Displaying publications 1 - 20 of 39 in total

Abstract:
Sort:
  1. In LL, Azmi MN, Ibrahim H, Awang K, Nagoor NH
    Anticancer Drugs, 2011 Jun;22(5):424-34.
    PMID: 21346553 DOI: 10.1097/CAD.0b013e328343cbe6
    In this study, the apoptotic mechanism and combinatorial chemotherapeutic effects of the cytotoxic phenylpropanoid compound 1'S-1'-acetoxyeugenol acetate (AEA), extracted from rhizomes of the Malaysian ethnomedicinal plant Alpinia conchigera Griff. (Zingiberaceae), on MCF-7 human breast cancer cells were investigated for the first time. Data from cytotoxic and apoptotic assays such as live and dead and poly-(ADP-ribose) polymerase cleavage assays indicated that AEA was able to induce apoptosis in MCF-7 cells, but not in normal human mammary epithelial cells. A microarray global gene expression analysis of MCF-7 cells, treated with AEA, suggested that the induction of tumor cell death through apoptosis was modulated through dysregulation of the nuclear factor-kappaB (NF-κB) pathway, as shown by the reduced expression of various κB-regulated gene targets. Consequent to this, western blot analysis of proteins corresponding to the NF-κB pathway indicated that AEA inhibited phosphorylation levels of the inhibitor of κB-kinase complex, resulting in the elimination of apoptotic resistance originating from NF-κB activation. This AEA-based apoptotic modulation was elucidated for the first time in this study, and gave rise to the proposal of an NF-κB model termed the 'Switching/Alternating Model.' In addition to this, AEA was also found to synergistically enhance the proapoptotic effects of paclitaxel, when used in combination with MCF-7 cells, presumably by a chemosensitizing role. Therefore, it was concluded that AEA isolated from the Malaysian tropical ginger (A. conchigera) served as a very promising candidate for further in-vivo development in animal models and in subsequent clinical trials involving patients with breast-related malignancies.
  2. Alawieyah Syed Mortadza S, Sim JA, Neubrand VE, Jiang LH
    Glia, 2018 03;66(3):562-575.
    PMID: 29143372 DOI: 10.1002/glia.23265
    Amyloid β (Aβ)-induced neuroinflammation plays an important part in Alzheimer's disease (AD). Emerging evidence supports a role for the transient receptor potential melastatin-related 2 (TRPM2) channel in Aβ-induced neuroinflammation, but how Aβ induces TRPM2 channel activation and this relates to neuroinflammation remained poorly understood. We investigated the mechanisms by which Aβ42 activates the TRPM2 channel in microglial cells and the relationships to microglial activation and generation of tumor necrosis factor-α (TNF-α), a key cytokine implicated in AD. Exposure to 10-300 nM Aβ42 induced concentration-dependent microglial activation and generation of TNF-α that were ablated by genetically deleting (TRPM2 knockout ;TRPM2-KO) or pharmacologically inhibiting the TRPM2 channel, revealing a critical role of this channel in Aβ42 -induced microglial activation and generation of TNF-α. Mechanistically, Aβ42 activated the TRPM2 channel via stimulating generation of reactive oxygen species (ROS) and activation of poly(ADPR) polymerase-1 (PARP-1). Aβ42 -induced generation of ROS and activation of PARP-1 and TRPM2 channel were suppressed by inhibiting protein kinase C (PKC) and NADPH oxidases (NOX). Aβ42 -induced activation of PARP-1 and TRPM2 channel was also reduced by inhibiting PYK2 and MEK/ERK. Aβ42 -induced activation of PARP-1 was attenuated by TRPM2-KO and moreover, the remaining PARP-1 activity was eliminated by inhibiting PKC and NOX, but not PYK2 and MEK/ERK. Collectively, our results suggest that PKC/NOX-mediated generation of ROS and subsequent activation of PARP-1 play a role in Aβ42 -induced TRPM2 channel activation and TRPM2-dependent activation of the PYK2/MEK/ERK signalling pathway acts as a positive feedback to further facilitate activation of PARP-1 and TRPM2 channel. These findings provide novel insights into the mechanisms underlying Aβ-induced AD-related neuroinflammation.
  3. Idris SN, Desa MN, Aziz MN, Taib NM
    PMID: 23082561
    This study was conducted to determine the antibiotic susceptibility pattern and distribution of exoU and exoS among 44 clinical isolates of P. aeruginosa collected from different patients over a 3-month period in 2010 at a major Malaysian hospital. Susceptibility data by disk diffusion method for cefepime (30 microg), ceftazidime (30 microg), gentamicin (10 microg), piperacillin-tazobactam (100/10 microg) and ciprofloxacin (5 microg) were available for 38 isolates. Resistance to ceftazidime and piperacillin-tazobactam was the most common (74%) with five isolates not susceptible to three or more different antibiotics. PCR detection of exoU and exoS of all 44 isolates showed the former gene to be present in 18 and exoS in 41. In analyzing the two genes together, 17 isolates were detected for exoU and exoS with only two being negative for both genes. Only one isolate was detected for exoU alone whereas 24 for exoS alone. Distribution of the genes in relation to antibiotic susceptibility was inapplicable due to the majority of the isolates having similar susceptibility patterns, but the tendency of exoU-carrying isolates to be present in male patients (83%) and respiratory sites (61%) was observed (p < 0.050). The finding warrants further investigation in a larger sample of isolates.\

    Study site: Hospital Kuala Lumpur (HKL)
    Matched MeSH terms: ADP Ribose Transferases/metabolism*
  4. Marvibaigi M, Amini N, Supriyanto E, Abdul Majid FA, Kumar Jaganathan S, Jamil S, et al.
    PLoS One, 2016;11(7):e0158942.
    PMID: 27410459 DOI: 10.1371/journal.pone.0158942
    Scurrula ferruginea (Jack) Danser is one of the mistletoe species belonging to Loranthaceae family, which grows on the branches of many deciduous trees in tropical countries. This study evaluated the antioxidant activities of S. ferruginea extracts. The cytotoxic activity of the selected extracts, which showed potent antioxidant activities, and high phenolic and flavonoid contents, were investigated in human breast cancer cell line (MDA-MB-231) and non-cancer human skin fibroblast cells (HSF-1184). The activities and characteristics varied depending on the different parts of S. ferruginea, solvent polarity, and concentrations of extracts. The stem methanol extract showed the highest amount of both phenolic (273.51 ± 4.84 mg gallic acid/g extract) and flavonoid contents (163.41 ± 4.62 mg catechin/g extract) and strong DPPH• radical scavenging (IC50 = 27.81 μg/mL) and metal chelation activity (IC50 = 80.20 μg/mL). The stem aqueous extract showed the highest ABTS•+ scavenging ability. The stem methanol and aqueous extracts exhibited dose-dependent cytotoxic activity against MDA-MB-231 cells with IC50 of 19.27 and 50.35 μg/mL, respectively. Furthermore, the extracts inhibited the migration and colony formation of MDA-MB-231 cells in a concentration-dependent manner. Morphological observations revealed hallmark properties of apoptosis in treated cells. The methanol extract induced an increase in ROS generation and mitochondrial depolarization in MDA-MB-231 cells, suggesting its potent apoptotic activity. The present study demonstrated that the S. ferruginea methanol extract mediated MDA-MB-231 cell growth inhibition via induction of apoptosis which was confirmed by Western blot analysis. It may be a potential anticancer agent; however, its in vivo anticancer activity needs to be investigated.
  5. Cheah YH, Nordin FJ, Tee TT, Azimahtol HL, Abdullah NR, Ismail Z
    Anticancer Res, 2008 Nov-Dec;28(6A):3677-89.
    PMID: 19189649
    Xanthorrhizol is a natural sesquiterpenoid compound isolated from the rhizome of Curcuma xanthorrhizza Roxb (Zingerberaceae). Recent studies of xanthorrhizol in cell cultures strongly support the role of xanthorrhizol as an antiproliferative agent. In our study, we tested the antiproliferative effect of xanthorrhizol using different breast cancer cell lines. The invasive breast cancer cell line, MDA-MB-231, was then selected for further investigations. Treatment with xanthorrhizol caused 50% growth inhibition on MDA-MB-231 cells at 8.67 +/- 0.79 microg/ml as determined by sulforhodamine B (SRB) assay. Hoechst 33258 nuclear staining assay showed the rate of apoptosis of MDA-MB-231 cells to increase in response to xanthorrhizol treatment. Immunofluorescence staining using antibody MitoCapture and fluorescein isothiocyanate (FITC)-labeled cytochrome c revealed the possibility of altered mitochondrial transmembrane potential and the release of cytochrome c respectively. This was further confirmed by Western-blotting, where cytochrome c was showed to migrate from mitochondrial fraction to the cytosol fraction of treated MDA-MB-231 cells. Caspase activity assay showed the involvement of caspase-3 and caspase-9, but not caspase-6 or caspase-8 in MDA-MB-231 apoptotic cell death. Subsequently, cleavage of PARP-1 protein is suggested. These data suggest treatment with xanthorrhizol modulates MDA-MB-231 cell apoptosis through the mitochondria-mediated pathway subsequent to the disruption of mitochondrial transmembrane potential, release of cytochrome c, activation of caspase-3 and caspase-9, and the modulation of PARP-1 protein.
  6. Gan CY, Cheng LH, Easa AM
    J Food Sci, 2009 Mar;74(2):C141-6.
    PMID: 19323728 DOI: 10.1111/j.1750-3841.2009.01053.x
    Soy protein isolate (SPI) gels were produced using single cross-linking agents (SCLA) of microbial transglutaminase (MTG) via incubation for 5 or 24 h (SCLA-MTG). When powdered SCLA-MTG gels were heated for 2 h with ribose (R2) (2 g/100 mL), dark brown gels were formed, and these were designated as combined cross-linking agent (CCLA) gels: MTG5(R2) and MTG24(R2). The results showed that the levels of Maillard-derived browning and cross-links of MTG5(R2) and MTG24(R2) gels were significantly (P < 0.05) lower than a control gel produced without MTG (SCLA-R2) even though the percentage of ribose remaining after heating of these gels was similar, indicating that a similar amount of ribose was consumed during heating. epsilon-(gamma-glutamyl)lysine bonds formed during incubation of SPI with MTG may have reduced the free amino group of SPI to take part in the Maillard reaction; nevertheless, ribose took part in the Maillard reaction and initiated the Maillard cross-linkings within the CCLA gels.
    Matched MeSH terms: Ribose/analysis
  7. Tan TC, AlKarkhi AF, Easa AM
    Food Chem, 2012 Oct 15;134(4):2430-6.
    PMID: 23442706 DOI: 10.1016/j.foodchem.2012.04.049
    The addition of ribose to bovine or porcine gelatine solutions followed by heating at 95 °C yielded brown solutions with different pH, colour (CIE L(*) and b(*)) and absorbance (A(420*) values. These differences were used for gelatine powder identification, differentiation and quality control. Differentiation analysis of the Maillard reaction parameters was conducted using cluster analysis (CA) and confidence intervals (CI). The potential use of the method as a quality control procedure was evaluated by using statistical process control (SPC). CA revealed that the two types of gelatine could be classified into two different groups. CI (95% confidence) revealed that the absorbance and colour values could be used as indicators for differentiation between the two types of gelatine because the intervals between the Maillard reaction parameters of the samples were far apart. The methodology demonstrated good reproducibility because it behaved predictably based on the X¯-S charts generated from the SPC charts.
    Matched MeSH terms: Ribose/chemistry*
  8. Abdullah I, Chee CF, Lee YK, Thunuguntla SSR, Satish Reddy K, Nellore K, et al.
    Bioorg Med Chem, 2015 Aug 01;23(15):4669-4680.
    PMID: 26088338 DOI: 10.1016/j.bmc.2015.05.051
    Poly (ADP-ribose) polymerases (PARPs) play diverse roles in various cellular processes that involve DNA repair and programmed cell death. Amongst these polymerases is PARP-1 which is the key DNA damage-sensing enzyme that acts as an initiator for the DNA repair mechanism. Dihydroorotate dehydrogenase (DHODH) is an enzyme in the pyrimidine biosynthetic pathway which is an important target for anti-hyperproliferative and anti-inflammatory drug design. Since these enzymes share a common role in the DNA replication and repair mechanisms, it may be beneficial to target both PARP-1 and DHODH in attempts to design new anti-cancer agents. Benzimidazole derivatives have shown a wide variety of pharmacological activities including PARP and DHODH inhibition. We hereby report the design, synthesis and bioactivities of a series of benzimidazole derivatives as inhibitors of both the PARP-1 and DHODH enzymes.
  9. Hossan MS, Chan ZY, Collins HM, Shipton FN, Butler MS, Rahmatullah M, et al.
    Cancer Lett, 2019 07 01;453:57-73.
    PMID: 30930233 DOI: 10.1016/j.canlet.2019.03.034
    Natural products possess a significant role in anticancer therapy and many currently-used anticancer drugs are of natural origin. Cerberin (CR), a cardenolide isolated from the fruit kernel of Cerbera odollam, was found to potently inhibit cancer cell growth (GI50 values 60% bioavailability and rapid absorption; doses of 1-10 mg/kg CR were predicted to maintain efficacious unbound plasma concentrations (>GI50 value). CR's potent and selective anti-tumour activity, and its targeting of key signalling mechanisms pertinent to tumourigenesis support further preclinical evaluation of this cardiac glycoside.
  10. Inayat-Hussain SH, Osman AB, Din LB, Ali AM, Snowden RT, MacFarlane M, et al.
    FEBS Lett., 1999 Aug 13;456(3):379-83.
    PMID: 10462048
    Goniothalamin, a plant styrylpyrone derivative isolated from Goniothalamus andersonii, induced apoptosis in Jurkat T-cells as assessed by the externalisation of phosphatidylserine. Immunoblotting showed processing of caspases-3 and -7 with the appearance of their catalytically active large subunits of 17 and 19 kDa, respectively. Activation of these caspases was further evidenced by detection of poly(ADP-ribose) polymerase cleavage (PARP). Pre-treatment with the caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp fluoromethyl ketone (Z-VAD.FMK) blocked apoptosis and the resultant cleavage of these caspases and PARP. Our results demonstrate that activation of at least two effector caspases is a key feature of goniothalamin-induced apoptosis in Jurkat T-cells.
  11. Tan, T.C., Abbas, F.M.A., Azhar, M.E.
    MyJurnal
    The addition of ribose to minced chicken or minced pork followed by heating at 95oC yielded minced
    meat with different pH, colour (CIE L*, b*) and absorbance values that can be used as indicators for species differentiation. The higher intensity of the Maillard reaction parameters in minced chicken was due to the higher protein and lysine contents, and the presence of more water-soluble proteins within the minced chicken during heating. Cluster analysis using Maillard reaction parameters showed that the two types of minced meat could be classified into two different groups. A confidence interval (95% confidence) analysis revealed that the absorbance, CIE L* values, and CIE b* values could be used as indicators for differentiation between the two types of minced meat, as the intervals between these Maillard reaction parameters for the two minced meats were far apart.
    Matched MeSH terms: Ribose
  12. Yusoh NA, Ahmad H, Gill MR
    ChemMedChem, 2020 Nov 18;15(22):2121-2135.
    PMID: 32812709 DOI: 10.1002/cmdc.202000391
    Platinum drugs are heavily used first-line chemotherapeutic agents for many solid tumours and have stimulated substantial interest in the biological activity of DNA-binding metal complexes. These complexes generate DNA lesions which trigger the activation of DNA damage response (DDR) pathways that are essential to maintain genomic integrity. Cancer cells exploit this intrinsic DNA repair network to counteract many types of chemotherapies. Now, advances in the molecular biology of cancer has paved the way for the combination of DDR inhibitors such as poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) and agents that induce high levels of DNA replication stress or single-strand break damage for synergistic cancer cell killing. In this review, we summarise early-stage, preclinical and clinical findings exploring platinum and emerging ruthenium anti-cancer complexes alongside PARPi in combination therapy for cancer and also describe emerging work on the ability of ruthenium and gold complexes to directly inhibit PARP activity.
  13. Yeong KY, Tan SC, Mai CW, Leong CO, Chung FF, Lee YK, et al.
    Chem Biol Drug Des, 2018 01;91(1):213-219.
    PMID: 28719017 DOI: 10.1111/cbdd.13072
    Both sirtuin and poly(ADP-ribose)polymerase (PARP) family of enzymes utilize NAD+ as co-substrate. Inhibitors of sirtuins and PARPs are important tools in drug discovery as they are reported to be linked to multiple diseases such as cancer. New potent sirtuin inhibitors (2,4,6-trisubstituted benzimidazole) were discovered from reported PARP inhibitor scaffold. Interestingly, the synthesized compounds have contrasting sirtuin and PARP-1 inhibitory activities. We showed that modification on benzimidazoles may alter their selectivity toward sirtuin or PARP-1 enzymes. This offers an opportunity for further discovery and development of new promising sirtuin inhibitors. Molecular docking studies were carried out to aid the rationalization of these observations. Preliminary antiproliferative studies of selected compounds against nasopharyngeal cancer cells also showed relatively promising results.
    Matched MeSH terms: Adenosine Diphosphate Ribose
  14. Subramaniam M, In LL, Kumar A, Ahmed N, Nagoor NH
    Sci Rep, 2016;6:19833.
    PMID: 26817684 DOI: 10.1038/srep19833
    Mycobacterium indicus pranii (MIP) is a non-pathogenic mycobacterium, which has been tested on several cancer types like lung and bladder where tumour regression and complete recovery was observed. In discovering the potential cytotoxic elements, a preliminary test was carried out using four different fractions consisting of live bacteria, culture supernatant, heat killed bacteria and heat killed culture supernatant of MIP against two human cancer cells A549 and CaSki by 3-(4,5-dimethyl thiazol)-2,5-diphenyl tetrazolium bromide (MTT) assay. Apoptosis was investigated in MCF-7 and ORL-115 cancer cells by poly-(ADP-ribose) polymerase (PARP) and DNA fragmentation assays. Among four MIP fractions, only heat killed MIP fraction (HKB) showed significant cytotoxicity in various cancer cells with inhibitory concentration, IC50 in the range 5.6-35.0 μl/(1.0 × 10(6) MIP cells/ml), while cytotoxicity effects were not observed in the remaining fractions. HKB did not show cytotoxic effects on non-cancerous cells contrary to cancerous cells, suggesting its safe usage and ability to differentially recognize between these cells. Evaluation on PARP assay further suggested that cytotoxicity in cancer cells were potentially induced via caspase-mediated apoptosis. The cytotoxic and apoptotic effects of MIP HKB have indicated that this fraction can be a good candidate to further identify effective anti-cancer agents.
  15. Yusoh NA, Tiley PR, James SD, Harun SN, Thomas JA, Saad N, et al.
    J Med Chem, 2023 May 25;66(10):6922-6937.
    PMID: 37185020 DOI: 10.1021/acs.jmedchem.3c00322
    Synergistic drug combinations can extend the use of poly(ADP-ribose) polymerase inhibitors (PARPi) such as Olaparib to BRCA-proficient tumors and overcome acquired or de novo drug resistance. To identify new synergistic combinations for PARPi, we screened a "micro-library" comprising a mix of commercially available drugs and DNA-binding ruthenium(II) polypyridyl complexes (RPCs) for Olaparib synergy in BRCA-proficient triple-negative breast cancer cells. This identified three hits: the natural product Curcumin and two ruthenium(II)-rhenium(I) polypyridyl metallomacrocycles. All combinations identified were effective in BRCA-proficient breast cancer cells, including an Olaparib-resistant cell line, and spheroid models. Mechanistic studies indicated that synergy was achieved via DNA-damage enhancement and resultant apoptosis. Combinations showed low cytotoxicity toward non-malignant breast epithelial cells and low acute and developmental toxicity in zebrafish embryos. This work identifies RPC metallomacrocycles as a novel class of agents for cancer combination therapy and provides a proof of concept for the inclusion of metallocompounds within drug synergy screens.
  16. Yeoh SY, Alkarkhi AF, Ramli SB, Easa AM
    Int J Food Sci Nutr, 2011 Jun;62(4):410-7.
    PMID: 21306189 DOI: 10.3109/09637486.2010.539555
    Yellow alkaline noodles (YAN) prepared by partial substitution of wheat flour with soy protein isolate and treated with microbial transglutaminase (MTG) and ribose were investigated during cooking. Cooking caused an increase in lightness but a decrease in redness and yellowness, pH, tensile strength and elasticity values of noodles. The extents of these changes were influenced by formulation and cross-linking treatments. The pH and lightness for YAN-ribose were lowest but the yellowness and redness were the highest whilst the tensile strength and elasticity values remained moderate. For YAN-MTG, the color and pH values were moderate, but tensile strength and elasticity values were the highest. YAN prepared with both cross-linking agents had physical values between YAN-ribose and YAN-MTG. Although certain sensory parameters showed differences in score, the overall acceptability of all 10-min-cooked YAN was similar. It is possible to employ cross-linking agents to improve physical properties of cooked YAN.
    Matched MeSH terms: Ribose
  17. Samira, S., Thuan-Chew Tan, T.C., Azhar, M.E.
    MyJurnal
    The effect of ribose-induced Maillard reaction on the physical and mechanical properties of gelatin films was investigated. Bovine gelatin solution (5 g/100 mL) containing glycerol and sorbitol (1:1) was mixed with 20% (R20), 40% ribose (R40), or 40% sucrose (S40) (weight % is based on gelatin dry weight) followed by heating (90ºC, 2 h) and oven drying to produce dried gelatin films. R20 and R40 films were brownish in color with lower light transparency, while CF (control film; without sugars) and S40 were colorless and had higher transparency. Tensile strength and Young Modulus values of the films were in the order; CF > R20 > R40 > S40, while elongation at break was in the order; R40 > S40 > R20 > CF. Water solubility and swelling percentages of the films were in the order; CF > S40 > R20 > R40, indicating the occurrence of insoluble “Maillard complexes” within R20 and R40 films. R20 and R40 films showed maximum light absorption at wavelength of 200 − 350 nm, whilst S40 and CF showed maximum absorbance at 200 − 250 nm. The addition of ribose yielded gelatin films with increased protection against UV light, even though the presence of sugars might had disrupted the inter connection of junction zones and decrease in mechanical properties. Occurrence of the Maillard reaction within R20 and R40 films could be the main reason for differences in physical and mechanical properties of films containing ribose that were formed from heated film-forming solutions.
    Matched MeSH terms: Ribose
  18. Seok Fang Oon, Meenakshii Nallappan, Mohd Shazrul Fazry Sa’ariwijaya, Nur Kartinee Kassim, Shamarina Shohaimi, Thiam Tsui Tee, et al.
    MyJurnal
    ABSTRACTS FOR INTERNATIONAL HEALTH AND MEDICAL SCIENCES CONFERENCE 2019 (IHMSC 2019). Accelerating Innovations in Translational and Precision Medicine. Held at Taylor’s University Lakeside Campus, Subang Jaya, Selangor, Malaysia. 8-9th March, 2019
    Introduction: According to the National Health and Morbidity Survey (NHMS) 2015, 47.7% of the Malaysian population are either obese or overweight. The increased obesity prevalence has caused major health problems including cardiovascular diseases and diabetes. Although several anti-obesity drugs have been developed, they are limited due to adverse side effects. Previous studies demonstrated that xanthorrhizol (XNT) reduced the levels of serum free fatty acid and triglyceride in vivo, but the detailed anti-obesity activities and its related mechanisms are yet to be reported. Thus, this study aims to evaluate its abilities to inhibit adipocyte hyperplasia and hypertrophy employing 3T3-L1 adipocytes.
    Methods: Statistical significance was established by one-way ANOVA, where p < 0.05 was considered statistically significant.
    Results: In this study, the IC50 value of XNT (98.3% purity) from Curcuma xanthorrhiza Roxb. in 3T3-L1 adipocytes was 35 ± 0.24 μg/mL. The loss of cell viability was due to 20.01 ± 2.77% of early apoptosis and 24.13 ± 2.03% of late apoptosis. XNT elicited apoptosis via up-regulation of caspase-3 and cleaved PARP-1 protein expression for 4.09-fold and 3.12-fold, respectively. Moreover, XNT decreased adipocyte differentiation for 36.13 ± 3.64% and reduced GPDH activity to 52.26 ± 4.36%. The underlying mechanism was due to impaired expression of PPARγ to 0.36-fold and FAS to 0.38-fold, respectively. On the other hand, XNT increased glycerol release by 45.37 ± 6.08% compared to control. During lipolysis, XNT up-regulated the leptin protein for 2.08-fold but down-regulated the protein level of insulin to 0.36-fold. These results indicated that XNT reduced the volume of adipocytes through modulation of leptin and insulin.
    Conclusion: To conclude, XNT exerted its anti-obesity mechanisms by suppression of adipocyte hyperplasia through induction of apoptosis and inhibition of adipogenesis whilst reduction of adipocyte hypertrophy through stimulation of lipolysis. Thus, XNT could be developed as a potential anti-obesity agent in the future.
  19. Sha'fie MSA, Rathakrishnan S, Hazanol IN, Dali MHI, Khayat ME, Ahmad S, et al.
    Antioxidants (Basel), 2020 Dec 09;9(12).
    PMID: 33317056 DOI: 10.3390/antiox9121253
    Microglial cells are the primary immune cell resident in the brain. Growing evidence indicates that microglial cells play a prominent role in alcohol-induced brain pathologies. However, alcohol-induced effects on microglial cells and the underlying mechanisms are not fully understood, and evidence exists to support generation of oxidative stress due to NADPH oxidases (NOX_-mediated production of reactive oxygen species (ROS). Here, we investigated the role of the oxidative stress-sensitive Ca2+-permeable transient receptor potential melastatin-related 2 (TRPM2) channel in ethanol (EtOH)-induced microglial cell death using BV2 microglial cells. Like H2O2, exposure to EtOH induced concentration-dependent cell death, assessed using a propidium iodide assay. H2O2/EtOH-induced cell death was inhibited by treatment with TRPM2 channel inhibitors and also treatment with poly(ADP-ribose) polymerase (PARP) inhibitors, demonstrating the critical role of PARP and the TRPM2 channel in EtOH-induced cell death. Exposure to EtOH, as expected, led to an increase in ROS production, shown using imaging of 2',7'-dichlorofluorescein fluorescence. Consistently, EtOH-induced microglial cell death was suppressed by inhibition of NADPH oxidase (NOX) as well as inhibition of protein kinase C. Taken together, our results suggest that exposure to high doses of ethanol can induce microglial cell death via the NOX/ROS/PARP/TRPM2 signaling pathway, providing novel and potentially important insights into alcohol-induced brain pathologies.
  20. Cheng P, Wang Y, Liang J, Wu Y, Wright A, Liao X
    Front Microbiol, 2018;9:1342.
    PMID: 29988353 DOI: 10.3389/fmicb.2018.01342
    There is growing interest in the use of unconventional feed ingredients containing higher dietary fiber for pig production due to increasing prices of cereal grains and the potential health benefits of dietary fiber on host animals. This study aimed to gain insight into the community-wide microbiome population between the Chinese native Lantang pigs and the commercial Duroc pigs to uncover the microbiological mechanisms for the degradation capacity of fiber in pigs. Utilizing the metagenomics approach, we compared the phylogeny and functional capacity of the fecal microbiome from approximately 150-day-old female Lantang and Duroc pigs fed a similar diet. The structure of the fecal microbial community from the two pig breeds was different at the genus level; the number of genes associated with fiber degradation was higher in Lantang pigs. Further analysis and prediction of their functions from the fecal microbiomes of the two pig breeds revealed that the degradation capacities of fiber, branched chain fatty acids, and oligosaccharides were higher in Lantang pigs. The ability of lignocellulose bonding modules and the transport capacities of xylose, L-arabinose, ribose and methyl galactose were also higher in Lantang pigs. Similarly, the metabolic capacities of xylose, ribose, and fucose and the potential effectiveness of the tricarboxylic acid cycle (TCA) and gene abundance in the hydrogen sink pathway were higher in the fecal microbiome from Lantang pigs. Lantang pigs have a higher capacity to utilize dietary fiber than Duroc pigs, and the differences in the capability to utilize dietary fiber between the indigenous and commercial pigs could be differences in the composition and biological function of the gut microbiota.
    Matched MeSH terms: Ribose
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links