Molecular imprinting is an emerging technique to create imprinted polymers that can be applied in affinity-based separation, in particular, biomimetic sensors. In this study, the matrix of siloxane bonds prepared from the polycondensation of hydrolyzed tetraethoxysilane (TEOS) was employed as the inorganic monomer for the formation of a creatinine (Cre)-based molecularly imprinted polymer (MIP). Doped aluminium ion (Al(3+)) was used as the functional cross-linker that generated Lewis acid sites in the confined silica matrix to interact with Cre via sharing of lone pair electrons. Surface morphologies and pore characteristics of the synthesized MIP were determined by field emission scanning electron microscopy (FESEM) and Brunauer-Emmet-Teller (BET) analyses, respectively. The imprinting efficiency of MIPs was then evaluated through the adsorption of Cre with regard to molar ratios of Al(3+). A Cre adsorption capacity of up to 17.40 mg Cre g(-1) MIP was obtained and adsorption selectivity of Cre to its analogues creatine (Cr) and N-hydroxysuccinimide (N-hyd) were found to be 3.90 ± 0.61 and 4.17 ± 3.09, respectively. Of all the studied MIP systems, chemisorption was predicted as the rate-limiting step in the binding of Cre. The pseudo-second-order chemical reaction kinetic provides the best correlation of the experimental data. Furthermore, the equilibrium adsorption capacity of MIP fit well with a Freundlich isotherm (R (2) = 0.98) in which the heterogeneous surface was defined.
Large volumes of untreated palm oil mill effluent (POME) pose threat to aquatic environment due to the presence of very high organic content. The present investigation involved two pilot-scale anaerobic expanded granular sludge bed (EGSB) reactors, continuously operated for 1 year to treat POME. Setting HRT at 9.8 d, the anaerobic EGSB reactors reduced COD from 71179 mg/L to 12341 mg/L and recycled half of sludge by a dissolved air flotation (DAF). The average effluent COD was 3587 mg/L with the consistent COD removal efficiency of 94.89%. Adding cationic polymer (PAM) dose of 30 mg/L to DAF unit and recycling its half of sludge caused granulation of anaerobic sludge. Bacilli and small coccid bacteria were the dominant microbial species of the reactor. The reactor produced 27.65 m(3) of biogas per m(3) of POME which was utilized for electricity generation.
The oral case presentation is an important communicative activity in the teaching and assessment of students. Despite its importance, not much attention has been paid to providing support for teachers to teach this difficult task to medical students who are novices to this form of communication. As a formalized piece of talk that takes a regularized form and used for a specific communicative goal, the case presentation is regarded as a rhetorical activity and awareness of its rhetorical and linguistic characteristics should be given due consideration in teaching. This paper reviews practitioners' and the limited research literature that relates to expectations of medical educators about what makes a good case presentation, and explains the rhetorical aspect of the activity. It is found there is currently a lack of a comprehensive model of the case presentation that projects the rhetorical and linguistic skills needed to produce and deliver a good presentation. Attempts to describe the structure of the case presentation have used predominantly opinion-based methodologies. In this paper, I argue for a performance-based model that would not only allow a description of the rhetorical structure of the oral case presentation, but also enable a systematic examination of the tacit genre knowledge that differentiates the expert from the novice. Such a model will be a useful resource for medical educators to provide more structured feedback and teaching support to medical students in learning this important genre.
Creatinine clearance estimation is widely used to evaluate the renal function of the patients in order to initiate or adjust the drugs dosage. However serum creatinine, as a muscle metabolism by-product, may not be a reliable parameter in underweight and/or non-ambulatory patients, such as geriatric, acquired immunodeficiency syndrome patients and bed-confined and cachexic cases. To avoid overestimation of the renal function in those patients, serum cystatin C can be considered as a sensitive and accurate alternative for serum creatinine.
Matched MeSH terms: Kidney Function Tests/methods*
Leg ulceration is a common, chronic, recurring condition. The estimated prevalence of leg ulcers in the UK population is 1.5 to 3 per 1000. Venous ulcers (also called stasis or varicose ulcers) comprise 80% to 85% of all leg ulcers. Electromagnetic therapy (EMT) is sometimes used as a treatment to assist the healing of chronic wounds such as venous leg ulcers.
Matched MeSH terms: Magnetic Field Therapy/methods*
Palm oil mill effluent (POME) is a by-product of the palm industry and it releases large amounts of greenhouse gases (GHGs). Water systems are also contaminated by POME if it is released into nonstandard ponds or rivers where it endangers the lives of fish and water fowl. In this paper, the environmental bottlenecks faced by palm oil production were investigated by analyzing the data collected from wet extraction palm oil mills (POMs) located in Malaysia. Strategies for reducing pollution and technologies for GHG reduction from the wet extraction POMs were also proposed. Average GHG emissions produced from processing 1 ton of crude palm oil (CPO) was 1100 kg CO2eq. This amount can be reduced to 200 kg CO2eq by capturing biogases. The amount of GHG emissions from open ponds could be decreased from 225 to 25 kg CO2eq/MT CPO by covering the ponds. Installation of biogas capturing system can decrease the average of chemical oxygen demand (COD) to about 17,100 mg/L and stabilizing ponds in the final step could decrease COD to 5220 mg/L. Using a biogas capturing system allows for the reduction of COD by 80% and simultaneously using a biogas capturing system and by stabilizing ponds can mitigate COD by 96%. Other ways to reduce the pollution caused by POME, including the installation of wet scrubber vessels and increasing the performance of biogas recovery and biogas upgrading systems, are studied in this paper.
Medical image fusion is the procedure of combining several images from one or multiple imaging modalities. In spite of numerous attempts in direction of automation ventricle segmentation and tracking in echocardiography, due to low quality images with missing anatomical details or speckle noises and restricted field of view, this problem is a challenging task. This paper presents a fusion method which particularly intends to increase the segment-ability of echocardiography features such as endocardial and improving the image contrast. In addition, it tries to expand the field of view, decreasing impact of noise and artifacts and enhancing the signal to noise ratio of the echo images. The proposed algorithm weights the image information regarding an integration feature between all the overlapping images, by using a combination of principal component analysis and discrete wavelet transform. For evaluation, a comparison has been done between results of some well-known techniques and the proposed method. Also, different metrics are implemented to evaluate the performance of proposed algorithm. It has been concluded that the presented pixel-based method based on the integration of PCA and DWT has the best result for the segment-ability of cardiac ultrasound images and better performance in all metrics.
The provision of appropriate waste management is not only an indicator of development but also of broader sustainability. This is particularly relevant to expanding cities in developing countries faced with rising waste generation and associated environmental health problems. Despite these urgent issues, city authorities often lack the evidence required to make well-informed decisions. This study evaluates the carbon and economic performance of low-carbon measures in the waste sector at a city level, within the context of a developing country. Palembang in Indonesia is used as a case of a medium-sized city in a newly industrialized country, with relevance to other similar cities in the developing world. Evidence suggests that the waste sector can achieve substantial carbon emission reductions, and become a carbon sink, in a cost effective way. Hence there is an economic case for a low carbon development path for Palembang, and possibly for other cities in developing and developed countries facing similar challenges.
Several members of the genus Lignosus, which are collectively known as cendawan susu rimau (in Malay) or tiger׳s milk mushrooms (TMM), are regarded as important local medicine particularly by the indigenous communities in Malaysia. The mushroom sclerotia are purportedly effective in treating cancer, coughs, asthma, fever, and other ailments. The most commonly encountered Lignosus spp. in Malaysia was authenticated as Lignosus rhinocerotis (Cooke) Ryvarden (synonym: Polyporus rhinocerus), which is also known as hurulingzhi in China and has been used by Chinese physicians to treat liver cancer, gastric ulcers, and chronic hepatitis. In spite of growing interest in the therapeutic potential of TMM, there is no compilation of scientific evidence that supports the ethnomedicinal uses of these mushrooms. Therefore, the present review is intended (i) to provide a comprehensive, up-to-date overview of the ethnomedicinal uses, pharmacological activities, and cultivation of TMM in general and L. rhinocerotis in particular, (ii) to demonstrate how recent scientific findings have validated some of their traditional uses, and (iii) to identify opportunities for future research and areas to prioritize for TMM bioprospecting.
Ghritas are ayurvedic lipid based preparations in which oil or ghee is boiled with prescribed kasaya (polyherbal decoction) and kalka (fine paste of herbs) until the evaporation of aqueous phase transfers the contents into oily phase. The polyherbal decoction used in the preparation predominantly contains water soluble Active Botanical Ingredients (ABIs).
The production of natural biopolymers as flocculants for water treatment is highly desirable due to their inherent low toxicity and low environmental footprint. In this study, bio-flocculants were extracted from Hibiscus/Abelmoschus esculentus (okra) by using a water extraction method, and the extract yield and its performance in sludge dewatering were evaluated. Single factor experimental design was employed to obtain the optimum conditions for extraction temperature (25-90 °C), time (0.25-5 h), solvent loading (0.5-5 w/w) and agitation speed (0-225 rpm). Results showed that extraction yield was affected non-linearly by all experimental variables, whilst the sludge dewatering ability was only influenced by the temperature of the extraction process. The optimum extraction conditions were obtained at 70 °C, 2 h, solvent loading of 2.5 w/w and agitation at 200 rpm. Under the optimal conditions, the extract yield was 2.38%, which is comparable to the extraction of other polysaccharides (0.69-3.66%). The bio-flocculants displayed >98% removal of suspended solids and 68% water recovery during sludge dewatering, and were shown to be comparable with commercial polyacrylamide flocculants. This work shows that bio-flocculants could offer a feasible alternative to synthetic flocculants for water treatment and sludge dewatering applications, and can be extracted using only water as a solvent, minimising the environmental footprint of the extraction process.
Bisulfite pretreatment is a proven effective method for improving the enzymatic hydrolysis of empty fruit bunch (EFB) from oil palm for bioethanol production. In this study, we set out to determine the changes that occur in the structure and properties of EFB materials and fractions of hemicellulose and lignin during the bisulfite pretreatment process. The results showed that the crystallinity of cellulose in EFB increased after bisulfite pretreatment, whereas the EFB surface was damaged to various degrees. The orderly structure of EFB, which was maintained by hydrogen bonds, was destroyed by bisulfite pretreatment. Bisulfite pretreatment also hydrolyzed the glycosidic bonds of the xylan backbone of hemicellulose, thereby decreasing the molecular weight and shortening the xylan chains. The lignin fractions obtained from EFB and pretreated EFB were typically G-S lignin, and with low content of H units. Meanwhile, de-etherification occurred at the β-O-4 linkage, which was accompanied by polymerization and demethoxylation as a result of bisulfite pretreatment. The adsorption ability of cellulase differed for the various lignin fractions, and the water-soluble lignin fractions had higher adsorption capacity on cellulase than the milled wood lignin. In general, the changes in the structure and properties of EFB provided insight into the benefits of bisulfite pretreatment.
Recently, a simple, rapid, high-efficiency, selective, and sensitive method for isolation, preconcentration, and enrichment of analytes has been developed. This new method of sample handling is based on ferum oxides as magnetic nanoparticles (MNPs) and has been used for magnetic solid-phase extraction (MSPE) of various analytes from various matrices. This review focuses on the applications of modified ferum oxides, especially modified Fe3O4 MNPs, as MSPE adsorbent for pesticide isolation from various matrices. Further perspectives on MSPE based on modified Fe3O4 for inorganic metal ions, organic compounds, and biological species from water samples are also presented. Ferum(III) oxide MNPs (Fe2O3) are also highlighted.
To provide baseline information for the marine ecosystem of Hormozgan province, the distribution of petroleum hydrocarbons was evaluated in 52 stations involved in the mangrove and coastline ecosystem. Coastline sampling sites included areas facing harbor, river, domestic and industrial discharge. Sediment samples were analyzed based on ultraviolet fluorescence spectroscopy. Petroleum hydrocarbons showed narrow variations ranging from non-detectable (ND) to 1.71 and from 0.2 to 0.63μg/g dry weight for coastline and mangrove sediments, respectively. The detected concentrations for total petroleum hydrocarbons were lower than guideline values for ecological risk. Furthermore, the minimum environmental risk was confirmed by background levels for the Persian Gulf, the Sea of Oman, and detected values for reference areas. The results were regarded as background data in the studied area, and, considering the rapid expansion of activities related to the petroleum industry in Hormozgan province, the continuous monitoring of pollutants is recommended.
The ultrasonic extraction (UE) method of anthocyanin from Clitoria ternatea flowers using response surface methodology (RSM) was performed in this study. By using RSM, the objective is to optimise the extraction yield of anthocyanin from C. ternatea which is influenced by various factors, including the extraction temperature, time, ratio of solvent to solid and ultrasonic power. The empirical model was investigated by performing first-level optimisation in a two-level factorial design with Design Expert 7 software. In comparison with the conventional solvent extraction, UE showed a 246.48% better extraction yield and produced an anthocyanin extract with a radical scavenging activity of 68.48% at the optimised factors of 50°C, 150 min, 15 mL/g and 240 W.
An innovative design of upflow constructed wetland-microbial fuel cell (UFCW-MFC) planted with cattail was used for simultaneous wastewater treatment and electricity generation. The electrodes material employed in the study was carbon felt. The main aim of this study is to assess the performance of the UFCW coupling with MFC in term of ability to treat wastewater and the capability to generate bioelectricity. The oxidation reduction potential (ORP) and dissolved oxygen (DO) profile showed that the anaerobic and aerobic regions were well developed in the lower and upper bed, respectively, of UFCW-MFC. Biodegradation of organic matter, nitrification and denitrification was investigated and the removal efficiencies of COD, NO3(-), NH4(+) were 100%, 40%, and 91%, respectively. The maximum power density of 6.12 mW m(-2) and coulombic efficiency of 8.6% were achieved at electrode spacing of anode 1 (A1) and cathode (15 cm).