety concept.