Displaying publications 201 - 220 of 449 in total

Abstract:
Sort:
  1. Jalili, Maryam, Jinap, S.
    MyJurnal
    The extraction method for the determination of ochratoxin A (OTA) in black pepper was optimized. The influence of three variables, i.e., type of solvent, solvent-volume-to-sample- size ratio (v/w) and amount of sodium chloride (NaCl) (g), on OTA recovery was evaluated. Analysis of variance was used to compare recovery values obtained from different solvents, and response surface methodology (RSM) was used to determine the optimum amount of NaCl and the solvent-volume-to-sample-size ratio. The concentration of OTA was determined by high-performance liquid chromatography with fluorescence detection. The highest recovery (95.2 %) was obtained when methanol/water (80:20, v/v) was used as the solvent. The RSM results showed that the experimental data could be adequately fitted to a second-order polynomial model with multiple regression coefficients (R2) of 0.962. The optimum amount of NaCl was determined to be 3 g, whereas the optimum solvent-volume-to-sample-size ratio (v/w) was found to be 4. The proposed method was applied to 20 samples, and the presence of OTA was found in 8 (40%) samples ranging from 0.11 to 3.16 ng g-1.
    Matched MeSH terms: Methanol
  2. Lim, S.M., Loh, S.P.
    MyJurnal
    This study aims to determine the antioxidant capacities (AC) and antidiabetic properties of
    phenolic extracts (free and bound) from white Tambun pomelo peels, kaffir lime peels, lime
    peels and calamansi peels. AC, total phenolic content (TPC) and antidiabetic properties of
    selected citrus peels extracts were determined spectrophotometrically using 2,2-Diphenyl-1-
    picrylhydrazyl free radical (DPPH) scavenging, ferric-reducing antioxidant power (FRAP),
    Folin-Ciocalteu (FC) and α-amylase and α-glucosidase inhibition assay, respectively. This
    study found that the methanolic extract of kaffir lime showed the best AC with the lowest
    IC50 value of DPPH radical (7.51 ± 0.50 mg/ml) and highest FRAP value [369.48 ± 20.15
    mM Fe (II) E/g DW]. TPC of free phenolic extracts of all citrus peels were significantly (p<
    0.05) higher compared to the bound phenolic extracts with extract of calamansi showed the
    highest TPC. Free- and bound phenolic extract of calamansi also had the highest α-amylase
    inhibition activity (61.79 ± 4.13%; 45.30 ± 5.35%) respectively. The highest inhibitory effect in
    α-glucosidase inhibition assay of free- and bound phenolic extracts were white Tambun pomelo
    (41.06 ± 10.94%) and calamansi (43.99 ± 22.03%) respectively. Hence, the citrus peels could
    be furthered study for their potential in management and/or prevention of diabetes.
    Matched MeSH terms: Methanol
  3. Latip W, Raja Abd Rahman RNZ, Chor Leow AT, Mohd Shariff F, Mohamad Ali MS
    PeerJ, 2016;4:e2420.
    PMID: 27781152 DOI: 10.7717/peerj.2420
    A gene encoding a thermotolerant lipase with broad pH was isolated from an Antarctic Pseudomonas strain AMS3. The recombinant lipase AMS3 was purified by single-step purification using affinity chromatography, yielding a purification fold of approximately 1.52 and a recovery of 50%. The molecular weight was approximately ∼60 kDa including the strep and affinity tags. Interestingly, the purified Antarctic AMS3 lipase exhibited broad temperature profile from 10-70 °C and stable over a broad pH range from 5.0 to pH 10.0. Various mono and divalent metal ions increased the activity of the AMS3 lipase, but Ni(2+) decreased its activity. The purified lipase exhibited the highest activity in the presence of sunflower oil. In addition, the enzyme activity in 25% v/v solvents at 50 °C particularly to n-hexane, DMSO and methanol could be useful for catalysis reaction in organic solvent and at broad temperature.
    Matched MeSH terms: Methanol
  4. Zin SRM, Kassim NM, Alshawsh MA, Hashim NE, Mohamed Z
    Biomed Pharmacother, 2017 Jul;91:611-620.
    PMID: 28486192 DOI: 10.1016/j.biopha.2017.05.011
    Anastatica hierochuntica L. (A. hierochuntica) is a desert plant consumed by people across the globe to treat various medical conditions. This review is aimed at providing a summary of the scientific findings on biological activities of A. hierochuntica and suggests areas in which further research is needed. This systematic review was synthesized from the literature obtained from the following databases; PubMed, Science Direct, Web of Science, Ovid Medline, Scopus, Google Scholar and WorldCat. Previous studies have indicated that the methanolic and aqueous extracts of this plant have antioxidant, antifungal and antimicrobial activities. It was shown to have the ability to activate phagocytes and to possess microbicidal activity, thereby causing increased resistance to infection. Both methanolic and aqueous extracts of this plant were also demonstrated to have a hypoglycaemic property, whilst the methanolic extract significantly exhibited hypolipidaemic effects in diabetic rats. Moreover, the methanolic extract of A. hierochuntica has been suggested to have hepatoprotective properties. This is supported by its ability to significantly decrease transaminase and alkaline phosphatase activities in alloxan-induced diabetic rats. Besides, this desert plant exhibited anti-inflammatory, anti-melanogenic and gastroprotective activities. Even though A. hierochuntica is widely used, studies on this plant are still scarce, thus its reputed biological activities and medical benefits require critical evaluation. Before A. hierochuntica can be used clinically, further studies need to be conducted to increase our understanding of the effects of this plant, its constituents, and possible mechanisms of action.
    Matched MeSH terms: Methanol
  5. Morvarid, A.R., Zeenathul, N.A., Tam, Y.J., Zuridah, H., Mohd-Azmi, M.L., Azizon, B.O.
    MyJurnal
    This study describes expression of HBs Ag in methylotrophic yeast, Pichia Pastoris under alcohol oxidase promoter. A single copy number of HBs Ag gene was transformed into pichia strain of KM 71, a Muts type, by using pA0815 pichia expression vector. The recombinant was cultivated in a shake flask either using methanol or a mixed feed of glycerol -methanol for induction. The HBs Ag gene integrity was justified using direct PCR method. The expressed products in the soluble cell extracts were analyzed by Western blot, SDS page, Bradford assay and ELISA tests. The recombinant HBs Ag was expressed successfully in Pichia pastoris strain KM71 at a high level of HBs Ag protein expression. Thus, an addition of glycerol in the ratio of glycerol per methanol 1/1 (g g-1) consistently produced 2-fold increment in both biomass accumulation and HBs Ag productivity.
    Matched MeSH terms: Methanol
  6. Chin, J.H., Ismail, S., Hussin, A.H.
    MyJurnal
    The aim of this study was to investigate the acute (one-day treatment) effect of a methanol extract of
    Orthosiphon stamineus, Benth on glutathione-S-transferase (GST) activity in streptozotocin (STZ)-induced diabetic young male and female Sprague Dawley (SD) rats. The methanol extract of O. stamineus was administered orally (5, 31.25, 125 and 500 mg/kg) to diabetic rats, and the effect on GST activity was measured by the method of Habig et al. (1974). No lethality and no significant changes in body weight and water intake were observed in the treated group as compared to the control group. A significant increase in the activity of GST was observed in the liver S-9 cytosolic fraction of diabetic male SD rats treated with 125 mg/kg (P < 0.01) and 500 mg/kg (P < 0.01) of the methanol extract O. stamineus. Administration of 500 mg/kg (P < 0.01) of the methanol extract of O. stamineus to diabetic female SD rats increased GST activity when compared to the control group. This study indicates that the methanol extract of O. stamineus could affect the activity of GST in rat liver and the effect seen was dose-dependent.
    Matched MeSH terms: Methanol
  7. Ab. Rahman, N.S., Abd. Majid F.A., Harisun, Y., Md. Salleh L.
    MyJurnal
    Effects of different types of solvent on the antioxidant and antibacterial activity of Quercus infectoria extract have not been well documented. Therefore, extraction process was conducted using conventional Soxhlet extraction with six different types of solvent (100% methanol, ethanol, acetone, water and 70% methanol, and ethanol). High performance liquid chromatography was implemented to identify gallic acid and tannic acid in the extracts. Water extracts contained the highest concentration of both gallic acid and tannic acid compared to other types of solvent; 51.14 mg/g sample and 1332.88 mg/g sample of gallic acid and tannic acid. Meanwhile, antioxidant and antibacterial activity were tested using DPPH free radicals scavenging and disc diffusion assay. Results demonstrated that water extracts gave the highest antioxidant activity (approximately 94.55%), while acetone extract gave the largest inhibition zone for disc diffusion assay (19.00mm respectively). The results also revealed rich sources of gallic acid and tannic acid in Q. infectoria which might provide a novel source of these natural antioxidant and antibacterial activity.
    Matched MeSH terms: Methanol
  8. Ahmad Zorin Sahalan, Nazahiyah Sulaiman, Nihayah Mohammed, Kaswandi Md. Ambia, Hing, Hian Lian
    MyJurnal
    Two species of plants, Andrographis paniculata and Euphorbia hirta were screened for antibacterial activities against three Gram positives and Gram negatives. The leaves from both plants were extracted by methanol extraction. The antibacterial activity was detected with spread plate well diffusion method. The extracts of both plants demonstrated inhibitory activity against both Gram negative and positives bacteria. Staphylococcus aureus, Bacillus subtilis, Streptococcus epidemidis, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa. The minimum inhibitory concentration (MIC determination using micro dilution method showed that the A/tic of A. paniculata for the tested bacteria were 1.56 mg/ml (Staph. aureus), 3.13 mg/ml (Bacillus subtilis), 3.13 mg/ml (Strept. epidemidis), 1.56 mg/ml (Escherichia cob), 12.50 mg/ml (Klebsiella pneumoniae) and 3.13 mg/ml (Pseudomonas aeruginosa) respectively. The MIC value for E. hirta was 6.25 mg/ml (Staph. aureus) and 3.13 mg/ml (Bacillus subtilis), 3.13 mg/ml (Strept. Epidemidis), 3.13 mg/ml (Pseudomonas aeruginosa),12.5 mg/ml (Escherichia coli), and 6.25 mg/ml (Klebsiella pneumoniae). Both plants represent a potential for pharmaceutical and agricultural applications and are worthy of further study.
    Matched MeSH terms: Methanol
  9. Kamilla, L., Ramanathan, S., Sasidharan, S., Mansor, S.M.
    MyJurnal
    The Clitoria ternatea (Fabaceae) root, seed, and leaf are commonly used in Ayurvedic medicine in Malaysia and Indonesia. The methanol leaf extracts of C. ternatea was tested for toxicity by means of brine shrimp lethality test and acute oral toxicity assay. In the brine shrimp lethality test, the leaf extract were non-toxic or showed weak lethality (LC50 > 1 mg/ml) at the 6 h, 12 h and 24 h incubation period. Nevertheless, at the 48 h incubation time, the leaf extract exhibited moderate toxicity activity with LC50 values of 0.49 mg/ml. In the acute toxicity study using mice, the median lethal dose (LD50) of the extract was found greater than 2000 mg/kg, and we found no pathological changes by means of macroscopic examination of tissues of mice treated with the extract. We conclude that the C. ternatea leaf extract is not toxic in mice and brine shrimp.
    Matched MeSH terms: Methanol
  10. Aiza Harun, Siti Zaiton Mat So’ad, Norazian Mohd Hassan, Neni Kartini Che Mohd Ramli
    MyJurnal
    This study was performed to evaluate the antifungal activities of methanolic fractions from the stem bark of Entada spiralis Ridl. against human dermatophytes and yeast-like fungus in vitro. Three types of human dermatophyte, Trichophyton mentagrophytes ATCC 9533, Microsporum gypseum ATCC 24102 and Trichophyton tonsurans ATCC 28942, and one yeast-like fungus, Candida glabrata ATCC 66032, were tested against the methanolic fractions labelled FA1, FA4 and FA5. T. mentagrophytes, T. tonsuran and M. gypseum were susceptible to all tested fractions in a concentration-dependent manner whereas C. glabrata was resistant. Fraction FA1 at a concentration of 400 mg/mL was found to exhibit the highest antifungal activity with the inhibition zone diameter of 22 mm (T. mentagrophytes). This fraction showed a minimum inhibitory concentration MIC of 0.097 mg/mL while the MIC value for the fraction FA4 and fraction FA5 was 3.12 mg/ml and 1.56 mg/ml respectively. Agar overlay bioautography assay results showed that most of the bioactive compounds were found in the fraction FA1. Based on these findings, it can be concluded that the stem bark extracts of E. spiralis can be a future source of potent natural antimicrobial drugs for superficial skin diseases.
    Matched MeSH terms: Methanol
  11. Alimon, H, Abdullah Sani, A., Syed Abdul Azziz, S. S., Daud, N., Mohd Arriffin, N., Mhd Bakri, Y.
    MyJurnal
    Lansium domesticum Corr. is a fruit tree of the Meliaceae family, which is commonly found in SouthEast Asia with a wide range of varieties. This study investigated three varieties of L. domesticum; Duku, Langsat and Dokong for the phytochemical screening and antimicrobial activity. Seeds from the matured fruits were extracted using hexane, methanol and water. The crude extracts were screened for antimicrobial activities toward three bacteria, namely, Pseudomonas aeruginosa, Bacillus subtilis, and Staphylococcus aureus. The findings showed that Langsat seed extracts contained more groups of compounds compared with the other two varieties, and its methanol extract demonstrated the highest inhibition zones against the three bacteria. The crude methanol extract of Duku seeds showed inhibition zones only towards Bacillus subtilis at a high concentration (1.0 mgL-1), whilst the seed extracts of Dokong showed no inhibition zones towards any of the tested bacteria.
    Matched MeSH terms: Methanol
  12. Abbasiliasi S, Tan JS, Ibrahim TAT, Ramanan RN, Kadkhodaei S, Mustafa S, et al.
    J Food Sci Technol, 2018 Apr;55(4):1270-1284.
    PMID: 29606741 DOI: 10.1007/s13197-018-3037-x
    This paper deliberates the modelling and validation of bacteriocin-like inhibitory substance (BLIS) secretion by Pediococcus acidilactici Kp10 at different agitation speeds in a stirred tank bioreactor. A range of models namely the re-parameterised logistic, Luedeking-Piret and maintenance energy were assessed to predict the culture performance of the said bacterium. Growth of P. acidilactici Kp10 was enhanced with increased agitation speed up to 600 rpm while BLIS secretion was maximum at 400 rpm but decreased at higher agitation speed. Growth of P. acidilactici aptly subscribed to the re-parameterised logistic model while BLIS secretion and lactose consumption fitted well with the Luedeking-Piret model. The models revealed a relationship between growth of the bacterium and BLIS secretion. Bacterial growth and BLIS secretion were largely affected by the agitation speed of the stirred tank bioreactor which regulated the oxygen transfer to the culture. BLIS secretion by P. acidilactici Kp10 was however enhanced in oxygen-limited culture. The study also assessed BLIS from the perspective of its stability when subjected to factors such as temperature, pH and detergents. Results showed that BLIS produced by this strain was not affected by heat (at 25-100 °C for 20 min and at 121 °C for 15 min), surfactant (Tween 40, 60 and 80 and urea), detergents (up to 1% SDS), organic solvents (50% each of acetone, methanol and ethanol) and stable in a wide range of pH (2-10). The above information are pertinent with reference to commercial applications of this bacterial product in food manufacturing which invariably involve various sterilization processes and subjected to a wide pH range.
    Matched MeSH terms: Methanol
  13. Maiangwa J, Mohamad Ali MS, Salleh AB, Rahman RNZRA, Normi YM, Mohd Shariff F, et al.
    PeerJ, 2017;5:e3341.
    PMID: 28533982 DOI: 10.7717/peerj.3341
    The dynamics and conformational landscape of proteins in organic solvents are events of potential interest in nonaqueous process catalysis. Conformational changes, folding transitions, and stability often correspond to structural rearrangements that alter contacts between solvent molecules and amino acid residues. However, in nonaqueous enzymology, organic solvents limit stability and further application of proteins. In the present study, molecular dynamics (MD) of a thermostable Geobacillus zalihae T1 lipase was performed in different chain length polar organic solvents (methanol, ethanol, propanol, butanol, and pentanol) and water mixture systems to a concentration of 50%. On the basis of the MD results, the structural deviations of the backbone atoms elucidated the dynamic effects of water/organic solvent mixtures on the equilibrium state of the protein simulations in decreasing solvent polarity. The results show that the solvent mixture gives rise to deviations in enzyme structure from the native one simulated in water. The drop in the flexibility in H2O, MtOH, EtOH and PrOH simulation mixtures shows that greater motions of residues were influenced in BtOH and PtOH simulation mixtures. Comparing the root mean square fluctuations value with the accessible solvent area (SASA) for every residue showed an almost correspondingly high SASA value of residues to high flexibility and low SASA value to low flexibility. The study further revealed that the organic solvents influenced the formation of more hydrogen bonds in MtOH, EtOH and PrOH and thus, it is assumed that increased intraprotein hydrogen bonding is ultimately correlated to the stability of the protein. However, the solvent accessibility analysis showed that in all solvent systems, hydrophobic residues were exposed and polar residues tended to be buried away from the solvent. Distance variation of the tetrahedral intermediate packing of the active pocket was not conserved in organic solvent systems, which could lead to weaknesses in the catalytic H-bond network and most likely a drop in catalytic activity. The conformational variation of the lid domain caused by the solvent molecules influenced its gradual opening. Formation of additional hydrogen bonds and hydrophobic interactions indicates that the contribution of the cooperative network of interactions could retain the stability of the protein in some solvent systems. Time-correlated atomic motions were used to characterize the correlations between the motions of the atoms from atomic coordinates. The resulting cross-correlation map revealed that the organic solvent mixtures performed functional, concerted, correlated motions in regions of residues of the lid domain to other residues. These observations suggest that varying lengths of polar organic solvents play a significant role in introducing dynamic conformational diversity in proteins in a decreasing order of polarity.
    Matched MeSH terms: Methanol
  14. Al-Madhagi WM, Mohd Hashim N, Awad Ali NA, Alhadi AA, Abdul Halim SN, Othman R
    PeerJ, 2018;6:e4839.
    PMID: 29892499 DOI: 10.7717/peerj.4839
    Background: Peperomia belongs to the family of Piperaceae. It has different uses in folk medicine and contains rare compounds that have led to increased interest in this genus. Peperomia blanda (Jacq.) Kunth is used as an injury disinfectant by Yemeni people. In addition, the majority of Yemen's population still depend on the traditional remedy for serious diseases such as cancer, inflammation and infection. Currently, there is a deficiency of scientific evidence with regards to the medicinal plants from Yemen. Therefore, this study was performed to assess the chemical profile and in vitro antioxidant and cytotoxic activities of P. blanda.

    Methods: Chemical profiling of P. blanda was carried out using gas chromatography mass spectrometry (GCMS) followed by isolation of bioactive compounds by column chromatography. DPPH• and FRAP assays were used to evaluate antioxidant activity and the MTT assay was performed to estimate the cytotoxicity activity against three cancer cell lines, namely MCF-7, HL-60 and WEHI-3, and three normal cell lines, MCF10A, WRL-68 and HDFa.

    Results: X-ray crystallographic data for peperomin A is reported for the first time here and N,N'-diphenethyloxamide was isolated for the first time from Peperomia blanda. Methanol and dichloromethane extracts showed high radical scavenging activity with an IC50 of 36.81 ± 0.09 µg/mL, followed by the dichloromethane extract at 61.78 ± 0.02 µg/mL, whereas the weak ferric reducing activity of P. blanda extracts ranging from 162.2 ± 0.80 to 381.5 ± 1.31 µg/mL were recorded. In addition, petroleum ether crude extract exhibited the highest cytotoxic activity against all the tested cancer cell lines with IC50 values of 9.54 ± 0.30, 4.30 ± 0.90 and 5.39 ± 0.34 µg/mL, respectively. Peperomin A and the isolated mixture of phytosterol (stigmasterol and β-sitosterol) exhibited cytotoxic activity against MCF-7 and WE-HI cell lines with an IC50 of (5.58 ± 0.47, 4.62 ± 0.03 µg/mL) and (8.94 ± 0.05, 9.84 ± 0.61 µg/mL), respectively, compared to a standard drug, taxol, that has IC50 values of 3.56 ± 0.34 and 1.90 ± 0.9 µg/mL, respectively.

    Conclusion: The activities of P. blanda extracts and isolated compounds recorded in this study underlines the potential that makes this plant a valuable source for further study on anticancer and antioxidant activities.

    Matched MeSH terms: Methanol
  15. Veeramohan R, Azizan KA, Aizat WM, Goh HH, Mansor SM, Yusof NSM, et al.
    Data Brief, 2018 Jun;18:1212-1216.
    PMID: 29900296 DOI: 10.1016/j.dib.2018.04.001
    Mitragyna speciosa is a psychoactive plant known as "ketum" in Malaysia and "kratom" in Thailand. This plant is distinctly known to produce two important alkaloids, namely mitragynine (MG) and 7-hydroxymitragynine (7-OH-MG) that can bind to opioid receptors [1]. MG was reported to exhibit antidepressant properties in animal studies [2]. These compounds were also proposed to have the potential to replace opioid analgesics with much lower risks of side effects [3]. To date, there are only over 40 metabolites identified in M. speciosa [4,5]. To obtain a more complete profile of secondary metabolites in ketum, we performed metabolomics study using mature leaves of the green M. speciosa variety. The leaf samples were extracted using methanol prior to liquid chromatography-electrospray ionization-time of flight-mass spectrometry (LC-ESI-TOF-MS) analysis. This data can be useful to for the identification of unknown metabolites that are associated with alkaloid biosynthesis pathway in M. speciosa.
    Matched MeSH terms: Methanol
  16. Rashed, K., Said, A., Abdo, A., Selim, S.
    MyJurnal
    This work was carried out for determining antimicrobial activity of Pistacia chinensis leaves
    methanol extract and identifying the chemical composition of the plant extract. Methanol extract
    was tested for antimicrobial activity using disc-diffusion assay and the extract was fractionated
    on silica gel column chromatography for the isolation of the bio-active constituents. The leaves
    extract of P. chinensis showed a significant antimicrobial effect, it strongly inhibited the growth
    of the test bacteria and yeast studied. Chromatograpic separation of the methanol extract of
    P. chinensis leaves has led to the isolation and characterization of β-sitosterol, luepol, and
    six flavonoids, quercetin, myricetin, quercetin 3-O-α-rhamnoside, quercetin 3-O-β-glucoside,
    myricetin 3-O-α-rhamnoside and myricetin 3-O-β-glucuronide using various chromatographic
    procedures and the interpretation of spectral data in comparison with already existing data
    reported in the literature. The results presented here may suggest that the leaves extract of P.
    chinensis possess antimicrobial properties, and therefore, can be used as natural preservative
    ingredients in food and/or pharmaceuticals.
    Matched MeSH terms: Methanol
  17. Tin, H.S., Padam, B.S., Abdullah, M.I., Chye, F.Y.
    MyJurnal
    The study aimed to isolate and elucidate the chemical compounds that are found in banana
    (Musa balbisiana cv. Saba) inflorescences. Banana inflorescence buds were extracted using
    methanol and the resulted methanolic extract was partitioned using chloroform, ethyl acetate
    and butanol against deionized water. The chloroform partition was further separated into
    fractions using column chromatography assisted by thin layer chromatography. The structure
    elucidation was performed using nuclear magnetic resonance spectrometry (NMR). Three
    triterpenes were isolated namely 31-norcyclolaudenone (1), cycloartenol (2) and (24R)-4a,24-
    trimethyl-5a-cholesta-8,25(27)-dien-3b-ol (3). This is the first report on the isolation of these
    triterpenes from Musa balbisiana inflorescence. The discovery of new triterpenes from banana
    inflorescence should be further explored to open a new perspective that banana by-products
    might serve as new source of natural products for food and pharmaceutical applications.
    Matched MeSH terms: Methanol
  18. Thang LY, See HH, Quirino JP
    Talanta, 2016 Dec 01;161:165-169.
    PMID: 27769394 DOI: 10.1016/j.talanta.2016.08.054
    The low conductivity of separation electrolytes employed in nonaqueous capillary electrophoresis (NACE) limits the use of on-line sample concentration or stacking by field enhancement. Herein, micelle-to-solvent stacking (MSS) was performed by the simple injection of a micellar solution plug prior to electrokinetic injection of sample prepared under field-enhanced stacking conditions (known as field-enhanced sample injection, FESI). The proposed approach allowed a 214-625-fold improvement in peak signals for targeted anticancer drugs (e.g., tamoxifen) and its major metabolites in NACE using 100% methanol-based separation electrolyte that comprised of 7.5mM deoxycholic acid sodium salt, 15mM acetic acid and 1mM 18-crown-6. These improvements yielded tamoxifen and its metabolites with 2-5 times better stacking efficiency as compared to those obtained without micellar solution injection or FESI only. This is comparable to the results typically achieved when FESI is combined with isotachophoresis (electrokinetic supercharging). The FESI-MSS-NACE was tested for the measuring levels of target drugs in plasma. The analytical figures of merit are also reported.
    Matched MeSH terms: Methanol
  19. Khazaei S, Esa NM, Ramachandran V, Hamid RA, Pandurangan AK, Etemad A, et al.
    Front Pharmacol, 2017;8:5.
    PMID: 28197098 DOI: 10.3389/fphar.2017.00005
    Natural products are considered potent sources for novel drug discovery and development. The multiple therapeutic effects of natural compounds in traditional medicine motivate us to evaluate the cytotoxic activity of bulb of Allium atroviolaceum in MCF7 and MDA-MB-231, HeLa and HepG2 cell lines. The bulb methanol extract of A. atroviolaceum was found to be an active cell proliferation inhibitor at the time and dose dependent manner. Determination of DNA content by flow cytometry demonstrated S and G2/M phase arrest of MCF-7 cell, correlated to Cdk1 downregulation, S phase arrest in MDA-MB-231 which is p53 and Cdk1-dependent, sub-G0 cell cycle arrest in HeLa aligned with Cdk1 downregulation, G0/G1, S, G2/M phase arrest in HepG2 which is p53-dependent. Apoptosis as the mechanism of cell death was confirmed by morphology study, caspases activity assay, as well as apoptosis related gene expression, Bcl-2. Caspase-8, -9, and -3 activity with downregulation of Bcl-2 illustrated occurrence of both intrinsic and extrinsic pathways in MCF7, while caspase-3 and -8 activity revealed extrinsic pathway of apoptosis, although Bcl-2 downregulated. In HeLa cells, the activity of caspase-9 and -3 and downregulation of Bcl-2 shows intrinsic pathway or mitochondrial pathway, whereas HepG2 shows caspase independent apoptosis. Further, the combination of the extract with tamoxifen against MCF7 and MDA-MB-231 and combination with doxorubicin against HeLa and HeG2 demonstrated synergistic effect in most concentrations, suggests that the bulb of A. atroviolaceum may be useful for the treatment of cancer lonely or in combination with other drugs.
    Matched MeSH terms: Methanol
  20. Nehdi IA, Sbihi HM, Blidi LE, Rashid U, Tan CP, Al-Resayes SI
    Protein Pept Lett, 2018;25(2):164-170.
    PMID: 28240158 DOI: 10.2174/0929866524666170223150839
    BACKGROUND: Biodiesel is a green fuel consisting of long chain fatty acid monoalkyl esters, which can be blended with diesel or used alone which is usually produced from vegetable oils/fats by either lipasecatalyzed transesterification. In this investigation, an enzyme (Novozym 435) catalyzed process was optimized to prepare methyl esters from crude Citrullus colocynthis oil (CCO) by transesterification of CCO with methanol. However, as per our knowledge, lipase-catalyzed transesterification have not been used for biodiesel production from Citrullus colocynthis.

    OBJECTIVE: The purpose of this work was to transesterify the CCO in the presence of Candida antarctica lipase as catalyst and methanol. Additionally, the physicochemical parameters/fuel properties of the Citrullus colocynthis methyl ester (CCME) were assessed and compared.

    METHODS: Lipase-catalyzed reactions were carried out in three necked flask (50 mL) attached with reflux condenser and thermometer, immersed in oil bath at constant stirring speed (400 rpm). The reaction mixture was consisted of CCO and varying the calculated amount of methanol, tert-butyl alcohol, and Novozym 435. The experimental parameters reaction time, methanol/oil molar ratio, reaction temperature, tert-butanol content, Novozym 435 content and water content were optimized for the transesterification reaction. The CCME yield was measured using gas chromatograph. The fuel properties of the produced CCME were determined as per American Society for Testing and Materials (ASTM) and European (EN) biodiesel standard methods.

    RESULTS: In this study, an enzymatic catalyst was employed to synthesize the CCME from CCO via transesterification. Several variables affecting the CCME yield were optimized as lipase quantity (4%), water content (0.5%), methanol/oil molar ratio (5:1), reaction temperature (43 °C), reaction medium composition (80% tertbutanol/ oil), and reaction time (3.7 h). A CCME yield of 97.8% was achieved using enzyme catalyzed transesterification of CCO under optimal conditions. The significant biodiesel fuel properties of CCME, i.e. cloud point (0.70 °C); cetane number (49.07); kinematic viscosity (2.27 mm2/s); flash point (143 °C); sulfur content (2 ppm) density (880 kg/m3) and acid value (0.076 mg KOH/g) were appraised. CCME also exhibited long-term storage stability (4.80 h) and all the biodiesel fuel properties were within the range of standards (ASTM D6751 and EN 14214).

    CONCLUSION: The lipase-catalyzed transesterification produced better conversion than the base-catalyzed reaction. The fuel properties of CCME were within the limits of the ASTM D6751 and EN14214 standards. Furthermore, CCME showed good oxidative stability and a long shelf life due its high natural antioxidant content. CCME showed better fuel properties and long-term storage stability due to which it can be used as a potential alternative fuel.

    Matched MeSH terms: Methanol
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links