Displaying publications 181 - 200 of 240 in total

Abstract:
Sort:
  1. Zakarial Ansar FH, Latifah SY, Wan Kamal WHB, Khong KC, Ng Y, Foong JN, et al.
    Int J Nanomedicine, 2020;15:7703-7717.
    PMID: 33116496 DOI: 10.2147/IJN.S262395
    Background: Thymoquinone (TQ), an active compound isolated from Nigella sativa, has been proven to exhibit various biological properties such as antioxidant. Although oral delivery of TQ is valuable, it is limited by poor oral bioavailability and low solubility. Recently, TQ-loaded nanostructured lipid carrier (TQ-NLC) was formulated with the aim of overcoming the limitations. TQ-NLC was successfully synthesized by the high-pressure homogenization method with remarkable physiochemical properties whereby the particle size is less than 100 nm, improved encapsulation efficiency and is stable up to 24 months of storage. Nevertheless, the pharmacokinetics and biodistribution of TQ-NLC have not been studied. This study determined the bioavailability of oral and intravenous administration of thymoquinone-loaded nanostructured lipid carrier (TQ-NLC) in rats and its distribution to organs.

    Materials and Methods: TQ-NLC was radiolabeled with technetium-99m before the administration to the rats. The biodistribution and pharmacokinetics parameters were then evaluated at various time points. The rats were imaged at time intervals and the percentage of the injected dose/gram (%ID/g) in blood and each organ was analyzed.

    Results: Oral administration of TQ-NLC exhibited greater relative bioavailability compared to intravenous administration. It is postulated that the movement of TQ-NLC through the intestinal lymphatic system bypasses the first metabolism and therefore enhances the relative bioavailability. However, oral administration has a slower absorption rate compared to intravenous administration where the AUC0-∞ was 4.539 times lower than the latter.

    Conclusion: TQ-NLC had better absorption when administered intravenously compared to oral administration. However, oral administration showed greater bioavailability compared to the intravenous route. This study provides the pharmacokinetics and biodistribution profile of TQ-NLC in vivo which is useful to assist researchers in clinical use.

    Matched MeSH terms: Biological Availability
  2. Saadah LM, Deiab GIA, Al-Balas Q, Basheti IA
    Molecules, 2020 Nov 28;25(23).
    PMID: 33260592 DOI: 10.3390/molecules25235605
    AIMS: Angiotensin-converting enzyme 2 (ACE2) plays an important role in the entry of coronaviruses into host cells. The current paper described how carnosine, a naturally occurring supplement, can be an effective drug candidate for coronavirus disease (COVID-19) on the basis of molecular docking and modeling to host ACE2 cocrystallized with nCoV spike protein.

    METHODS: First, the starting point was ACE2 inhibitors and their structure-activity relationship (SAR). Next, chemical similarity (or diversity) and PubMed searches made it possible to repurpose and assess approved or experimental drugs for COVID-19. Parallel, at all stages, the authors performed bioactivity scoring to assess potential repurposed inhibitors at ACE2. Finally, investigators performed molecular docking and modeling of the identified drug candidate to host ACE2 with nCoV spike protein.

    RESULTS: Carnosine emerged as the best-known drug candidate to match ACE2 inhibitor structure. Preliminary docking was more optimal to ACE2 than the known typical angiotensin-converting enzyme 1 (ACE1) inhibitor (enalapril) and quite comparable to known or presumed ACE2 inhibitors. Viral spike protein elements binding to ACE2 were retained in the best carnosine pose in SwissDock at 1.75 Angstroms. Out of the three main areas of attachment expected to the protein-protein structure, carnosine bound with higher affinity to two compared to the known ACE2 active site. LibDock score was 92.40 for site 3, 90.88 for site 1, and inside the active site 85.49.

    CONCLUSION: Carnosine has promising inhibitory interactions with host ACE2 and nCoV spike protein and hence could offer a potential mitigating effect against the current COVID-19 pandemic.

    Matched MeSH terms: Biological Availability
  3. Cheng V, Abdul-Aziz MH, Roberts JA, Shekar K
    Expert Opin Drug Metab Toxicol, 2019 Feb;15(2):103-112.
    PMID: 30582435 DOI: 10.1080/17425255.2019.1563596
    INTRODUCTION: One major challenge to achieving optimal patient outcome in extracorporeal membrane oxygenation (ECMO) is the development of effective dosing strategies in this critically ill patient population. Suboptimal drug dosing impacts on patient outcome as patients on ECMO often require reversal of the underlying pathology with effective pharmacotherapy in order to be liberated of the life-support device. Areas covered: This article provides a concise review of the effective use of antibiotics, analgesics, and sedative by characterizing the specific changes in PK secondary to the introduction of the ECMO support. We also discuss the barriers to achieving optimal pharmacotherapy in patients on ECMO and also the current and potential research that can be undertaken to address these clinical challenges. Expert opinion: Decreased bioavailability due to sequestration of drugs in the ECMO circuit and ECMO induced PK alterations are both significant barriers to optimal drug dosing. Evidence-based drug choices may minimize sequestration in the circuit and would enable safety and efficacy to be maintained. More work to characterize ECMO related pharmacodynamic alterations such as effects of ECMO on hepatic cytochrome system are still needed. Novel techniques to increase target site concentrations should also be explored.
    Matched MeSH terms: Biological Availability
  4. Alkhateeb Y, Jarrar QB, Abas F, Rukayadi Y, Tham CL, Hay YK, et al.
    Molecules, 2020 Jul 06;25(13).
    PMID: 32640512 DOI: 10.3390/molecules25133069
    2,4,6-trihydroxy-3-geranylacetophenone (tHGA) is a bioactive compound that shows excellent anti-inflammatory properties. However, its pharmacokinetics and metabolism have yet to be evaluated. In this study, a sensitive LC-HRMS method was developed and validated to quantify tHGA in rat plasma. The method showed good linearity (0.5-80 ng/mL). The accuracy and precision were within 10%. Pharmacokinetic investigations were performed on three groups of six rats. The first two groups were given oral administrations of unformulated and liposome-encapsulated tHGA, respectively, while the third group received intraperitoneal administration of liposome-encapsulated tHGA. The maximum concentration (Cmax), the time required to reach Cmax (tmax), elimination half-life (t1/2) and area under curve (AUC0-24) values for intraperitoneal administration were 54.6 ng/mL, 1.5 h, 6.7 h, and 193.9 ng/mL·h, respectively. For the oral administration of unformulated and formulated tHGA, Cmax values were 5.4 and 14.5 ng/mL, tmax values were 0.25 h for both, t1/2 values were 6.9 and 6.6 h, and AUC0-24 values were 17.6 and 40.7 ng/mL·h, respectively. The liposomal formulation improved the relative oral bioavailability of tHGA from 9.1% to 21.0% which was a 2.3-fold increment. Further, a total of 12 metabolites were detected and structurally characterized. The metabolites were mainly products of oxidation and glucuronide conjugation.
    Matched MeSH terms: Biological Availability
  5. Hossan MS, Chan ZY, Collins HM, Shipton FN, Butler MS, Rahmatullah M, et al.
    Cancer Lett, 2019 07 01;453:57-73.
    PMID: 30930233 DOI: 10.1016/j.canlet.2019.03.034
    Natural products possess a significant role in anticancer therapy and many currently-used anticancer drugs are of natural origin. Cerberin (CR), a cardenolide isolated from the fruit kernel of Cerbera odollam, was found to potently inhibit cancer cell growth (GI50 values 60% bioavailability and rapid absorption; doses of 1-10 mg/kg CR were predicted to maintain efficacious unbound plasma concentrations (>GI50 value). CR's potent and selective anti-tumour activity, and its targeting of key signalling mechanisms pertinent to tumourigenesis support further preclinical evaluation of this cardiac glycoside.
    Matched MeSH terms: Biological Availability
  6. Babura SR, Abdullah SNA, Khaza Ai H
    J Nutr Sci Vitaminol (Tokyo), 2017;63(4):215-221.
    PMID: 28978868 DOI: 10.3177/jnsv.63.215
    Tocotrienols are forms of vitamin E that are present in several important food crops. Compared to tocopherols, less research has been conducted on these compounds because of their low bioavailability and distribution in plant tissues. Both tocotrienols and tocopherols are known for their antioxidant and anticancer activities, which are beneficial for both humans and animals. Moreover, tocotrienols possess certain properties which are not found in tocopherols, such as neuroprotective and cholesterol-lowering activities. The contents of tocotrienols in plants vary. Tocotrienols constitute more than 70% and tocopherols less than 30% of the total vitamin E content in palm oil, which is the best source of vitamin E. Accumulation of tocotrienols also occurs in non-photosynthetic tissues, such as the seeds, fruits and latex of some monocotyledonous and dicotyledonous plant species. The use of biotechnological techniques to increase the tocotrienol content in plants, their biological functions, and benefits to human health are discussed in this review.
    Matched MeSH terms: Biological Availability
  7. Choy YW, Khan N, Yuen KH
    Int J Pharm, 2005 Aug 11;299(1-2):55-64.
    PMID: 15955645
    A polyglycolised glyceride carrier, Gelucire 50/13, was incorporated with paracetamol as a model drug, filled into hard gelatin capsules and stored at three different temperatures for various lengths of time. The resultant solidified matrix within the capsule was subjected to thermal analysis using differential scanning calorimetry (DSC) to ascertain its supramolecular structure. Polymorphic transformations towards more stable gelucire forms were observed upon aging the matrices, with samples stored at a temperature near the melting range of the lower temperature gelucire melting fraction showing the most profound changes. The increase in the rate of drug release from aged samples could be correlated to the alterations to the supramolecular structure of the gelucire. Accelerated drug release from aged samples could also be seen from in vivo studies using healthy human volunteers, although the extent of absorption was not affected. Therefore, even though the sustainability of release may be compromised by aging the gelucire matrices, the bioavailability of the incorporated drug is unlikely to be affected.
    Matched MeSH terms: Biological Availability
  8. Mahmood S, Mandal UK, Chatterjee B
    Int J Pharm, 2018 May 05;542(1-2):36-46.
    PMID: 29501737 DOI: 10.1016/j.ijpharm.2018.02.044
    Raloxifene HCl belongs to a class of selective estrogen receptor modulators (SERMs) which is used for the management of breast cancer. The major problem reported with raloxifene is its poor bioavailability which is only up to 2%. The main objective of the present work was to formulate raloxifene loaded ethosomal preparation for transdermal application and compare it with an oral formulation of the drug. Five ethosomal formulations with different concentrations of ethanol and a conventional liposomes formulation were prepared by rotary evaporation method. The prepared systems were characterised by high resolution transmission electron microscopy (HRTEM), force emission electron microscopy (FESEM), atomic force microscopy (AFM), X-ray diffraction (XRD) and 31P NMR study. All these advanced characterization study established that the ethosome formulation was well defined by its size, shape and its bilayer formation. Transdermal flux of the optimized ethosome formulation was 22.14 ± 0.83 µg/ml/cm2 which was 21 times higher when compared to the conventional liposomes. Confocal microscopy study revealed an enhanced permeation of coumarin-6 dye loaded ethosomes to much deeper layers of skin when compared with conventional liposomes. The gel was found to be pseudoplastic with elastic behaviour. In-vivo studies on rats showed a higher bioavailability of RXL (157% times) for ethosomal formulation when compared with the oral formulation. In conclusion, RXL loaded ethosomal formulation via transdermal route showed superior drug delivery properties as compared to oral formulation.
    Matched MeSH terms: Biological Availability
  9. Billa N, Yuen KH, Khader MA, Omar A
    Int J Pharm, 2000 May 15;201(1):109-20.
    PMID: 10867269
    A xanthan gum matrix controlled release tablet formulation containing diclofenac sodium was evaluated in vitro and was found to release the drug at a uniform rate. The gastrointestinal transit behaviour of the formulation as determined by gamma scintigraphy, using healthy male volunteers under fasted and fed conditions, indicated that gastric emptying was delayed with food intake. In contrast, the small intestinal transit remained practically unchanged under both food statuses. Therefore, the delay in caecal arrival observed in the fed state can be attributed to the delay in gastric emptying. Rate of diclofenac sodium absorption was generally higher in the fed state compared to the fasted state, however the total amount absorbed under both food statuses remained practically the same. The rate of in vivo dissolution of the drug in the fed state was faster compared to that in the fasted state. Thus, at the time of caecal arrival, in vivo dissolution was complete in the fed state, unlike in the fasted state, where almost 60% of the drug was delivered to the colon.
    Matched MeSH terms: Biological Availability
  10. Cheong AM, Tan CP, Nyam KL
    J Food Sci, 2018 Jul;83(7):1964-1969.
    PMID: 29802733 DOI: 10.1111/1750-3841.14191
    Kenaf (Hibiscus cannabinus L.) seed oil-in-water nanoemulsions stabilized by complexation of beta-cyclodextrin with sodium caseinate and Tween 20 have been shown to have higher bioaccessibility of vitamin E and total phenolic content than nonemulsified kenaf seed oil in the previous in vitro gastrointestinal digestion study. However, its oral bioavailability was unknown. Therefore, the aim of this study was to evaluate the rate of in vivo oral bioavailability of kenaf seed oil-in-water nanoemulsions in comparison with nonemulsified kenaf seed oil and kenaf seed oil macroemulsions during the 180 min of gastrointestinal digestion. Kenaf seed oil macroemulsions were produced by using conventional method. Kenaf seed oil-in-water nanoemulsions had shown improvement in the rate of absorption. At 180 min of digestion time, the total α-tocopherol bioavailability of kenaf seed oil nanoemulsions was increased by 1.7- and 1.4-fold, compared to kenaf seed oil and macroemulsion, respectively. Kenaf seed oil-in-water nanoemulsions were stable in considerably wide range of pH (>5 and <3), suggesting that it can be fortified into beverages within this pH range PRACTICAL APPLICATION: The production of kenaf seed oil-in-water nanoemulsions had provided a delivery system to encapsulate the kenaf seed oil, as well as enhanced the bioaccessibility and bioavailability of kenaf seed oil. Therefore, kenaf seed oil-in-water nanoemulsions exhibit a great potential application in nutraceutical fields.
    Matched MeSH terms: Biological Availability
  11. Ahmad N, Samiulla DS, Teh BP, Zainol M, Zolkifli NA, Muhammad A, et al.
    Pharmaceutics, 2018 Jul 11;10(3).
    PMID: 29997335 DOI: 10.3390/pharmaceutics10030090
    Eurycoma longifolia is one of the commonly consumed herbal preparations and its major chemical compound, eurycomanone, has been described to have antimalarial, antipyretic, aphrodisiac, and cytotoxic activities. Today, the consumption of E. longifolia is popular through the incorporation of its extract in food items, most frequently in drinks such as tea and coffee. In the current study, the characterisation of the physicochemical and pharmacokinetic (PK) attributes of eurycomanone were conducted via a series of in vitro and in vivo studies in rats and mice. The solubility and chemical stability of eurycomanone under the conditions of the gastrointestinal tract environment were determined. The permeability of eurycomanone was investigated by determining its distribution coefficient in aqueous and organic environments and its permeability using the parallel artificial membrane permeability assay system and Caco-2 cultured cells. Eurycomanone's stability in plasma and its protein-binding ability were measured by using an equilibrium dialysis method. Its stability in liver microsomes across species (mice, rat, dog, monkey, and human) and rat liver hepatocytes was also investigated. Along with the PK evaluations of eurycomanone in mice and rats, the PK parameters for the Malaysian Standard (MS: 2409:201) standardised water extract of E. longifolia were also evaluated in rats. Both rodent models showed that eurycomanone in both the compound form and extract form had a half-life of 0.30 h. The differences in the bioavailability of eurycomanone in the compound form between the rats (11.8%) and mice (54.9%) suggests that the PK parameters cannot be directly extrapolated to humans. The results also suggest that eurycomanone is not readily absorbed across biological membranes. However, once absorbed, the compound is not easily metabolised (is stable), hence retaining its bioactive properties, which may be responsible for the various reported biological activities.
    Matched MeSH terms: Biological Availability
  12. Teoh XY, Bt Mahyuddin FN, Ahmad W, Chan SY
    Pharm Dev Technol, 2020 Feb;25(2):245-251.
    PMID: 31690150 DOI: 10.1080/10837450.2019.1689401
    Poor solubility and bioavailability of drugs are often affected by its microscopic structural properties. Nitrofurantoin (NF), a Biopharmaceutics Classification System class II item, has a low water solubility with low plasma concentrations. To improve its therapeutic efficacy, formulation strategy of solid dispersion (SD) and co-crystallization are compared herein. The co-crystal is prepared with citric acid in 1:1 stoichiometric ratio while SD consists of 30% w/w nitrofurantoin and 70% w/w hydroxypropyl methylcellulose (HPMC) as the carrier system. As a control, the physical mixture of NF and HPMC was prepared. All the preparations were characterized with differential scanning calorimetry (DSC), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), microscopy analysis, solubility, and dissolution studies. The formation of co-crystal, solvent evaporated, and spray-dried SD are confirmed by the ATR-FTIR where peaks shifting of several functional groups indicate the formation of the hydrogen bond. Dissolution studies showed a greater initial dissolution rate in co-crystal than SD despite the possible presence of amorphous content in the SD system. Overall, co-crystal is concluded to be a better approach than SD for an effective dissolution.
    Matched MeSH terms: Biological Availability
  13. Ling SS, Yuen KH, Magosso E, Barker SA
    J Pharm Pharmacol, 2009 Apr;61(4):445-9.
    PMID: 19298690 DOI: 10.1211/jpp/61.04.0005
    A liposome preparation that is amenable to receptor-mediated endocytosis has been developed to enhance the oral bioavailability of poorly absorbable peptidomimetic drugs by use of folic acid as the mediator of liposomal uptake.
    Matched MeSH terms: Biological Availability
  14. Chung WJ, Chan KL, Lee CY
    J Pharm Pharmacol, 2021 Mar 04;73(2):161-168.
    PMID: 33793798 DOI: 10.1093/jpp/rgaa026
    OBJECTIVES: The quassinoids eurycomanone (EN) and 13α,21-dihydroeurycomanone (DHY) of Eurycoma longifolia Jack are reported to enhance spermatogenesis. This study aims to profile the pharmacokinetics of DHY, a minor and hitherto unstudied constituent, evaluate its spermatogenesis enhancement property and compare these attributes with that of the predominant EN.

    METHODS: Crude Eurycoma longifolia extract was chromatographed into a DHY-enriched extract (DHY-F) and an EN-enriched extract (EN-F). Male Sprague-Dawley rats were administered intravenously and orally with both extracts and their plasma levels of both quassinoids were determined. The extracts were then tested for their spermatogenesis augmentation ability in normal rats and an andrographolide-induced oligospermia model.

    KEY FINDINGS: Chromatographic enrichment resulted in a 28-fold increase of DHY in DHY-F and a 5-fold increase of EN in EN-F compared with non-chromatographed crude extracts. DHY showed better oral bioavailability (1.04 ± 0.58%) than EN (0.31 ± 0.19%). At 5 mg/kg, EN exhibited higher efficacy in spermatogenesis enhancement in normal rats and restoration of oligospermia to normal sperm profile versus DHY.

    CONCLUSIONS: Despite the better pharmacokinetic profile of DHY, EN remains the main chemical contributor to plant bioactivity. DHY-F and EN-F represent improvements in developing Eurycoma longifolia as a potential phytomedicine for male infertility particularly oligospermia.

    Matched MeSH terms: Biological Availability
  15. Tan S, Yuen KH, Chan KL
    Planta Med, 2002 Apr;68(4):355-8.
    PMID: 11988862 DOI: 10.1055/s-2002-26751
    A new and simple HPLC method using fluorescence detection was developed to determine 9-methoxycanthin-6-one, an active compound of Eurycoma longifolia Jack in rat and human plasma. The method entailed direct injection of plasma sample after deproteinization using acetonitrile. The mobile phase comprised acetonitrile and distilled water (55 : 45, v/v). Analysis was run at a flow rate of 1.0 ml/min with the detector operating at an excitation wavelength of 371 nm and emission wavelength of 504 nm. The method was specific and sensitive with a detection limit of 0.6 ng/ml and a quantification limit of approximately 1.6 ng/ml. The method was applied in a pilot pharmacokinetic/bioavailability study of the compound in rats. Less than 1 % of the compound was found to be absorbed orally.
    Matched MeSH terms: Biological Availability
  16. Rasool AH, Rahman AR, Yuen KH, Wong AR
    Arch Pharm Res, 2008 Sep;31(9):1212-7.
    PMID: 18806966 DOI: 10.1007/s12272-001-1291-5
    The tocotrienol vitamin E has potent antioxidant property, however absorption is low due to high lipid solubility. A self emulsifying preparation of tocotrienol rich vitamin E (SF-TRE) had been reported to increase their bioavailability. This randomized, placebo controlled, blinded end point clinical study aimed to determine the effects of 50, 100 and 200 mg daily of SF-TRE and placebo for two months on arterial compliance and vitamin E blood levels. Assessment of arterial compliance by carotid femoral pulse wave velocity (PWV) and augmentation index (AI), plasma vitamin E, serum total cholesterol and low density lipoprotein cholesterol were taken before and after 2 months' treatment in 36 healthy males. Un-supplemented tocotrienol levels were low, after treatment, all SF-TRE treated groups had significantly higher plasma alpha, delta and delta tocotrienol concentrations compared to placebo. Augmentation index change from baseline to end of treatment for groups placebo, 50, 100, and 200 mg were 2.22+/-1.54, -6.59+/-2.84, -8.72+/-3.77, and -6.27+/-2.67% respectively (p=0.049, 0.049, and 0.047 respectively). Groups 100 and 200 mg showed significant improvement after treatment with pulse wave velocity reductions of 0.77 m/s and 0.65 m/s respectively (p=0.007 and p=0.002). There was no effect of SF-TRE on serum lipids. We conclude that there was a trend towards improvement in arterial compliance with 2 months' of SF-TRE.
    Matched MeSH terms: Biological Availability
  17. Ling SS, Magosso E, Khan NA, Yuen KH, Barker SA
    Drug Dev Ind Pharm, 2006 Mar;32(3):335-45.
    PMID: 16556538
    A liposome system was evaluated for oral delivery of a poorly bioavailable hydrophilic drug. The system was prepared from proliposome, which consisted of negatively charged phosphatidylcholine, whereas cefotaxime was chosen as the model drug. An in vivo study was carried out on nine rats according to a three-way crossover design to compare the oral bioavailability of cefotaxime from the liposomal formulation with that of an aqueous drug solution and a physical mixture of cefotaxime with blank liposomes. The results indicated that the extent of bioavailability of cefotaxime was increased approximately 2.7 and 2.3 times compared with that of the aqueous solution and the physical mixture, respectively. In a separate study, simultaneous determination of cefotaxime in intestinal lymph (collected from the mesenteric lymph duct) and in plasma (collected from the tail vein) revealed that its concentration was consistently higher in the lymph than in the plasma when administered via the liposomal formulation, whereas the reverse was observed with the aqueous solution. Thus, the results indicated that the liposomes system has the potential of increasing the oral bioavailability of poorly bioavailable hydrophilic drugs and also promote their lymphatic transport in the intestinal lymph.
    Matched MeSH terms: Biological Availability
  18. Yuen KH, Wong JW, Peh KK, Julianto T, Choy WP
    Drug Dev Ind Pharm, 2000 Jul;26(7):803-7.
    PMID: 10872103
    The bioavailability of a generic preparation of pentoxifylline sustained-release (SR) tablet was evaluated in comparison with a proprietary product (Trental 400). For the study, 12 healthy male volunteers participated; the study was conducted according to a randomized, two-way crossover design. The bioavailability was compared using the parameters total area under the plasma level-time curve AUC0-infinity, peak plasma concentration Cmax, and time to reach peak plasma concentration Tmax. No statistically significant difference was observed between the values of the two products in all three parameters. The 90% confidence interval for the ratio of the logarithmic transformed AUC0-infinity values of the generic pentoxifylline over those of Trental 400 was found to lie between 0.83 and 1.00, while that of the parameter Cmax was between 0.91 and 1.29. In addition, elimination half-life t1/2 and apparent volume of distribution Vd were calculated. There was no statistically significant difference between the t1/2 Vd values obtained from the data of the two preparations.
    Matched MeSH terms: Biological Availability
  19. Choo BKM, Kundap UP, Faudzi SMM, Abas F, Shaikh MF, Samarut É
    Biomed Pharmacother, 2021 Oct;142:112035.
    PMID: 34411917 DOI: 10.1016/j.biopha.2021.112035
    Seizures are the outward manifestation of abnormally excessive or synchronous brain activity. While seizures can be somewhat symptomatically managed with anti-epileptic drugs (AEDs), many patients are still refractory to the currently available AEDs. As a result, there is a need to identify new molecules with anti-seizure properties. Curcumin is the principle curcuminoid of Curcuma longa, or colloquially turmeric, and has been experimentally proven to have anti-convulsive properties, but its poor bioavailability has dampened further therapeutic interest. Hence, this study aimed to ask if structural analogues of curcumin with an adequate bioavailability could have an anti-seizure effect in vivo. To do so, we tested these analogues following a multipronged approach combining the use of several zebrafish seizure models (chemically-induced and genetic) and complementary assays (behavioural and brain activity). Overall, from the 68 analogues tested, we found 15 different derivatives that were able to significantly decrease the behavioural hyperactivity induced by pentylenetetrazol. Of those, only a few showed an effect on the hyperactivity phenotype of two genetic models of brain seizures that are the gabra1 and gabrg2 knockouts. Two analogues, CA 80(1) and CA 74(1), were able to significantly alleviate brain seizures of gabrg2-mutant larvae. As a result, these analogues are good candidates as novel anti-seizure agents.
    Matched MeSH terms: Biological Availability
  20. Ali HS, Khan S, York P, Shah SM, Khan J, Hussain Z, et al.
    Pak J Pharm Sci, 2017 Sep;30(5):1635-1643.
    PMID: 29084684
    Drug nanosuspensions have gained tremendous attraction as a platform in drug delivery. In the present work, a nanosuspension was prepared by a wet milling approach in order to increase saturation solubility and dissolution of the water insoluble drug, hydrocortisone. Size of the generated particeles was 290 nm ± 9 nm having a zeta potential of -1.9 mV ± 0.6 mV. Nanosized particles were found to have a rod shape with a narrow particle size distribution (PDI =0.17). Results of differential scanning calorimetry and X-ray diffraction analyses revealed minor modifications of crystallinity of hydrocortisone following the milling process. Solubility of hydrocortisone was enhanced by nanonization to 875µg/ml ±2.5, an almost 2.9-fold compared to the raw hydrocortisone. Moreover, the nanosuspension formulation substabtially enhanced the dissolution rate of hydrocortisone where >97% of the hydrocortisone was dissolved within 10 minutes opposed to 22.3% for the raw 50% for the raw hydrocortisone and the commercial tablet, respectively. The bioavailability study resulted in AUC 0-9h for HC nanosuspensions (31.50±2.50), which is significantly (p<0.05) higher compared to the AUC 0-9h (14.85±3.25) resulted for HC solution. The nanosuspension was physically stable at room temperature for 24 months.
    Matched MeSH terms: Biological Availability
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links