Displaying publications 201 - 217 of 217 in total

Abstract:
Sort:
  1. Yusof NAA, Zain NM, Pauzi N
    Int J Biol Macromol, 2019 Mar 01;124:1132-1136.
    PMID: 30496864 DOI: 10.1016/j.ijbiomac.2018.11.228
    Antibacterial activity of zinc oxide (ZnO) nanoparticles have received significant interest, particularly by the implementation of nanotechnology to synthesize particles in nanometer region. ZnO nanoparticles were successfully synthesized through microwave heating by using chitosan as a stabilizing agent and characterized by UV-vis, FTIR, XRD and FESEM-EDX. The aim of the present study is to determine the antibacterial activity of ZnO nanoparticles against Gram-positive bacterium Staphylococcus aureus (S. aureus) and Gram-negative bacterium Escherichia coli (E. coli). The antibacterial effect of ZnO nanoparticles was investigated for the inhibition zone and inactivation of cell growth. The absorption of ZnO nanoparticles was found to be around 360 nm. FTIR results showed the stretching mode of ZnO nanoparticles at 475 cm-1 of the absorption band. EDX results indicated that ZnO nanoparticles have been successfully formed with an atomic percentage of zinc and oxygen at 23.61 and 46.57% respectively. X-ray diffraction result was confirmed the single-phase formation of ZnO nanoparticles and the particle sizes were observed to be around 50 to 130 nm. The results showed that ZnO nanoparticles have displayed inhibition zone of 16 and 13 mm against S. aureus and E. coli respectively. Gram-negative bacteria seemed to be more resistant to ZnO nanoparticles than Gram-positive bacteria.
    Matched MeSH terms: Zinc Oxide
  2. Nur Ain, A.R., Mohd Sabri, M.G., Wan Rafizah, W.A., Nurul Azimah, M.A., Wan Nik, W.B.
    ASM Science Journal, 2018;11(101):56-67.
    MyJurnal
    Corrosion is a natural deterioration process that destructs metal surface. Metal of highly
    protected by passivation layer such as Stainless Steel 316L also undergoes pitting corrosion
    when continuously exposed to aggressive environment. To overcome this phenomenon, application
    of epoxy based coating with addition of zinc oxide- poly (3,4-ethylenedioxythiophene)
    doped with poly (styrene sulphonate) hybrid nanocomposite additive was introduced as
    paint/metal surface coating. The compatibility between these two materials as additive
    was studied by Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD),
    Field Emission Scanning Electron Microscopy/Energy-Dispersive X-ray spectroscopy (FESEM/EDX)
    and Transmission Electron Microscopy (TEM) analysis. The effect of nanocomposite
    wt.% in epoxy based coating with immersion duration in real environment on corrosion
    protection performance was analyzed through potentiodynamic polarization analysis. The
    main finding showed that addition of hybrid nanocomposite had increased corrosion protection
    yet enhanced corrosion process when excess additives was loaded into epoxy coating.
    Addition of 2 wt.% ZnO-PEDOT:PSS was found significantly provided optimum corrosion
    protection to stainless steel 316L as the corrosion rate for 0 day, 15 days and 30 days of
    immersion duration is 0.0022 mm/yr, 0.0004 mm/yr and 0.0015 mm/yr; respectively.
    Matched MeSH terms: Zinc Oxide
  3. Nor Dalila Marican, Rozita Hod, Nadiah Wan-Arfah, Azmi Hassan
    Int J Public Health Res, 2018;8(1):933-938.
    MyJurnal
    Introduction Non-specific low back pain is one of the most common physical ailments
    affecting millions of people worldwide. This condition constitutes a
    significant public health problem and was listed as a prevalent health
    complaint in most societies. Even though there are many anecdotal claims
    for reflexology in the treatment of various conditions such as a migraine,
    arthritis and multiple sclerosis, but very little clinical evidence exists for
    reflexology on the management of low back pain per se. This study aims to
    evaluate the effects of foot reflexology therapy as an adjunctive treatment to
    the Malaysian low back pain standard care in relieving pain and promoting
    health-related quality of life among people with non-specific low back pain.
    Methods This is a parallel randomized controlled trial with pre and post-treatment
    study design. The study setting for the intervention located at Penawar
    Reflexology Center, Kuala Terengganu, Malaysia. A total of 100
    participants with non-specific low back pain will be allocated to one of two
    groups, using a randomization computer program of Research Randomizer.
    The control group will receive low back pain standard care, while the
    intervention group will receive standard care plus eight sessions of foot
    reflexology therapy. The pain intensity and health-related quality of life
    scores will be measured using Visual Analogue Scale and Euro-quality of
    life scale respectively in both groups. The study was approved by the
    Human Research Ethics Committee of University Sultan Zainal Abidin
    (UHREC/2016/2/011). The study protocol was registered at
    ClinicalTrials.gov, with the ID number of NCT02887430.
    Measurements Outcome measures will be undertaken at pre-intervention (week 1), postintervention
    (week 6) and follow-up (week 10).
    Conclusions This will be the first trial to compare the foot reflexology therapy with
    control group among people who medically diagnosed with non-specific low
    back pain in Malaysia. The result of this study will contribute to better
    management of this population, especially for Malaysia healthcare setting.

    Study site: Penawar Reflexology Center, Kuala Terengganu, Malaysia
    Matched MeSH terms: Zinc Oxide
  4. Al-Hatamleh MAI, Hussin TMAR, Taib WRW, Ismail I
    J Taibah Univ Med Sci, 2019 Oct;14(5):431-438.
    PMID: 31728141 DOI: 10.1016/j.jtumed.2019.09.003
    Objective: This study aimed to determine the allelic and genotypic association of the Val66Met (rs6265) polymorphism in the BDNF gene with stress levels in preclinical medical students of Universiti Sultan Zainal Abidin (UniSZA), Terengganu, Malaysia.

    Methods: In this cross-sectional study, we recruited all 122 preclinical medical students. The validated depression anxiety stress scales-21 (DASS-21) questionnaire was distributed and blood samples were collected from each subject for DNA extraction. Genotyping analysis of the BDNF gene (Val66Met) polymorphism was performed via an optimised polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method.

    Results: A total of 105 subjects agreed to participate in this study. Indian students were found to more likely have the Val/Val genotype, whereas Malay students were more likely to have the Met/Met genotype (p = 0.027). Individuals carrying any one of the three BDNF genotypes (Val/Val, Val/Met and Met/Met) differed significantly from each other in terms of their perception of stress (p = 0.010); students carrying the Val/Val genotype (M = 10.6) perceived significantly lower stress than students carrying the Val/Met (M = 14) and Met/Met (M = 15.1) genotypes.

    Conclusion: In our study, the Met-allele was associated with higher stress levels. To the best of our knowledge, this is the first study investigating this stress-related gene in medical students. The findings from this study should trigger more investigators to focus on the impact of stress on genetically predisposed medical students.

    Matched MeSH terms: Zinc Oxide
  5. Salina Shaharun, Maizatul S. Shaharun, Mohamad F.M. Shah, Nurul A. Amer
    Sains Malaysiana, 2018;47:207-214.
    Catalytic hydrogenation of carbon dioxide (CO2) to methanol is an attractive way to recycle and utilize CO2. A series of Cu/ZnO/Al2O3/ZrO2 catalysts (CZAZ) containing different molar ratios of Cu/Zn were prepared by the co-precipitation method. The catalysts were characterized by temperature-programmed reduction (TPR), field emission scanning electron microscopy-energy dispersive x-ray analysis (FESEM-EDX) and X-ray diffraction (XRD). Higher surface area, SABET values (42.6-59.9 m2/g) were recorded at low (1) and high (5) Cu/Zn ratios with the minimum value of 35.71 m2/g was found for a Cu/Zn of 3. The reducibility of the metal oxides formed after calcination of catalyst samples was also affected due to change in metal-support interaction. At a reaction temperature of 443 K, total gas pressure of 3.0 MPa and 0.1 g/mL of the CZAZ catalyst, the selectivity to methanol decreased as the Cu/Zn molar ratio increased, and the maximum selectivity of 93.9 was achieved at Cu/Zn molar ratio of 0.33. With a reaction time of 3h, the best performing catalyst was CZAZ75 with Cu/Zn molar ratio of 5 giving methanol yield of 6.4%.
    Matched MeSH terms: Zinc Oxide
  6. Hazliza Razali, Rohayah Husain, Marhasiyah Rahim, Nor Najibah Endut, Khairi Che Mat, Nordin Simbak, et al.
    Relaxation technique is a method, process, procedure or activity that helps a person to relax. There are several methods of relaxation techniques that can be used proven beneficial to improve the individual state of relaxation. Relaxation can be performed individually or in a group. With suitable technique of relaxation, it will improve quality of life as well as emotional and physical. This study aims to investigate the impact of three different relaxation techniques, namely Autogenic (AGR), Progressive Muscle (PMR) and Music Relaxation (MR) on mood states among Universiti Sultan Zainal Abidin (UniSZA) athletes. Eighty UniSZA athletes aged between 18 to 25 years old were randomly assigned into four groups which were AGR, PMR, MR and control group. Each groups consisted of 20 subjects which were male and female athletes with multidiscipline of the sports involvement. The mood states were determined by Brunel Mood Scale (BRUMS) during pre and post-intervention. The subjects in the three intervention groups received relaxation training twice a week for four weeks, 30 minutes per sessions. While, a control group not received any relaxation training during the intervention time. Repeated measure ANOVA conducted showed that the two parameters in BRUMS significantly changes in post-intervention such vigour (F=16.083, p<0.0001) and confusion (F=3.412, p=0.022). Other negative mood scores showed no significant changes such; (anger; F=2.235, p=0.091, depression; F=0.960, p=0.416, fatigue; F=0.724, p=0.540, tension; F=16.083, p=0.913).The results of Pairwise Comparison revealed that the three types of relaxation techniques (AGR, PMR and MR) effective to enhance vigour (positive mood) score among the adult subjects. In this study, PMR was the most effective relaxation technique followed by AGR and MR to regulate the mood state among adults.
    Matched MeSH terms: Zinc Oxide
  7. Halib H, Hamdan NA, Hussin N, Shafie N
    Complementary Alternative Medicine (CAM) is broadly used as an adjunct treatment for patients to treat various kinds of disease, prevent disease and to sustain and enhance quality of life of the users. The study is aimed to investigate the association between CAM uses, Health-Related Quality of Life (HRQoL) and anthropometric indices among workers or staffs in Universiti Sultan Zainal Abidin (UniSZA) Gong Badak Campus, Kuala Terengganu. A total of 300 subjects participated in this study and completed the malay version of modified HRQol (SF-12) questionnaires. Anthropometric measurements among the subjects were done. Independent t-test, One-way ANOVA and Pearson correlation were used to test the association and the hypotheses. The prevalence of CAM users was 37.3%. The results showed that bodily pain score domain was significantly higher among non-CAM users. Overall, male had higher Mental Health Composite Score (MCS) score than female. Physical Health Composite Score (PCS) was only correlated negatively with BMI among non-CAM users but negative correlated with body fat percentage in both CAM and non-CAM users. As conclusion, HRQoL had significant negative correlation with body fat percentage among CAM users. No association was found between CAM use and HRQoL scores.
    Matched MeSH terms: Zinc Oxide
  8. Rasli NI, Basri H, Harun Z
    Heliyon, 2020 Jan;6(1):e03156.
    PMID: 32042952 DOI: 10.1016/j.heliyon.2020.e03156
    Zinc oxide (ZnO) was biosynthesised from aloe vera plant extract. The aloe vera plant extract was used as a reducing agent in biosynthesis process. Green synthesis method was proposed because it is cost effective and environmentally friendly. ZnO was characterised using SEM, EDX, FTIR, and XRD analyses. The antibacterial property was tested against Escherichia coli. The effects of aloe vera volume (2-50) mL, precursor concentration (0.001-0.300) M, reaction time (20 min-48 h), and temperature of the reaction (26-200) °C on ZnO characteristics were investigated and screened using a two-level factorial method. Based on the observation and ANOVA analysis result, precursor concentration was the only significant parameter that affected the production of the ZnO nanoparticles (NPs). The EDX analysis proved the presence of ZnO while the SEM analysis confirmed the average size of ZnO particle size was in the range of (18-618) μm with a rod-shape appearance. The XRD analysis showed that the average crystallite size was 0.452 μm and it was in the hexagonal phase. It was also proven to have antibacterial property against E. coli.
    Matched MeSH terms: Zinc Oxide
  9. Boroumand Moghaddam A, Moniri M, Azizi S, Abdul Rahim R, Bin Ariff A, Navaderi M, et al.
    Genes (Basel), 2017 Oct 20;8(10).
    PMID: 29053567 DOI: 10.3390/genes8100281
    Green products have strong potential in the discovery and development of unique drugs. Zinc oxide nanoparticles (ZnO NPs) have been observed to have powerful cytotoxicity against cells that cause breast cancer. The present study aims to examine the cell cycle profile, status of cell death, and pathways of apoptosis in breast cancer cells (MCF-7) treated with biosynthesized ZnO NPs. The anti-proliferative activity of ZnO NPs was determined using MTT assay. Cell cycle analysis and the mode of cell death were evaluated using a flow cytometry instrument. Quantitative real-time-PCR (qRT-PCR) was employed to investigate the expression of apoptosis in MCF-7 cells. ZnO NPs were cytotoxic to the MCF-7 cells in a dose-dependent manner. The 50% growth inhibition concentration (IC50) of ZnO NPs at 24 h was 121 µg/mL. Cell cycle analysis revealed that ZnO NPs induced sub-G₁ phase (apoptosis), with values of 1.87% at 0 μg/mL (control), 71.49% at IC25, 98.91% at IC50, and 99.44% at IC75. Annexin V/propidium iodide (PI) flow cytometry analysis confirmed that ZnO NPs induce apoptosis in MCF-7 cells. The pro-apoptotic genes p53, p21, Bax, and JNK were upregulated, whereas anti-apoptotic genes Bcl-2, AKT1, and ERK1/2 were downregulated in a dose-dependent manner. The arrest and apoptosis of MCF-7 cells were induced by ZnO NPs through several signalling pathways.
    Matched MeSH terms: Zinc Oxide
  10. Azizi S, Mohamad R, Bahadoran A, Bayat S, Rahim RA, Ariff A, et al.
    PMID: 27318600 DOI: 10.1016/j.jphotobiol.2016.06.007
    The use of nontoxic biological compounds in the synthesis of nanomaterials is an economic and eco-friendly approach. The present work was undertaken to develop zinc oxide nanoparticles (ZnO-NPs) by a green method using simple precursor from the solution consisting of zinc acetate and the flower extract of Anchusa italica (A. italica). Effect of annealing temperature on structural and antimicrobial properties was investigated. The crystalline structure of ZnO-NPs was shown using X-ray diffraction (XRD) analysis. Transmission electron microscopy (TEM) results showed that ZnO-NPs are hexagonal in shapes with mean particle size of ~8 and ~14nm at 100°C and 200°C annealing temperatures respectively. The optical band gap was increased from 3.27eV to 3.30eV with the decreasing of the particle size. The antimicrobial activity of ZnO-NPs towards Gram positive (Bacillus megaterium and Stapphylococcus aureus) and Gram negative (Escherichia coli and Salmonella typhimurium) pathogens decreased with the increasing of the heat treating temperature. In vitro cytotoxicity studies on Vero cells, a dose dependent toxicity with non-toxic effect of concentration below 142μg/mL was shown. The results indicated that A. italica is an appropriate reaction media to prepare ZnO-NPs for cosmetic and bio-medical productions.
    Matched MeSH terms: Zinc Oxide/chemistry*
  11. Saifullah B, Arulselvan P, El Zowalaty ME, Fakurazi S, Webster TJ, Geilich B, et al.
    ScientificWorldJournal, 2014;2014:401460.
    PMID: 25050392 DOI: 10.1155/2014/401460
    Tuberculosis is a lethal epidemic, difficult to control disease, claiming thousands of lives every year. We have developed a nanodelivery formulation based on para-aminosalicylic acid (PAS) and zinc layered hydroxide using zinc nitrate salt as a precursor. The developed formulation has a fourfold higher efficacy of PAS against mycobacterium tuberculosis with a minimum inhibitory concentration (MIC) found to be at 1.40 μg/mL compared to the free drug PAS with a MIC of 5.0 μg/mL. The newly developed formulation was also found active against Gram-positive bacteria, Gram-negative bacteria, and Candida albicans. The formulation was also found to be biocompatible with human normal lung cells MRC-5 and mouse fibroblast cells-3T3. The in vitro release of PAS from the formulation was found to be sustained in a human body simulated phosphate buffer saline (PBS) solution at pH values of 7.4 and 4.8. Most importantly the nanocomposite prepared using zinc nitrate salt was advantageous in terms of yield and free from toxic zinc oxide contamination and had higher biocompatibility compared to one prepared using a zinc oxide precursor. In summary, these promising in vitro results are highly encouraging for the continued investigation of para-aminosalicylic acid and zinc layered hydroxide nanocomposites in vivo and eventual preclinical studies.
    Matched MeSH terms: Zinc Oxide/chemistry
  12. Tapsir Z, Aly Ahmed HM, Luddin N, Husein A
    J Contemp Dent Pract, 2013 Jan 1;14(1):47-50.
    PMID: 23579892
    To evaluate and compare the microleakage of various restorative materials used as coronal barriers between endodontic appointments.
    Matched MeSH terms: Zinc Oxide/chemistry
  13. Bayrami A, Ghorbani E, Rahim Pouran S, Habibi-Yangjeh A, Khataee A, Bayrami M
    Ultrason Sonochem, 2019 Nov;58:104613.
    PMID: 31450359 DOI: 10.1016/j.ultsonch.2019.104613
    The leaf extract of a medicinally important plant, watercress (Nasturtium officinale), was obtained through an ultrasound-facilitated method and utilized for the preparation of ZnO nanoparticles via a joint ultrasound-microwave assisted procedure. The characteristics of the extract enriched nanoparticles (Ext/ZnO) were determined by SEM, TEM, XRD, EDX, BET, FTIR, TGA, and UV-Vis DRS analyses and compared to that of ZnO prepared in the absence of the extract (ZnO). The presence of carbon and carbonaceous bonds, changes in the morphology, size, band gap energy, and weight-decay percentage were a number of differences between ZnO and Ext/ZnO that confirmed the link of extract over nanoparticles. Ext/ZnO, watercress leaf extract, ZnO, and insulin therapies were administrated to treat alloxan-diabetic Wister rats and their healing effectiveness results were compared to one another. The serum levels of the main diabetic indices such as insulin, fasting blood glucose, and lipid profile (total triglyceride, total cholesterol, and high-density lipoprotein cholesterol) were estimated for healthy, diabetic, and the rats rehabilitated with the studied therapeutic agents. The watercress extract-enriched ZnO nanoparticles offered the best performance and suppressed the diabetic status of rats. Moreover, both ZnO samples satisfactory inhibited the activities of Staphylococcus aureus and Escherichia coli bacteria. Based on the results, the application of Nasturtium officinale leaf extract can strongly empower ZnO nanoparticles towards superior antidiabetic and enhanced antibacterial activities.
    Matched MeSH terms: Zinc Oxide/chemistry*
  14. Yu L, Lu M, Zhang W, Alarfaj AA, Hirad AH, Zhang H
    Microb Pathog, 2020 Apr;141:103960.
    PMID: 31953224 DOI: 10.1016/j.micpath.2019.103960
    BACKGROUND: Mycoplasma pneumoniae (MP) is a common cause of community-acquired pneumonia (CAP) among the children and adults that results upper and lower respiratory tract infections.

    OBJECTIVE: This study was aimed to inspect the ameliorative action of A. chinensis synthesized ZnONPs against M. pneumoniae infected pneumonia mice model.

    MATERIALS AND METHODS: ZnO NPs was synthesized from Albizia chinensis bark extract and characterized by UV-Vis spectroscopy, Fourier Transform Infrared (FTIR), Transmission Electron Microscopy (TEM), energy dispersive X-ray (EDX) and atomic force microscope (AFM) analyses. The antibacterial effectual of synthesized ZnONPs were examined against clinical pathogens. The pneumonia was induced to BALB/c mice via injecting the M. pneumoniae and treated with synthesized ZnONPs, followed by the total protein content, total cell counts and inflammatory mediators level was assessed in the BALF of experimental animals. The Histopathological investigation was done in the lung tissues of test animals.

    RESULTS: The outcomes of this work revealed that the formulated ZnONPs was quasi-spherical, radial and cylindrical; the size was identified as 116.5 ± 27.45 nm in diameter. The in vitro antimicrobial potential of formulated ZnO-NPs displayed noticeable inhibitory capacity against the tested fungal and bacterial strains. The administration of synthesized ZnO-NPs in MP infected mice model has significantly reduced the levels of total protein, inflammatory cells, inflammatory cytokines such as IL-1, IL-6, IL-8, tumour necrosis factor-alpha (TNF-a) and transforming growth factor (TGF). Besides, the histopathological examination of MP infected mice lung tissue showed the cellular arrangements were effectively retained after administration of synthesized ZnO-NPs.

    CONCLUSION: In conclusion, synthesized ZnO-NPs alleviate pneumonia progression via reducing the level of inflammatory cytokines and inflammatory cells in MP infected mice model.

    Matched MeSH terms: Zinc Oxide/chemistry*
  15. Rahim Pouran S, Bayrami A, Mohammadi Arvanag F, Habibi-Yangjeh A, Darvishi Cheshmeh Soltani R, Singh R, et al.
    Colloids Surf B Biointerfaces, 2020 May;189:110878.
    PMID: 32087528 DOI: 10.1016/j.colsurfb.2020.110878
    In this research, a milk thistle seed extract (MTSE)-rich medium was used as a capping and reducing agent for the one-pot biosynthesis of ZnO/Ag (5 wt%) nanostructure. The sample was systematically characterized through various techniques and its strong biomolecule‒metal interface structure was supported by the results. The efficacy of the derived nanostructure (MTSE/ZnO/Ag) was evaluated in vivo on the basis of its therapeutic effects on the main complications of Type 1 diabetes (hyperglycemia, hyperlipidemia, and insulin deficiency). For this purpose, the changes in the plasma values of fasting blood glucose, total cholesterol, total triglyceride, high-density lipoprotein cholesterol, and insulin in alloxan-diabetic Wistar male rats were compared with those in healthy and untreated diabetic controls after a treatment period of 16 days. The antidiabetic results of MTSE/ZnO/Ag were compared with those obtained from pristine ZnO, MTSE, and insulin therapies. The health conditions of the rats with Type 1 diabetes were significantly enhanced after treatment with MTSE/ZnO/Ag (p 
    Matched MeSH terms: Zinc Oxide/chemistry
  16. Arshad R, Sohail MF, Sarwar HS, Saeed H, Ali I, Akhtar S, et al.
    PLoS One, 2019;14(6):e0217079.
    PMID: 31170179 DOI: 10.1371/journal.pone.0217079
    Post-operative surgical site infections (SSI) present a serious threat and may lead to complications. Currently available dressings for SSI lack mucoadhesion, safety, efficacy and most importantly patient compliance. We aimed to address these concerns by developing a bioactive thiolated chitosan-alginate bandage embedded with zinc oxide nanoparticles (ZnO-NPs) for localized topical treatment of SSI. The FTIR, XRD, DSC and TGA of bandage confirmed the compatibility of ingredients and modifications made. The porosity, swelling index and lysozyme degradation showed good properties for wound healing and biodegradation. Moreover, in-vitro antibacterial activity showed higher bactericidal effect as compared to ZnO-NPs free bandage. In-vivo wound healing in murine model showed significant improved tissue generation and speedy wound healing as compared to positive and negative controls. Over all, thiolated bandage showed potential as an advanced therapeutic agent for treating surgical site infections, meeting the required features of an ideal surgical dressing.
    Matched MeSH terms: Zinc Oxide/chemistry*
  17. Thong YL, Messer HH, Zain RB, Saw LH, Yoong LT
    Dent Traumatol, 2009 Aug;25(4):386-93.
    PMID: 19459923 DOI: 10.1111/j.1600-9657.2008.00631.x
    Progressive replacement resorption following delayed replantation of avulsed teeth has proved to be an intractable clinical problem. A wide variety of therapeutic approaches have failed to result in the predictable arrest of resorption, with a good long-term prognosis for tooth survival. Bisphosphonates are used in the medical management of a range of bone disorders and topically applied bisphosphonate has been reported to inhibit root resorption in dogs. This study evaluated the effectiveness of a bisphosphonate (etidronate disodium) as an intracanal medicament in the root canals of avulsed monkey teeth, placed before replantation after 1 h of extraoral dry storage. Incisors of six Macaca fascicularis monkeys were extracted and stored dry for 1 h. Teeth were then replanted after canal contamination with dental plaque (negative control) or after root canal debridement and placement of etidronate sealed in the canal space. A positive control of calcium hydroxide placed 8-9 days after replantation was also included. All monkeys were sacrificed 8 weeks later and block sections were prepared for histomorphometric assessment of root resorption and periodontal ligament status. Untreated teeth showed the greatest extent of root resorption (46% of the root surface), which was predominantly inflammatory in nature. Calcium hydroxide treated teeth showed the lowest overall level of resorption (<30% of the root surface), while the bisphosphonate-treated group was intermediate (39%). Ankylosis, defined as the extent of the root surface demonstrating direct bony union to both intact and resorbed root surface, was the lowest in the untreated control group (15% of the root surface), intermediate in the calcium hydroxide group (27%) and the highest in the bisphosphonate group (41%). Bony attachment to the tooth root was divided approximately equally between attachment to intact cementum and to previously resorbed dentin. Overall, bisphosphonate resulted in a worse outcome than calcium hydroxide in terms of both root resorption and ankylosis.
    Matched MeSH terms: Zinc Oxide-Eugenol Cement/therapeutic use
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links